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ABSTRACT 

An interesting target for the intruders is computers, since 

valuable data are fed into it. The need for impeccable 

intrusion detection system is growing every day. Hardware 

based Network Intrusion Detection System (NIDS) relies 

upon power, delay and area. The Counting Bloom filter 

(CBF), improves the power and speed of membership test by 

maintaining a hazy and compact representation of large set to 

be searched. Our proposed architecture utilizes an array of 

Linear Feedback Shift Register (LFSR) along with tri-state 

buffers. Circuit simulation is shown for 8-bit count per entry. 

Simulation results show that proposed architecture is 35% 

hardware efficient compared to Low Power Fast Counting 

Bloom Filter (L-CBF) and Static Random Access Memory 

based Counting Bloom Filter (S-CBF). 
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1. INTRODUCTION 
A Network Intrusion Detection System (NIDS) attempts to 

detect malicious activities such as denial of service attack, 

port scans or tries to cracks into computers by monitoring 

network traffic. NIDS monitors all incoming packets and tries 

to find suspicious patterns known as signatures or malwares. 

These are decided by a network administrator at the time of 

configuration and deployment of the network intrusion 

detection system based on the security and network policies of 

the organization. Since the number of threats and network 

speed increases day by day, the conventional software based 

NID system such as Snort utilizes more processing time; 

hence it is difficult to cope with both protection and higher 

data rates. As a result, custom hardware implementation of 

network intrusion detection started emerging, which can have 

significant contribution for pernicious detection. 

 

Extensive researches exist on general pattern matching 

algorithms. The Boyer–Moore algorithm is widely preferred 

for its efficiency [2]. But, this algorithm is inefficient for 

multiple patterns [3]. This problem is solved by Aho and 

Corasick algorithm which uses the Finite automation for 

concurrently matching multiple strings [4]. 

 
Fig 1: FPGA based NIDS. 

 

The implementation of the Aho-Corasick algorithm has been 

done for Snort, by Mike Fisk [5] and Marc Norton [6], 

respectively. Fisk and Varghese presented a multiple-pattern 

search algorithm that combines the one-pass approach of Aho-

Corasick with the skipping feature of Boyer–Moore [7]. All 

these approaches are developed mainly for software 

implementation. To examine packets in real time with full 

network link speed, a hardware solution is more favorable. 

 

A Bloom filter, conceived by Burton Howard Bloom in 1970, 

is a space-efficient probabilistic data structure [8]. Bloom 

filters are created to perform membership queries. Bloom 

filters are scalable and compact, so they are employed in 

Intrusion Detection System (IDS). Bloom filters provide the 

output matched or not matched based on the hash bits. It 

implements a set membership test using a series of Monte 

Carlo tests with one-sided error: Each test may return positive 

in error [8].The probability of a false positive is at most 1/2 on 

any one test and therefore can be made exponentially small by 

repeating the test with independent random choices. 

A Bloom filter (B,H) implements an approximate set 

membership test for a set S ⊂ U using a bit array B consisting 

of m bits initialized to zero and k independent hash functions 

H = {hj : U → [m], j ∈ [k]}; the hash functions map elements 

of the input space U to locations in B. The set S is represented 

by evaluating each of the k hash functions for each object x ∈ 

S and setting the corresponding bits in B to one given a key x 

∈ U and a Bloom filter (B, H), can be verified and determined 

whether x is definitely not or might be a member of S by 

hashing x under the hash functions H and examining the 

corresponding bits in B[8]. If any bit is still zero then we 

know that x / ∈ S; if all k hash functions point to bits that are 

one then we conjecture that x ∈ S but may be wrong.  

The false positive rate of a Bloom filter (B, H) is considered 

for a set S of size n from an input space U of size u where the 

bit array B has size m and H is a set of k independent random 

hash functions mapping from U to [m]. The total number of 

hashes performed during the construction of (B, H) is nk. 
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Recall that a false positive is said to occur when all k hash 

functions index ones in B for an element x ∈U \S. The false 

positive rate of the Bloom filter is the proportion of U \S for 

which a false positive occurs [8]. 

Let ρ be the proportion of bits that remain zero in B. Note that 

the false positive rate depends on both ρ and k while ρ is also 

dependent on k. Given that each of the k hash functions maps 

each x ∈ S to a location in B at random (i.e. the location is 

chosen uniformly in B and each choice is independent), the 

expected value of ρ is 

E(ρ)=(1-1/m)nk                   -----(1) 

This is simply the probability that a given bit in B remains 0 

after the locations are sampled locations in B independently at 

random with replacement nk times. 

Earlier bloom filters are designed to hold one bit at a cell. So 

each ‘1’ in the cell indicates data matched and ‘0’ indicates 

data not matched. In order to have multiple access to a line 

leads to development of CBF’s, where the single cell in 

Bloom filters is replaced by a counter and this counter keeps 

track of the data entries, deletion and matching of signatures. 

CBF’s are used to improve the energy and delay 

characteristics [9]. L-CBF is an efficient implementation that 

utilizes an array of up/down LFSR and local zero detectors. 

Previous works use SRAM, but recent development in L-CBF 

includes LFSR based on CBF together with SRAM memory 

increases the speed of the signature detection. 

The significant contribution of this work is as follows: 

1. Counting Bloom Filter 

2. Proposed area efficient CBF design. 

3. Comparison on power, area and delay. 

The rest of the paper is organized as follows. Section II 

describes previously designed architecture L-CBF. Section III 

illustrates the area efficient architecture (A-CBF). Section IV 

shows the sketch of the physical layout. Section V shows the 

implementation results. 

2. COUNTING BLOOM FILTER  
This section reviews the low power counting Bloom filter and 

its characteristics. 

2.1 Low Power Fast Counting Bloom Filter 

(L-CBF) 
The Signatures are stored in static memory in the hardware. 

The energy consumed by the bit lines and word line is quite 

large. To reduce the access towards the memory, Bloom filter 

concept comes into picture. A single Bloom filter cell can 

store one pattern at a time. So, to speed-up the pattern 

matching process, multiple Bloom filter cells are preferred 

[10]. The main disadvantage relies on multiple accesses 

towards the same line. In order, to overcome this, an array of 

counters is used to store the signatures. In this way, the 

counter keeps track of the multiple accesses and avoids errors. 

And also CBF reduces the need to read/write over long bit 

lines. In this concern, CBF produce ‘1’ or ‘0’ which indicates 

the presence of pernicious signatures as depicted in Fig.3. So 

any counters that produce deterministic up/down sequence 

can be a choice for CBF. LFSR is a good choice which 

reduces the delay and power. 

 

Fig 2: L-CBF counting bloom filter architecture 

2.1.1 Hash Module 

The Fig.2 depicts the architecture of L-CBF. The TCP/IP 

packets are taken as input to detect the malicious packets as 

shown in Fig.3. 

 

 

TCP/IP 

Packet 

 

Fig 3: Hash Function 

The packets are first passed through the universal hash 

function block based on the random value ‘dij’[11]. 

X=< X1, X2, X3…….X6>             ----- (2) 

hi(X)=di1.Xi1           di2.Xi2              di2. Xi2…….            ----- (3) 

Where “.” is bit wise AND operator.     is a bit wise XOR 

operator. dij is a  predetermined random number which is  in 

the range of (0, ….m-1) and X is input signatures. The  hi(x) 

indicates the hash function output. By varying the random 

number dij, one may be able to get different hash output [9]. 

The single hash might lead to false positive. To deduce the 

false positive, multiple hash functions can be employed. 

2.1.2 Decoder Module 
The normal decoder is replaced by the hierarchical decoder 

which has pre-decoder and local decoder designs [13]. The 

pre-decoder has four 2:4 decoder modules. The local decoder 

has NOR gates to provide 0:255 outputs. The decoder can be 

designed using NAND-NOR combination, since it consumes 

less power compared to any other gates. 

 

 

Fig 4: Hierarchical decoder 

Compressed  

Output Hash function 
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2.1.3 Partition Module 
Each partition module consists of a gated clock, LFSR counter 

and Zero detector. The gated clock circuit is required for a 

power efficient architecture as shown in fig.5 

 

     UPDATE 

      CLOCK 

 

 

       PROBE 

 

Fig 5: gated clock circuit 

The counter is preferred to track the multiple line access when 

the hash output is similar [9]. The up/down counter is needed 

to enhance the signature updating and for deletion operation. 

Upon all other synchronous counters [12], LFSR is preferred 

due its low power consumption. When LFSR is clocked, it 

advances the signal through the register from one bit to the 

next most-significant bit (see Fig.7). Some of the outputs are 

feedback and combined in exclusive-OR configuration to 

form a feedback mechanism. A linear feedback shift register 

can be formed by performing exclusive-OR on the outputs of 

two or more of the flip-flops together and feeding those 

outputs back into the input of one of the flip-flops. 

The Zero detector acts as a checker to test the presence of the 

pernicious data. L-CBF gets 8-bit entry and produces the 

output based on op-select signal. The basic operations are, 

i. Increment 

ii. Decrement 

iii. Probe 

iv. Idle 

Initially all the modules are reset to make the output zero. 

3. AREA EFFICIENT COUNTING 

BLOOM FILTER 
As the technology grows, the main criterion is miniaturization 

of ICs with low power consumption. In this way, so many 

types of hardware modules are designed to make an efficient 

signature matching. Early design started with the storing of 

signatures in SRAM and matching it with the test signatures 

[13][14][15]. The bit-line and word-line become difficult and 

consume large amount of power. To overcome this, a small 

hardware is designed to reduce the memory access. 

The Bloom filter is used only to speed up the process and to 

reduce the power. The architecture shown in Fig.6 deduces 

the access to the bit line and save the power. Hence, whenever 

the output bit is zero, definitely the input signature is not a 

member and no pernicious data is present. Once the output bit 

is ‘1’, then definitely the input signature is a pernicious one. 

To have an exact match, the large search with original 

database is needed as depicted in Fig.6. 

Another significant parameter is false positive. To enhance 

the pernicious detection, multiple hashes are employed. By 

exploiting this method, more that 90% of the false positive 

problems are avoided. 

 
Fig 6 :Flow sheet to show the large search 

3.1 Linear Feedback Shift Register 
The maximum length 3-bit LFSR is used with sequences 2n-1 

states. The LFSR is a shift register and few XNOR gates fed 

by a feedback loop. XOR gate is preferred where permutation 

goes through all possible states except zero [16][17][18]. The 

up/down LFSR used in Bloom filter should have the 

permutation state “000”. This state indicates that pernicious 

signature is not present in the counter. So XNOR gate is used 

for this type of applications. 

Up/down LFSR has the polynomial  

i.  g(X)=1+X2+X3 for up count. 

ii. h(X)=1+X+X3 for down count. 

 

Fig 7:3-bit LFSR counter 

3.2 D-Flip flop 
The Fig.7 depicts the LFSR used in L-CBF which consumes 

huge bit slices with reduced delay and power, when compared 

to basic LFSR design [17]. The huge gate count should be 

reduced to scale the design. Finally based on the mux output, 

the search has to be extended or aborted as shown in flow 

chart Fig.6. 

 

The clocking scheme used in LFSR has two non-overlapping 

clock ф1 and ф2. The global clock is taken as ф1 and the   

inverted form of global clock is taken as ф2 [12]. 

 

 

 
 

Fig 8:D flip flop with two phase clock 

 

Φ1 

Φ2 

 



International Journal of Computer Applications (0975 – 8887)  

Volume 70– No.4, May 2013 

20 

3.2.1 Update Mode 
The above Fig.8 shows the clocking scheme with two non-

overlapping clocks. Each D flip flop in the LFSR is replaced 

with the above clocking scheme. The ф1 clock is enabled by 

the gated clock circuitry when the architecture is in update 

mode. So the bit is stored in the D1 flip flop. But it is not 

moved out of D2 since ф2 is disabled. Now the power 

consumption is reduced by half by using gated clock circuitry. 

3.2.2 Probe mode 
In the probe mode, the D2 will be in active mode and D1 will 

be in inactive mode in the same sense. In update mode, 

depending upon the operation select signal it may be in 

increment or decrement mode [9]. 

In increment mode, the data base can be updated (i.e.,) the 

pernicious signature can be added. The virus patterns increase 

in a rapid rate. Hence for, for the best architecture should be 

able to compete with these new patterns. Hence this increment 

mode provides the user with improving the database as new 

patterns are introduced and renowned in the future. As of the 

increment mode, the decrement mode is used to delete the 

patterns if it is found to be innocuous signatures. 

3.3 Modified D flip flop 
The D flip flop with two phase clock is replaced with basic D 

flip flop with single clock scheme as shown in fig.9 

 

 

Fig 9: LFSR with tri-state buffer 

The output of the D flip flop is given to tri-state buffer. The 

basic operation of a tri-state buffer is, to buffer the output 

when control input is ‘1’. The output goes to Hi-Z when the 

control signal is ‘0’. The probe is given as control signal to 

the tri-state buffer [20]. This characterization of tri-state 

buffer is used to modify the architecture. In the update mode, 

the probe signal is made ‘0’ and hence the counter stores the 

hash function values. Once the probe bit is made ‘1’the hash 

bits are verified. The multiplexer will provide a single bit 

output based on the signature matching. 

4. PHYSICAL LAYOUT 
The physical layout for the L-CBF based LFSR and proposed 

LFSR is shown Fig.10, 11. 

 

Fig 10: The physical view of LFSR with two non-

overlapping clocks 

 

Fig 11: The physical view of basic LFSR with tri-state 

buffer 

5. IMPLEMENTATION RESULTS 
The previous work of L-CBF is implemented for single hash 

and multiple hashes using Xilinx FPGA kit. The modified 

area efficient architecture is also implemented for both the 

premise. The results are shown in table [1] and [2].  

Table 1. Comparison for single hash function 

and its modified architecture 

 Gate  

Count 

Power 

(Watts) 

Frequency 

(MHz) 

Delay 

(ns) 

Single hash 

CBF 

84 1.1 450 6.236 

Modified 

Single hash 

CBF 

54 1.2 450 6.113 

 

  

 

Table 2. Comparison for multi hash function and 

its modified architecture 

 Gate 

Count 

Power 

(Watts) 

Frequency 

(MHz) 

Delay 

(ns) 

Multi-hash 

CBF 

1551 1.362 440 14.713 

Modified 

Multi hash 

CBF 

1140 1.310 440 14.644 

 

0 
50 

100 
150 
200 
250 
300 
350 
400 
450 
500 

Comparison chart  for single hash function and its 
modified architecture  

Single hash 
CBF 

Modified 
Single hash 
CBF 

  



International Journal of Computer Applications (0975 – 8887)  

Volume 70– No.4, May 2013 

21 

 

 

6. CONCLUSION 
From the results obtained, it is confirmed that the power and 

delay has been reduced for both single and multi hash CBF. 

The implementation result shows that the modified single 

hash and multi hash have 2% and 1.1% reduced delay 

respectively. The modified multi- hash has 4% reduced 

power. The gate count required for the single hash A-CBF is 

35% less and for multi-hash A-CBF 26% less than the 

conventional method. 
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