On L-Fuzzy σ -Generalized Closed Sets and their Properties

Baby Bhattacharya Assistant Professor Department of Mathematics, NITAgartala, Barjala, Jirania-799055, Tripura, India.

ABSTRACT

The aim of this paper is to introduce the concept of fuzzy σ -generalized closed set and study its properties. Secondly the concept of infra *L*-fuzzy topological space is introduced. Making use of fuzzy σ -closed sets and fuzzy σ -generalized closed sets the concept of fuzzy σ -generalized continuous mapping is introduced. Lastly the concept of fuzzy σ -generalized closed irresolute map in *L*-fuzzy topological spaces are given.

General Terms

L-Fuzzy topological space

Keywords

coprime element, fuzzy σ -closed set, fuzzy σ' -open set, fuzzy σ -generalized closed set, fuzzy σ' -generalized open set.

1. INTRODUCTION

The concept of generalized closed set was first introduced by Levine [6] in ordinary topological space. Later on Balasubramaian and Sundaram [1] introduced the concept of generalized fuzzy closed set in fuzzy topological space. In this paper the generalization of *L*-fuzzy topological space studied. In section 2 some definitions as ready references are given. Section 3 is devoted to study fuzzy σ -generalized closed sets and their properties. In this section a new space called infra *L*-fuzzy topological space also defined. In section 4 fuzzy σ -generalized continuous mapping is defined and studied its properties. Lastly the concept of fuzzy σ -generalized closed irresolute map in *L*-fuzzy topological spaces are given in section 5

Throughout this work *X* and *Y* will be non empty ordinary sets and $L = L(\leq, \lor, \land, ')$ will denote a fuzzy lattice i.e. a complete completely distributive lattice with a smallest element 0 and a largest element 1 (0 \neq 1) and with an order-reversing involution $a \rightarrow a'$ ($a \in L$). *L* is therefore a continuous lattice. Also L^X will denote the lattice of *L*-fuzzy subsets of *X*.

2. PRELIMINARIES

2.1. Definition Let *X* be a non empty ordinary set, *L* be a fuzzy lattice, $\delta \subset L^X$. δ is called an *L*-fuzzy topology on *X*, and (L^X, δ) is called an *L*-fuzzy topological space if δ satisfies the following conditions

1)		<u>0, 1</u> ∈ δ
ii)for	any	$A, B \in \delta, A \land B \in \delta$
iii) $\forall A \subset \delta, \forall A \in \delta$		

Particularly, when L=[0,1], call an *L*-fuzzy topological space (L^X, δ) a fuzzy topological space and denote it by (X, δ) .

Jayasree Chakraborty Research Scholar Department of Mathematics, NITAgartala, Barjala, Jirania-799055, Tripura, India.

2.2 Definition [5] An element *p* of *L* is called prime iff $p \neq 1$ and whenever $a, b \in L$ with $a \land b \leq p$ then $a \leq p$ or $b \leq p$. The set of all prime elements which are not 1 of *L* will be denoted by pr(L).

2.3 Definition [6] Let *L* be a fuzzy lattice. $\alpha \in L$ is called a union-irreducible (or a molecule or coprime) element of *L*, if for arbitrary *a*, $b \in L$, we have $\alpha \le a \lor b \Rightarrow \alpha \le a$ or $\alpha \le b$. The set of all nonzero union-irreducible elements of *L* is denoted by M(L). The set of all molecules for a fuzzy lattice L^X is denoted by $M^*(L^X)$. Clearly $p \in pr(L)$ iff $p' \in M(L)$.

2.4 Definition [8] Let (L^X, δ) be an *L*-fuzzy topological space and $\alpha \in M(L)$ and $A \in L^X$, *A* is called an α -closed set, if for any $x \in X$, $ClA(x) \ge \alpha \Longrightarrow A(x) \ge \alpha$

The set of all α -closed set in (L^X, δ) is denoted by $C_{\alpha}(\delta)$. Clearly, $\forall \alpha \in M(L), \ \delta \subset C_{\alpha}(\delta)$.

2.5 Theorem Let (L^X, δ) be an *L*-fts, $\alpha \in M(L), A \in L^X$. Then A is α -closed iff A' is α' -open.

2.6 Definition [1] A fuzzy set A in an fts X is called generalized fuzzy closed (in short, gf-closed) if $cl(A) \leq U$ whenever $A \leq U$ and U is fuzzy open.

2.7 Definition [1] A function $f : X \rightarrow Y$ is called generalized fuzzy continuous (in short gf-continuous) if the inverse image of every fuzzy closed set in Y is gf-closed in X.

2.8 Definition [1] A function $f: X \rightarrow Y$ is called fuzzy gc-irresolute if the inverse image of every gf-closed set in *Y* is gf-closed in *X*.

2.9 Definition [3] Let (L^{χ}, δ) be an L-fts, $\alpha \in M(L), \lambda \in L^{\chi}$. λ is called fuzzy generalized α -closed set, if $cl_{\alpha}(\lambda) \leq \mu$ whenever $\lambda \leq \mu$ and μ is fuzzy α' -open set.

3. FUZZY **~**-GENERALIZED CLOSED SETS IN L-FUZZY TOPOLOGICAL SPACES

In this section, fuzzy σ -closed set, fuzzy σ -generalized closed set is defined and studied its properties.

3.1 Definition

Let (L^X, δ) be an *L*-fuzzy topological space and $\sigma \in M(L)$ and $A \in L^X$, *A* is called a fuzzy σ -closed set , if for any $x \in X$, Cl (Int $(ClA(x))) \ge \sigma \Longrightarrow A(x) \ge \sigma$

The set of all fuzzy σ -closed set in (L^X, δ) is denoted by $C_{\sigma}(\delta)$.

3.2 Remark

Fuzzy closed set and fuzzy σ -closed set are independent concept as seen in the following example.

3.3 Example

Let $X = \{x_1, x_2, x_3\}$. Define $f_1, f_2, f_3 : X \rightarrow [0,1]$ as follows $f_1 = 0_X, f_2 = 1_X, f_3 = \{(x_1, 0.5), (x_2, 0.7), (x_3, 0.6)\}$ Clearly $\delta = \{f_1, f_2, f_3\}$ is an *L*-fts on X. $\{(x_1, 0.5), (x_2, 0.3), (x_3, 0.4)\}$ is fuzzy closed but this is not a fuzzy σ -closed set for $\sigma = 0.3$.

3.4 Definition

Let (L^X, δ) be an *L*-fuzzy topological space and $\sigma \in M(L)$ and $A \in L^X$, A' is called a fuzzy σ' -open set iff A is called an fuzzy σ -closed set.

3.5 Definition

If λ is an *L*-fuzzy set in a *L*-fts L^{X} and $\sigma \in M(L)$ then $cl_{\sigma}(\lambda) = \cap \{\mu : \mu \ge \lambda\}, \mu$ is "fuzzy σ -closed set", is called σ -closure of λ .

An *L*-fuzzy set λ in a *L*-fts (L^X, δ) is a fuzzy σ -closed iff $\lambda = c l_{\sigma}(\lambda)$.

3.6 Definition

Let (L^X, δ) be an *L*-fts, and $\sigma \in M(L)$, and $\lambda \in L^X$. λ is called an fuzzy σ -generalized closed set(in short $F\sigma$ -gclosed set), if

 $cl_{\sigma}(\lambda) \leq \mu$ whenever $\lambda \leq \mu$ and μ is fuzzy σ' -open set.

3.7 Definition

If λ_1 and λ_2 are $F\sigma$ -gclosed sets then $\lambda_1 \vee \lambda_2$ is a $F\sigma$ -gclosed set.

Proof: Let $\lambda_1 \vee \lambda_2 \leq \mu$ where μ is fuzzy σ' -open set. Since λ_1 and λ_2 are $F\sigma$ -gclosed sets therefore $cl_{\sigma}(\lambda_1) \leq \mu$ whenever $\lambda_1 \leq \mu$ and $cl_{\sigma}(\lambda_2) \leq \mu$ whenever $\lambda_2 \leq \mu$. $cl_{\sigma}(\lambda_1 \vee \lambda_2) = cl_{\sigma}(\lambda_1) \vee cl_{\sigma}(\lambda_2)$ whenever $\lambda_1 \vee \lambda_2 \leq \mu$ and μ is fuzzy σ' -open set.

However the intersection of two $F\sigma$ -gclosed sets is not $F\sigma$ -gclosed set as the following example shows.

3.8 Example

The intersection of two F σ -gclosed sets is not F σ -gclosed set. Let $X = \{x_1, x_2, x_2\}$. Define $f_1, f_2, f_3, f_4, f_5 : X \rightarrow [0,1]$ as follows $f_1 = 0_X, f_2 = 1_X, f_3 = \{(x_1, 0.5), (x_2, 0.5), (x_3, 0.5)\}, f_4 = \{(x_1, 0.4), (x_2, 0.3), (x_3, 0.2)\}, f_5 = \{(x_1, 0.7), (x_2, 0.6), (x_3, 0.8)\}$ Clearly $\delta = \{f_1, f_2, f_3, f_4, f_5\}$ is an *L*-fts on X. Define $\lambda_1, \lambda_2 : X \rightarrow [0,1]$ as follows:

 $\lambda_1 = \{x_1, 0.9\}, (x_2, 0.4), (x_3, 0.3)\}$ and

 $\lambda_2 = \{(x_1, 0.5), (x_2, 0.4), (x_3, 0.9)\}$

Here λ_1 and λ_2 are $F\sigma$ -gclosed sets but $\lambda_1 \wedge \lambda_2 = \{(x_1, 0.5), (x_2, 0.4), (x_3, 0.3)\}$ is not $F\sigma$ -gclosed set where $=\frac{1}{2}$.

3.9 Theorem

If λ is $F\sigma$ -gclosed set and $\lambda \leq \mu \leq cl_{\sigma}(\lambda)$, then μ is $F\sigma$ -gclosed set.

Proof: Let β be a fuzzy σ' -open set such that $\beta \geq \mu$. Since $\mu \geq \lambda$, $\beta \geq \lambda$, and λ is $F\sigma$ -gclosed set, $\beta \geq cl_{\sigma}(\lambda)$. But $cl_{\sigma}(\lambda) \geq cl_{\sigma}(\mu)$. since $cl_{\sigma}(\lambda) \geq \mu$ and so $\beta \geq cl_{\sigma}(\mu)$. Hence μ is $F\sigma$ -gclosed set.

3.10 Definition

A fuzzy set λ is called fuzzy σ' -generalized open (in short $F\sigma'$ -gopen) iff 1- λ is $F\sigma$ -gclosed.

We now prove some properties of fuzzy σ' -generalized open sets.

3.11 Remarks

(1) The union of two $F\sigma'$ -gopen sets is not generally $F\sigma'$ -gopen.

Example **3.8** serves the purpose.

(2) The intersection of any two $F\sigma'$ -gopen sets is $F\sigma'$ -gopen.

Proof: Let λ_1 and λ_2 are $F\sigma'$ -gopen sets in L^X then λ_1' and λ_2' are $F\sigma$ -gclosed set in L^X . By **theorem 3.7** $\lambda_1' \vee \lambda_2'$ is $F\sigma$ -gclosed. $\lambda_1' \vee \lambda_2' = (\lambda_1 \wedge \lambda_2)'$ is $F\sigma$ -gclosed set. Therefore $(\lambda_1 \wedge \lambda_2)$ is $F\sigma'$ -gopen set.

3.12 Definition

If λ is an *L*-fuzzy set in a *L*-fts L^{X} and $\sigma' \in P(L)$ then $int_{\sigma'}(\lambda) = \bigcup \{\mu : \lambda \ge \mu\}, \mu$ is fuzzy σ' -open set, is called fuzzy σ' -interior of λ .

An L-fuzzy set λ in a L-fts (L^X, δ) is a fuzzy σ' -open iff $\lambda = int_{\sigma'}(\lambda)$.

3.13 Theorem

An *L*- fuzzy set λ is $F\sigma'$ -gopen $\Leftrightarrow \mu \leq int_{\sigma'}(\lambda)$ whenever μ is $F\sigma$ -closed set and $\mu \leq \lambda$.

Proof: Let λ be a fuzzy σ' -gopen set and μ be a F σ -closed set such that $\mu \leq \lambda$. Therefore $1 - \lambda \leq 1 - \mu$ and $1 - \lambda$ is F σ -gclosed set. $cl_{\sigma}(1 - \lambda) \leq 1 - \mu$. i.e. $1 - cl_{\sigma}(1 - \lambda) \geq 1 - (1 - \mu) = \mu$.

But $1-cl_{\sigma}(1-\lambda) = int_{\sigma'}(\lambda)$. Therefore $\mu \leq int_{\sigma'}(\lambda)$.

Conversely suppose that λ is an L-fuzzy set such that $\mu \leq int_{\sigma'}(\lambda)$ whenever μ is $F\sigma$ -closed set and $\mu \leq \lambda$. We claim that 1- λ is $F\sigma$ -gclosed set. So 1- $\lambda \leq \mu$ where μ is fuzzy σ' -open. 1- $\lambda \leq \mu \Rightarrow$ 1- $\mu \leq \lambda$.

Hence by assumption we must have $1 - \mu \leq int_{\sigma'}(\lambda)$ i.e. $1 - int_{\sigma'}(\lambda) \leq \mu$. But $1 - int_{\sigma'}(\lambda) = cl_{\sigma}(1 - \lambda) \leq \mu$. This shows that $1 - \lambda$ is $F\sigma$ -gclosed set. Therefore λ is $F\sigma'$ -gopen.

3.14 Theorem

If $int_{\sigma'}(\lambda) \leq \mu \leq \lambda$ and λ is fuzzy σ' -generalized open, then μ is fuzzy σ' -generalized open.

Proof: Given $int_{\sigma'}(\lambda) \leq \mu \leq \lambda$. We have $1 \cdot \lambda \leq 1 - \mu \leq 1 - int_{\sigma'}(\lambda) = cl_{\sigma}(1 - \lambda)$. As λ is fuzzy σ' -generalized open, $1 \cdot \lambda$ is $F\sigma$ -gclosed and so it follows by theorem **3.9** that is $1 \cdot \mu$ is fuzzy σ -generalized closed, i.e. μ is fuzzy σ' -generalized open.

3.15 Definition

Let X be a non empty ordinary set, L be a fuzzy lattice, $\delta \subset L^X$. δ is called an L-fuzzy infra topology on X, and (L^X, δ) is called an L-fuzzy infra topological space if δ satisfies the following conditions

i) $0, 1 \in \delta$

ii) for any $A, B \in \delta, A \land B \in \delta$

3.16 Theorem

Let $FGO_{\sigma'}(\delta) = \{$ The set of all $F\sigma'$ -gopen in $(L^X, \delta) \}$. Then $(L^X, FGO_{\sigma'}(\delta))$ forms an infra L-fuzzy topological space.

Proof: It is obvious from remarks 3.11.

3.17 Definition

A function $f: L^X \to L^Y$ is called fuzzy σ -continuous if the inverse image of every fuzzy closed set in L^Y is fuzzy σ -closed set in L^X .

Example. Let $f: L^X \to L^Y$ where $X = \{x_1, x_2, x_3\}$ and $Y = \{y_1, y_2, y_3\}$. We define A: $X \to [0,1]$ as follows $A(x_1) = A(x_2) = 1$, $A(x_2) = 0$. Clearly $\tau = \{1_X, 0_X, A\}$ forms an L-fts on X. Let $Y = \{y_1, y_2, y_3\}$, B: $Y \to [0,1]$ defined as follows $B(y_1) = B(y_2) = 1$, $B(y_3) = 0.\delta = \{1_Y, 0_Y, B\}$ forms an L-fts on Y. Let f is defined as $f(x_1) = y_1, f(x_2) = y_2, f(x_3) = y_3$.

Here f is fuzzy σ -continuous.

3.18 Remarks

L-fuzzy continuous ↔ fuzzy σ-continuous

Example. (i) $f: L^X \to L^Y X = \{x_1, x_2, x_3\}$. We define A: $X \to [0,1]$ as follows $A(x_1) = 0.5$, $A(x_2) = 0.7$, $A(x_3) = 0.6$. Clearly $\tau = \{1_X, 0_X, A\}$ forms an L-fts on X. Let $Y = \{y_1, y_2, y_3\}$, B: $Y \to [0,1]$ defined as follows $B(y_1) = 0.7$, $B(y_2) = 0.5$, $B(y_2) = 0.6.6 = \{1_Y, 0_Y, B\}$ forms an L-fts on Y. Here f is defined as $f(x_1) = y_2, f(x_2) = y_1, f(x_3) = y_3$. Here f L-fuzzy continuous but f is not fuzzy σ -continuous. Since the inverse image of fuzzy closed set $\{(y_1, 0.3), (y_2, 0.5), (y_3, 0.4)\}$ in L^Y is not fuzzy σ -closed set in L^X .

(ii) $f: L^X \to L^Y X = \{x_1, x_2, x_3\}$, Define A: $X \to [0,1]$ as follows $A(x_1) = 1$, $A(x_2) = 0$, $A(x_3) = 0$. Clearly $\tau = \{1_X, 0_X, A\}$ forms an L-fts on X. Let $Y = \{y_1, y_2, y_3\}$, B: $Y \to [0,1]$ defined as follows $B(y_1) = 1$, $B(y_2) = 1$, $B(y_3) = 0$. $\delta = \{1_Y, 0_Y, B\}$ forms an L-fts on Y. Let f is defined as $f(x_1) = y_1, f(x_2) = y_3, f(x_3) = y_2$. Here f is fuzzy σ continuous but not L-fuzzy continuous. Since the inverse image of fuzzy closed set $\{(y_1, 0), (y_2, 0), (y_3, 1)\}$ in L^Y is not fuzzy closed set in L^X but it is fuzzy σ -closed in L^X .

3.19 Definition

A map $f: L^X \to L^Y$ is called fuzzy σ -closed (in short $F\sigma$ closed) set if the image of every fuzzy σ -closed set in L^X is fuzzy σ -closed in L^Y .

3.20 Theorem

If λ is $F\sigma$ -gclosed set in L^X and if $f: L^X \to L^Y$ is fuzzy σ -continuous and $F\sigma$ -closed, then $f(\lambda)$ is $F\sigma$ -gclosed set in L^Y .

Proof: If $f(\lambda) \leq \mu$ where μ is fuzzy open in $L^{\mathbb{Y}}$, then $\lambda \leq f^{-1}(\mu)$. Since λ is $F\sigma$ -gclosed and $f^{-1}(\mu)$ is fuzzy σ' -open, $cl_{\sigma}(\lambda) = \overline{\lambda} \leq f^{-1}(\mu)$. i.e. $f(\overline{\lambda}) \leq \mu$. Now by assumption, $f(\overline{\lambda})$ is $F\sigma$ -closed $\overline{f(\lambda)} \leq \overline{f(\overline{\lambda})} = f(\overline{\lambda}) \leq \mu$. We know that $\overline{f(\lambda)} = cl_{\sigma}(f(\lambda))$. Thus $cl_{\sigma}(f(\lambda)) \leq \mu$. This means $f(\lambda)$ is $F\sigma$ -gclosed set in $L^{\mathbb{Y}}$.

3.21 Example

Under F σ -closed, fuzzy σ -continuous maps fuzzy σ' -generalized open sets are generally not taken into fuzzy σ' -generalized open sets.

Let $X = \{a\}$, $Y = \{a, b, c\}$, $\tau_1 = \{0_X, 1_X\}$, $\tau_2 = \{0_Y, 1_Y, B_1\}$, $B_1 : Y \rightarrow [0,1]$ is such that $B_1(a) = B_1(c) = 1$, $B_1(b) = 0$. Clearly τ_1 and τ_2 are *L*-fuzzy topologies on *X* and *Y* respectively.

Define $f: L^X \to L^Y$ as follows f(a) = b.

One can verify f is $f\sigma$ -continuous and $F\sigma$ -closed.Now we shall show that f does not take fuzzy σ' -generalized open sets to fuzzy σ' -generalized open. Clearly $\mathbf{1}_X$ is fuzzy σ' -generalized open in L^X but $f(\mathbf{1}_X) = \{(a, 0)(b, 1), (c, 0)\}$ is not fuzzy σ' -generalized open in L^Y .

4. FUZZY - GENERALIZED CONTINUOUS MAPPING AND ITS PROPERTIES

4.1 Definition

A map $f: L^X \to L^Y$ is called fuzzy σ -generalized continuous (in short F σ -gcontinuous) if the inverse image of every fuzzy closed set in L^Y is F σ -gclosed in L^X .

Some properties of fuzzy σ -generalized continuous function has given.

4.2 Theorem

If $f: L^X \to L^Y$ is fuzzy σ -continuous then it is fuzzy σ -generalized continuous but the converse is not true.

4.3 Example

Let $X = \{x_1, x_2, x_3\}$, $Y = \{y_1, y_2, y_3\}$, $\tau_1 = \{0_X, 1_X\}$, $\tau_2 = \{0_Y, 1_Y, B_1\}$, $B_1 : Y \to [0,1]$ is such that $B(y_1) = 1$, $B(y_2) = 1$, $B(y_3) = 0$. Clearly τ_1 and τ_2 are *L*-fuzzy topologies on *X* and *Y* respectively. Define $f: L^X \to L^Y$ as follows $f(x_1) = y_1, f(x_2) = y_2, f(x_3) = y_2$. Here *f* is fuzzy σ generalized continuous but not fuzzy σ -continuous.

4.4 Theorem

Let $f: L^X \to L^Y$ be a function,

The following statements are equivalent

(i) f is fuzzy σ -generalized continuous

(ii) The inverse image of each fuzzy open set in L^{Y} is $F\sigma'$ -gopen in L^{X} .

Balasubramanian and Sundaram [1] defined the generalized fuzzy closure operator cl^* to obtain some properties of *gf*-continuity. So, in similarway, we define the

fuzzy σ -generalized closure operator cl* for any L-fuzzy set A in (\mathcal{L}^{X} , τ) as follows:

 $cl^*(\lambda) = \wedge \{\mu: \mu \ge \lambda \text{ and } \lambda \text{ is } F\sigma\text{-gclosed}\}.$

4.5 Theorem

Let $f: L^X \to L^Y$ be a fuzzy σ -generalized continuous, then $f(cl^*(\lambda)) \leq cl(f(\lambda))$ where λ is any fuzzy set in L^X .

Proof: Let λ be any fuzzy set in L^{X} . Then $\lambda \leq f^{-1}(f(\lambda)) \leq f^{-1}(cl(f(\lambda)))$. Now $cl(f(\lambda))$ is a fuzzy closed in L^{Y} . As f is fuzzy σ -generalized continuous, $f^{-1}(cl(f(\lambda)))$ is fuzzy σ -generalized in L^{X} . $cl^{*}(\lambda) \leq f^{-1}(cl(f(\lambda)))$. Hence $f(cl^{*}(\lambda)) \leq cl(f(\lambda))$.

5.1 Definition

A function $f: L^X \to L^Y$ is called fuzzy σ -gc irresolute if the inverse image of every $F\sigma$ -gclosed set in L^Y is $F\sigma$ -gclosed in L^X .

Following are the properties of fuzzy *o*-gc irresolute maps.

5.2 Theorem

If $f: L^X \to L^Y$ is fuzzy σ -gc irresolute if the inverse image of every $F\sigma'$ -gopen set in L^Y is $F\sigma'$ -gopen in L^X .

5.3 Remarks

Fuzzy *σ*-gc irresolute↔ fuzzy *σ*-generalized continuous

5.4 Example

(i) Let $X = \{x_1, x_2, x_3\}$, $Y = \{y_1, y_2, y_3\}$, $\tau_1 = \{0_X, 1_X, A\}$, $\tau_2 = \{0_Y, 1_Y\}$, $A : X \to [0,1]$ is such that $A(x_1) = 0$, $A(x_2) = 1$, $A(x_3) = 0$. Clearly τ_1 and τ_2 are L-fuzzy topologies on X and Y respectively. Define $f: L^X \to L^Y$ as follows $f(x_1) = y_2, f(x_2) = y_1, f(x_3) = y_2$. Here f is fuzzy σ -generalized continuous but not fuzzy σ -gc irresolute. Since $\{(y_1, 1), (y_2, 0), (y_3, 1)\}$ is $F\sigma$ -gclosed set in L^Y but its inverse image is not $F\sigma$ -gclosed set in L^X .

(ii) Let $X = \{x_1, x_2, x_3\}$, $Y = \{y_1, y_2, y_3\}$, $\tau_1 = \{0_X, 1_X, A\}$, $\tau_2 = \{0_Y, 1_Y, B\}$, $A, B : X \to [0,1]$ is such that $A(x_1) = 0.7$, $A(x_2) = 0.5$, $A(x_3) = 0.6$; $B(x_1) = 0.5$, $B(x_2) = 0.7$, $B(x_2) = 0.6$. Clearly τ_1 and τ_2 are *L*-fuzzy topologies on *X* and *Y* respectively. Define $f: L^X \to L^Y$ as follows $f(x_1) = y_2, f(x_2) = y_1, f(x_3) = y_2$. Here *f* is fuzzy σ -gc irresolute but not fuzzy σ -generalized continuous.

5.5 Theorem

Let $f: (L^X, \tau) \to (L^Y, \delta)$ and $g: (L^Y, \delta) \to (L^Z, \eta)$ be any two functions. Then

(i) $g \circ f$ is fuzzy σ -generalized continuous, if g is fuzzy σ -generalized continuous and f is fuzzy σ -gc irresolute.

(ii) $g \circ f$ is fuzzy σ -gc irresolute, if g is fuzzy σ -gc irresolute and f is fuzzy σ -gc irresolute.

Proof: (i) Let *F* be a fuzzy closed in $(L^{\mathbb{Z}}, \eta)$. Then $g^{-1}(F)$ is fuzzy σ -generalized closed in $(L^{\mathbb{Y}}, \delta)$. Since *g* is fuzzy σ -generalized continuous. $f^{-1}(g^{-1}(F)) = (g \circ f)^{-1}(F)$ is fuzzy σ -generalized closed in $(L^{\mathbb{X}}, \tau)$. Since *f* is fuzzy σ -gc irresolute. Hence $g \circ f$ is fuzzy σ -generalized continuous.

(ii) Let F be a fuzzy σ -generalized closed in (L^{Z}, η) . Then $g^{-1}(F)$ is fuzzy σ -generalized closed in (L^{Y}, δ) . Since g fuzzy σ -gc irresolute. $f^{-1}(g^{-1}(F)) = (g \circ f)^{-1}(F)$ is fuzzy σ -generalized closed in (L^{X}, τ) . Since f is fuzzy σ -gc irresolute. Hence $g \circ f$ is fuzzy σ -gc irresolute.

5.6 Remarks

The composition of two fuzzy σ -generalized continuous need not be fuzzy σ -generalized continuous function.

6. CONCLUSION

The concept of infra L-fuzzy topological space is introduced with the help of the properties of $F\sigma'$ -gopen sets. There is a scope to study the properties of infra L-fuzzy topological space and its application. There is a future scope to study Compactness, connectedness and separation axioms in infra L-fuzzy topological space.

7. ACKNOWLEDGEMENTS

The authors would like to thank the referee for the valuable comment and suggestion.

8. REFERENCES

- Balasubramanian.G,Sundaram.P, On some generalization of fuzzy continuous functions, Fuzzy Sets and Systems 86(1997)93-100.
- [2] Chang.C.L,Fuzzy topological spaces, J.Math.Anal.Appl.24 (1968)182-190.
- [3] Daraby Bayaz and Nimse.S.B, On Fuzzy Generalized aclosed set and its applications, Faculty of Sciences and Mathematics, University of Nis, Serbia (2007),99-108.
- [4] Dunham.W, A new closure operator for non T₁ topologies, Math.J.22(1982)55-60.
- [5] Gierz.G. et al, A compendium of Continuous Lattice Springer, Berlin, 1980.
- [6] Gujon Wang, Theory of topological molecular lattices, Fuzzy Sets and Systems 47 (1992) 351-376.
- [7] Levine. N, Generalized closed sets in topology, Rend, Circ.Mat.Palermo 19(1970)89-96.
- [8] Yongming. Li, The theory of L-fuzzy closed graph and strong closed graph, Fuzzy SystemsMath. 2 (1991) 30-37.