
International Journal of Computer Applications (0975 – 8887)

Volume 70– No.4, May 2013

17

Area Efficient Counting Bloom Filter (A-CBF)

design for NIDS

Brindha.P

Assistant Professor
Department of ECE

Velalar College Of Engineering And Technology,
Erode, Tamilnadu.

Senthilkumar.A, PhD.
Professor& Head

Dr.Mahalingam College Of Engineering And
Technology,

 Pollachi, Tamilnadu.

ABSTRACT

An interesting target for the intruders is computers, since

valuable data are fed into it. The need for impeccable

intrusion detection system is growing every day. Hardware

based Network Intrusion Detection System (NIDS) relies

upon power, delay and area. The Counting Bloom filter

(CBF), improves the power and speed of membership test by

maintaining a hazy and compact representation of large set to

be searched. Our proposed architecture utilizes an array of

Linear Feedback Shift Register (LFSR) along with tri-state

buffers. Circuit simulation is shown for 8-bit count per entry.

Simulation results show that proposed architecture is 35%

hardware efficient compared to Low Power Fast Counting

Bloom Filter (L-CBF) and Static Random Access Memory

based Counting Bloom Filter (S-CBF).

General Terms

Network Intrusion Detection System, Static Random Access

Memory

Keywords

Counting Bloom Filters, Area efficient counting bloom filter

(A-CBF), Intrusion Detection System, Linear Feedback Shift

Register, Tristate buffer.

1. INTRODUCTION
A Network Intrusion Detection System (NIDS) attempts to

detect malicious activities such as denial of service attack,

port scans or tries to cracks into computers by monitoring

network traffic. NIDS monitors all incoming packets and tries

to find suspicious patterns known as signatures or malwares.

These are decided by a network administrator at the time of

configuration and deployment of the network intrusion

detection system based on the security and network policies of

the organization. Since the number of threats and network

speed increases day by day, the conventional software based

NID system such as Snort utilizes more processing time;

hence it is difficult to cope with both protection and higher

data rates. As a result, custom hardware implementation of

network intrusion detection started emerging, which can have

significant contribution for pernicious detection.

Extensive researches exist on general pattern matching

algorithms. The Boyer–Moore algorithm is widely preferred

for its efficiency [2]. But, this algorithm is inefficient for

multiple patterns [3]. This problem is solved by Aho and

Corasick algorithm which uses the Finite automation for

concurrently matching multiple strings [4].

Fig 1: FPGA based NIDS.

The implementation of the Aho-Corasick algorithm has been

done for Snort, by Mike Fisk [5] and Marc Norton [6],

respectively. Fisk and Varghese presented a multiple-pattern

search algorithm that combines the one-pass approach of Aho-

Corasick with the skipping feature of Boyer–Moore [7]. All

these approaches are developed mainly for software

implementation. To examine packets in real time with full

network link speed, a hardware solution is more favorable.

A Bloom filter, conceived by Burton Howard Bloom in 1970,

is a space-efficient probabilistic data structure [8]. Bloom

filters are created to perform membership queries. Bloom

filters are scalable and compact, so they are employed in

Intrusion Detection System (IDS). Bloom filters provide the

output matched or not matched based on the hash bits. It

implements a set membership test using a series of Monte

Carlo tests with one-sided error: Each test may return positive

in error [8].The probability of a false positive is at most 1/2 on

any one test and therefore can be made exponentially small by

repeating the test with independent random choices.

A Bloom filter (B,H) implements an approximate set

membership test for a set S ⊂ U using a bit array B consisting

of m bits initialized to zero and k independent hash functions

H = {hj : U → [m], j ∈ [k]}; the hash functions map elements

of the input space U to locations in B. The set S is represented

by evaluating each of the k hash functions for each object x ∈

S and setting the corresponding bits in B to one given a key x

∈ U and a Bloom filter (B, H), can be verified and determined

whether x is definitely not or might be a member of S by

hashing x under the hash functions H and examining the

corresponding bits in B[8]. If any bit is still zero then we

know that x / ∈ S; if all k hash functions point to bits that are

one then we conjecture that x ∈ S but may be wrong.

The false positive rate of a Bloom filter (B, H) is considered

for a set S of size n from an input space U of size u where the

bit array B has size m and H is a set of k independent random

hash functions mapping from U to [m]. The total number of

hashes performed during the construction of (B, H) is nk.

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.4, May 2013

18

Recall that a false positive is said to occur when all k hash

functions index ones in B for an element x ∈U \S. The false

positive rate of the Bloom filter is the proportion of U \S for

which a false positive occurs [8].

Let ρ be the proportion of bits that remain zero in B. Note that

the false positive rate depends on both ρ and k while ρ is also

dependent on k. Given that each of the k hash functions maps

each x ∈ S to a location in B at random (i.e. the location is

chosen uniformly in B and each choice is independent), the

expected value of ρ is

E(ρ)=(1-1/m)nk -----(1)

This is simply the probability that a given bit in B remains 0

after the locations are sampled locations in B independently at

random with replacement nk times.

Earlier bloom filters are designed to hold one bit at a cell. So

each ‘1’ in the cell indicates data matched and ‘0’ indicates

data not matched. In order to have multiple access to a line

leads to development of CBF’s, where the single cell in

Bloom filters is replaced by a counter and this counter keeps

track of the data entries, deletion and matching of signatures.

CBF’s are used to improve the energy and delay

characteristics [9]. L-CBF is an efficient implementation that

utilizes an array of up/down LFSR and local zero detectors.

Previous works use SRAM, but recent development in L-CBF

includes LFSR based on CBF together with SRAM memory

increases the speed of the signature detection.

The significant contribution of this work is as follows:

1. Counting Bloom Filter

2. Proposed area efficient CBF design.

3. Comparison on power, area and delay.

The rest of the paper is organized as follows. Section II

describes previously designed architecture L-CBF. Section III

illustrates the area efficient architecture (A-CBF). Section IV

shows the sketch of the physical layout. Section V shows the

implementation results.

2. COUNTING BLOOM FILTER
This section reviews the low power counting Bloom filter and

its characteristics.

2.1 Low Power Fast Counting Bloom Filter

(L-CBF)
The Signatures are stored in static memory in the hardware.

The energy consumed by the bit lines and word line is quite

large. To reduce the access towards the memory, Bloom filter

concept comes into picture. A single Bloom filter cell can

store one pattern at a time. So, to speed-up the pattern

matching process, multiple Bloom filter cells are preferred

[10]. The main disadvantage relies on multiple accesses

towards the same line. In order, to overcome this, an array of

counters is used to store the signatures. In this way, the

counter keeps track of the multiple accesses and avoids errors.

And also CBF reduces the need to read/write over long bit

lines. In this concern, CBF produce ‘1’ or ‘0’ which indicates

the presence of pernicious signatures as depicted in Fig.3. So

any counters that produce deterministic up/down sequence

can be a choice for CBF. LFSR is a good choice which

reduces the delay and power.

Fig 2: L-CBF counting bloom filter architecture

2.1.1 Hash Module

The Fig.2 depicts the architecture of L-CBF. The TCP/IP

packets are taken as input to detect the malicious packets as

shown in Fig.3.

TCP/IP

Packet

Fig 3: Hash Function

The packets are first passed through the universal hash

function block based on the random value ‘dij’[11].

X=< X1, X2, X3…….X6> ----- (2)

hi(X)=di1.Xi1 di2.Xi2 di2. Xi2……. ----- (3)

Where “.” is bit wise AND operator. is a bit wise XOR

operator. dij is a predetermined random number which is in

the range of (0, ….m-1) and X is input signatures. The hi(x)

indicates the hash function output. By varying the random

number dij, one may be able to get different hash output [9].

The single hash might lead to false positive. To deduce the

false positive, multiple hash functions can be employed.

2.1.2 Decoder Module
The normal decoder is replaced by the hierarchical decoder

which has pre-decoder and local decoder designs [13]. The

pre-decoder has four 2:4 decoder modules. The local decoder

has NOR gates to provide 0:255 outputs. The decoder can be

designed using NAND-NOR combination, since it consumes

less power compared to any other gates.

Fig 4: Hierarchical decoder

Compressed

Output Hash function

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.4, May 2013

19

2.1.3 Partition Module
Each partition module consists of a gated clock, LFSR counter

and Zero detector. The gated clock circuit is required for a

power efficient architecture as shown in fig.5

 UPDATE

 CLOCK

 PROBE

Fig 5: gated clock circuit

The counter is preferred to track the multiple line access when

the hash output is similar [9]. The up/down counter is needed

to enhance the signature updating and for deletion operation.

Upon all other synchronous counters [12], LFSR is preferred

due its low power consumption. When LFSR is clocked, it

advances the signal through the register from one bit to the

next most-significant bit (see Fig.7). Some of the outputs are

feedback and combined in exclusive-OR configuration to

form a feedback mechanism. A linear feedback shift register

can be formed by performing exclusive-OR on the outputs of

two or more of the flip-flops together and feeding those

outputs back into the input of one of the flip-flops.

The Zero detector acts as a checker to test the presence of the

pernicious data. L-CBF gets 8-bit entry and produces the

output based on op-select signal. The basic operations are,

i. Increment

ii. Decrement

iii. Probe

iv. Idle

Initially all the modules are reset to make the output zero.

3. AREA EFFICIENT COUNTING

BLOOM FILTER
As the technology grows, the main criterion is miniaturization

of ICs with low power consumption. In this way, so many

types of hardware modules are designed to make an efficient

signature matching. Early design started with the storing of

signatures in SRAM and matching it with the test signatures

[13][14][15]. The bit-line and word-line become difficult and

consume large amount of power. To overcome this, a small

hardware is designed to reduce the memory access.

The Bloom filter is used only to speed up the process and to

reduce the power. The architecture shown in Fig.6 deduces

the access to the bit line and save the power. Hence, whenever

the output bit is zero, definitely the input signature is not a

member and no pernicious data is present. Once the output bit

is ‘1’, then definitely the input signature is a pernicious one.

To have an exact match, the large search with original

database is needed as depicted in Fig.6.

Another significant parameter is false positive. To enhance

the pernicious detection, multiple hashes are employed. By

exploiting this method, more that 90% of the false positive

problems are avoided.

Fig 6 :Flow sheet to show the large search

3.1 Linear Feedback Shift Register
The maximum length 3-bit LFSR is used with sequences 2n-1

states. The LFSR is a shift register and few XNOR gates fed

by a feedback loop. XOR gate is preferred where permutation

goes through all possible states except zero [16][17][18]. The

up/down LFSR used in Bloom filter should have the

permutation state “000”. This state indicates that pernicious

signature is not present in the counter. So XNOR gate is used

for this type of applications.

Up/down LFSR has the polynomial

i. g(X)=1+X2+X3 for up count.

ii. h(X)=1+X+X3 for down count.

Fig 7:3-bit LFSR counter

3.2 D-Flip flop
The Fig.7 depicts the LFSR used in L-CBF which consumes

huge bit slices with reduced delay and power, when compared

to basic LFSR design [17]. The huge gate count should be

reduced to scale the design. Finally based on the mux output,

the search has to be extended or aborted as shown in flow

chart Fig.6.

The clocking scheme used in LFSR has two non-overlapping

clock ф1 and ф2. The global clock is taken as ф1 and the

inverted form of global clock is taken as ф2 [12].

Fig 8:D flip flop with two phase clock

Φ1

Φ2

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.4, May 2013

20

3.2.1 Update Mode
The above Fig.8 shows the clocking scheme with two non-

overlapping clocks. Each D flip flop in the LFSR is replaced

with the above clocking scheme. The ф1 clock is enabled by

the gated clock circuitry when the architecture is in update

mode. So the bit is stored in the D1 flip flop. But it is not

moved out of D2 since ф2 is disabled. Now the power

consumption is reduced by half by using gated clock circuitry.

3.2.2 Probe mode
In the probe mode, the D2 will be in active mode and D1 will

be in inactive mode in the same sense. In update mode,

depending upon the operation select signal it may be in

increment or decrement mode [9].

In increment mode, the data base can be updated (i.e.,) the

pernicious signature can be added. The virus patterns increase

in a rapid rate. Hence for, for the best architecture should be

able to compete with these new patterns. Hence this increment

mode provides the user with improving the database as new

patterns are introduced and renowned in the future. As of the

increment mode, the decrement mode is used to delete the

patterns if it is found to be innocuous signatures.

3.3 Modified D flip flop
The D flip flop with two phase clock is replaced with basic D

flip flop with single clock scheme as shown in fig.9

Fig 9: LFSR with tri-state buffer

The output of the D flip flop is given to tri-state buffer. The

basic operation of a tri-state buffer is, to buffer the output

when control input is ‘1’. The output goes to Hi-Z when the

control signal is ‘0’. The probe is given as control signal to

the tri-state buffer [20]. This characterization of tri-state

buffer is used to modify the architecture. In the update mode,

the probe signal is made ‘0’ and hence the counter stores the

hash function values. Once the probe bit is made ‘1’the hash

bits are verified. The multiplexer will provide a single bit

output based on the signature matching.

4. PHYSICAL LAYOUT
The physical layout for the L-CBF based LFSR and proposed

LFSR is shown Fig.10, 11.

Fig 10: The physical view of LFSR with two non-

overlapping clocks

Fig 11: The physical view of basic LFSR with tri-state

buffer

5. IMPLEMENTATION RESULTS
The previous work of L-CBF is implemented for single hash

and multiple hashes using Xilinx FPGA kit. The modified

area efficient architecture is also implemented for both the

premise. The results are shown in table [1] and [2].

Table 1. Comparison for single hash function

and its modified architecture

 Gate

Count

Power

(Watts)

Frequency

(MHz)

Delay

(ns)

Single hash

CBF

84 1.1 450 6.236

Modified

Single hash

CBF

54 1.2 450 6.113

Table 2. Comparison for multi hash function and

its modified architecture

 Gate

Count

Power

(Watts)

Frequency

(MHz)

Delay

(ns)

Multi-hash

CBF

1551 1.362 440 14.713

Modified

Multi hash

CBF

1140 1.310 440 14.644

0
50

100
150
200
250
300
350
400
450
500

Comparison chart for single hash function and its
modified architecture

Single hash
CBF

Modified
Single hash
CBF

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.4, May 2013

21

6. CONCLUSION
From the results obtained, it is confirmed that the power and

delay has been reduced for both single and multi hash CBF.

The implementation result shows that the modified single

hash and multi hash have 2% and 1.1% reduced delay

respectively. The modified multi- hash has 4% reduced

power. The gate count required for the single hash A-CBF is

35% less and for multi-hash A-CBF 26% less than the

conventional method.

7. ACKNOWLEDGEMENT
The authors acknowledge the contributions of the faculty of

Velalar College of Engineering and Technology for helping in

the design of test circuitry, and tool support. The authors also

thank the anonymous reviewers for their thoughtful comments

that helped to improve this paper. The authors would like to

thank the anonymous reviewers for their constructive critique

from which this paper greatly benefited.

8. REFERENCES
[1] www.netsecurity.about.com/cs/hackertools/a/aa030504.h.

[2] Boyer R. S., & Moore J. S. (1977). A fast string searching

 algorithm. Communications of the ACM, 20, 762–772.

[3] Anagnostakis, K. G., Antonatos, S., Markatos, E. P., &

Polychronakis, M. (2003). E2xb: A domain specific

string matching algorithm for intrusion detection. In

Proceedings of the 18th IFIP international security

conference(SEC2003).

[4] Aho, V. A., & Corasick, M. J. (1975). Efficient string

matching:An aid to bibliographic search.

Communications of the ACM, 18, 333–340.

[5] Fisk, M., & Varghese, G. (2002). An analysis of fast

string matching applied to content-based forwarding and

intrusion detection. In Technical report CS2001-0670

(updated version). San Diego: University of California.

[6] Norton, M., & Roelker, D. (2002). Snort 2.0:

Detectionrevised. http://www.sourcefire.com/.

[7] Fisk, M., & Varghese, G. (2004). Applying fast string

matching to intrusion detection. Technical Report

CS2001-0670,UCSD.

[8] B. Bloom, “Space/ time trade-offs in hash coding with

allowable errors,” Commun. ACM, vol. 13, no. 7, pp.

422-426, July 1970.

 [9] Elham Safi, Elham Safi, Andreas Veneris,“L-CBF,A

Low-Power,Fast Counting Bloom Filter Architecture”

in IEEE Trans. On Very Large Scale Integration (VLSI)

systems, Vol. 16, no. 6, June 2008,pp.628-638.

 [10] J. K. Peir, S. C. Lai, S. L. Lu, J. Stark, and K. Lai,

“Bloom filtering cache misses for accurate data

speculation and prefetching,” in Proc. Ann. Int. Conf.

Supercomput., Jun. 2002, pp. 189–198.

[11] M. Mitzenmacher and S. Vadhan, “Why simple hash

functions work: exploiting the entropy in a data

stream,” in Proc. of the 19th annual ACM-SIAM

SODA, 2008, pp. 746–755.

 [12] M. R. Stan, “Synchronous up/down counter with clock

period inde- pendent of counter size,” in Proc. Ann.

Symp. Comput. Arithmetic, Jul. 1997, pp. 274–281.

[13] B. S. Amrutur and M. A. Horowitz, “Fast low-power

decoders for RAMs,” IEEE J. Solid-State Circuits, vol.

36, no. 10, pp. 1506–1515, Oct. 2001.

[14] B. S. Amrutur, “Design and analysis of fast low power

SRAMs,” Ph.D. dissertation, Elect. Eng. Dept.,

Stanford Univ., Stanford, CA, 1999.

 [15] B. S. Amrutur and M. A. Horowitz, “Speed and power

scaling of SRAM’s,” IEEE J. Solid-State Circuits, vol.

35, no. 2, pp. 175–185, Feb. 2000.

 [16] M. Margala, “Low-power SRAM circuit design,” in

Proc. IEEE Work- shop Memory Technol., Design

Test., Aug. 1999, pp. 115–122.

 [17] P. Alfke, “Efficient shift registers, LFSR counters, and

long pseudo- random sequence generators,” Xilinx, San

Jose, CA, Appl. Note 052, Jul. 1996.

 [18] P. H. Bardell, W. H. McAnney, and J. Savir, Built-in

test for VLSI: Pseudorandom techniques. New York:

Wiley, 1987.

 [19] M. R. Stan, A. F. Tenca, and M. D. Ercegovac, “Long

and fast up/down counters,” IEEE Trans. Comput., vol.

47, no. 7, pp. 722–735, Jul. 1998.

 [20] H. E. W. Neil and D. Harris, Principles of CMOS VLSI

Design, 3rd ed. Reading, MA: Addison Wesley, 2004.

0
200
400
600
800

1000
1200
1400
1600
1800

Comparison chart for multi hash function
and its modified architecture

Multi-hash
CBF

Modified
Multi hash
CBF

http://www.sourcefire.com/

