
International Journal of Computer Applications (0975 – 8887)

Volume 70– No.4, May 2013

8

Analysis of Power Efficient Modulo 2
n
+1 Adder

Architectures

M.Parimaladevi

Assistant Professor
Velalar College of Engineering and Techonology,

Erode, Tamilnadu, India.

R.Karthi
P.G Scholar

Velalar College of Engineering and Techonology,
Erode, Tamilnadu, India.

ABSTRACT

Two modified architectures for modulo 2n+1 adders are

introduced in this paper. Only some of the carries of modulo

2n+1 addition are computed in sparse carry computation unit

present in first architecture. This sparse approach is

introduced by inverted circular idempotency property of the

parallel-prefix carry operator and in this modified pre-

processing stage and carry select blocks are combine the

multiplexer operation of a diminished-one adder can be

implemented in smaller LUT’s and less consumes power,

while maintain the same operating speed and delay. The

modulo adder 2n+1 adders can be easily derived by adding

extra logic of modulo 2n-1 adders present in second

architecture.

Keywords

Parallel-Prefix-Addition, IEAC, Modulo- Arithmetic, Boolean

Expression, VLSI.

1. INTRODUCTION

Modulo 2n+1 arithmetic has been used in cryptography [1],

[2].Cryptography is the art of protecting information by

transforming encryption into an unreadable format called

chipper text. Decryption posses a secret key to change the

message into plain text. Generally cryptography systems can

be classified into symmetric-key system and public-key

system. Symmetric-key system uses single key to key both

sender and recipient and public-key systems are used two

keys, a public key known to everyone and a private key that

only the recipient of message uses.

 The modulo 2n+1 arithmetic unit complexity is determined by

chosen for the operands representation. Three representations

are considered namely, the normal weighted-one, diminished-

one [3], and the signed-LSB representation [4]. In above only

we consider the first two representations, since the adoption of

the signed-LSB representation does not lead to more efficient

circuits in delay or area terms. In every case, when performing

modulo 2n+1 arithmetic operation, the input operands and

results are limited between 0 and 2n. In the normal-weighted

representation, each operand requires n+ 1 bit for its

representation but only utilizes 2n+1 representation out of the

2n+1 that these can provide. A denser encoding of the input

operands and simplified arithmetic operations modulo 2n+1

are offered by the diminished-1 representation. In the

diminished-1 representation, each number Z IS represented by

as azZ
*, where az is a single bit, often called the zero

indication bit, and Z* is an n-bit vector, often called the

number part. If Z>0, then az=0 and Z* = Z-1, Where for A=0,

az = 1 and Z* = 0.

1.1 Related Work

Many papers have attacked the problem of designing efficient

diminished adders. The majority of them rely on the use of an

inverted end around carry (IEAC) n-bit adder, which is an

adder that accepts two n-bit operands provides a sum

increased by one compared to their integer sum if their integer

addition does not result in a carry output. Although an IEAC

adder can be implemented by using an integer adder in which

carry output is connected back to its carry input via an

inverter, such a direct feedback is not a good solution. Since

the carry input, a direct connection between them forms a

combinational loop that may lead to an unwanted race

condition [5].Considering diminished-1 representation foe

modulo 2n+1 arithmetic operation, [3], [4], used an IEAC

adder which is based on an integer adder along with an extra

carry look ahead (CLA) unit. The CLA unit computes the

carry output which is then inverted used as the carry input of

the integer adder. Zimmerman [6], proposed IEAC adders that

makes use of a parallel-prefix computation unit along with an

extra prefix level that handles the inverted end around carry.

Although these architectures are faster than the carry look

ahead ones proposed in [7], for sufficiently wide operands,

they are slower than the corresponding parallel-prefix integer

adders because of the need for the extra prefix level. In [7] it

has been shown that the recirculation of the inverted end

around carry can be performed within existing prefix levels,

that is, in parallel with the carries computation. In this way,

the need of the extra prefix level is canceled and parallel-

prefix IEAC adders are derived that can operate as fast as their

integer counter parts. Unfortunately, this level of performance

require more area then the solutions of [6], since a double

parallel-prefix computation tree is required in several levels of

the carry computation unit. For reducing area complexity of

the parallel-prefix by select-prefix [8] and circular carry select

[9] IEAC adders can be proposed. Although a modulo 2n+1

adder follows the (n+1)-bit weighted representation can be

designed following principles of generic modulo adder design

[10], [11]. However, it has been recently shown [12] that

weighted adder can be designed efficiently by using an IEAC

one and a carry save adder (CSA) stage. As a result,

improving the design for an IEAC adder would improve

weighted adder design as well.

2 Parallel-Prefix Addition Basics

Generally parallel-prefix n-bit adder considered as a

three stage circuit. They are pre-processing-stage, carry-

computation-unit and post-processing-stage. Suppose that

 and B = Bn-1 Bn-2 . . . B0 represent the

two numbers to be added and S = Sn-1 Sn-2 . . . S0 denotes

their sum.

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.4, May 2013

9

Fig. 1. Parallel-Prefix Addition Basics

2.1 Pre Processing Stage

 The pre processing stage computes three type of signal bits.

They are carry-generate bits Gi, the carry-propagate bits Pi,

and the half-sum bits Hi, for every I, 0 ≤ i ≤ n-1, according to

Where ∙, +, denote the logical AND, OR, and

EXCLUSIVE-OR, respectively. The pre-processing-stage is

shown in the figure 2.

Fig. 2. Pre processing stage

2.2 Carry Computation Unit

 The second stage of the adder, here after called the carry

computation unit, computes the carry signals Ci, for 0 ≤ i ≤ n-

1 using the carry generate and carry propagate bits Gi and Pi.

Carry computation transformed into a parallel prefix problem

using the ◦ operator, which associate pairs of generate and

propagate signals and defined as

(G, P) ◦ (G’, P’) = (G + P . G’, P∙P’)

In a serious of associations of consecutive

generate/propagate pairs (G, P) , the notation (Gk:j, Pk:j) with

k>j, used to denote the group generate/propagate term

produced out of bits k, k-1, . . .j, that is,

(Gk:j, Pk:j) = (Gk, Pk) ◦ (Gk-1, Pk-1) ◦ . . . ◦ (Gj, Pj)

Since every carry Ci = Gi:0, a number of algorithms have been

introduced for computing all the carries using only ◦ operator.

The prefix operator is shown in the figure 3.

Fig. 3. Carry computation unit

2.3 Post Processing Stage

The third computes the half sum bits according to

 Si = Hi Ci-1

The post processing stage is shown in the figure 4.

Fig. 4. Post Processing Stage

3 Modulo 2
n
±1 Addition Basics

3.1 Modulo 2
n
–1 Adders

 The computation of modulo 2n – 1 addition is, in fact, a

conditional operation defined as,

A modulo 2n – 1 adder can be implemented using an integer

adder that increments also its sum when the carry output is

one, that is, when A + B ≥ 2n. the conditional increment can

be implemented by an additional carry incremental stage as

shown in figure 5. In this case, one extra level of • cells driven

by the carry output of the adder, is required.

 Depending on the implementation of the modulo 2n – 1

adder, for bitwise-complementary inputs, i.e., when A + B =

2n + 1, the adder may produce an all 1s output vector, in place

of the expected result which is equal to zero. In most

applications, this is acceptable as a second representation for

zero.

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.4, May 2013

10

Fig. 5. Design of a prefix modulo 28 – 1 adder

The implementation of a modulo 2n – 1 adder

requires the connection of the carry output Cn-1 = Gn-1:0 of a

integer adder to its carry-input port. The carries of the modulo

2n – 1 adder C-i that take place also a carry-input port are

equal to
 = Gi:0 + Pi:0 . Cin. Therefore, connecting the carry

output to the carry input leads to
 = Gi:0 + Pi:0 . Gn-1:0. This

relation contains many redundant terms and according and

simplified to

 = Gi:0 + Pi:0 . Gn-1:i+1….(2)

The simpler equation can be equivalently expressed using the

◦ operator as follows:

↔ (Gi, Pi) ◦ . . . (G0, P0) ◦ (Gn-1, Pn-1) ◦ . . . ◦(Gi+1, Pi+1) …(3)

The above equation (3) that computes the modulo 2n – 1

carries has a cyclic form and, in contrast to integer addition,

the number of generate and propagate pairs (Gi, Pi) that need

to be associated for each carry is equal to n. This means that

the parallel-prefix carry computation unit of a modulo 2n -1

adder has significantly increased area complexity than that of

a corresponding integer adder. In terms of delay, the carries C-

can be computed in log2 n levels using regular parallel-prefix

structures using end around technique. At each level of the

parallel-prefix structure, larger groups of (Gi, Pi) are

progressively associated and the carries C- are computed at

the last level. The final sum bits S-
i are equal to Hi

 . The

above from of modulo 2n – 1 adder suffers from the double

representation of zero. Few solutions have been reported on

the design of a modulo 2n – 1 adder with a single zero

representation. Those proposed by [13] have an increased

delay compared to those with a double zero representation

since they rely on using Hi instead of Pi as the carry propagate

signal, while those proposed in [14] compute the modulo

carries C- as

↔ (Gi, Pi) ◦ . . . (G0, P0) ◦ (Gn-1, Pn-1) ◦ . . . ◦(Pi+1, Pi+1)

that is, by using Pi+1 instead of Gi+1. Although this change

seems minor, it ruins the regularity of the adders, and the

interconnect area. In the rest of this paper, we consider

modulo 2n – 1 adder with a double representation for zero.

3.2 Modulo 2
n
+1 Adder

 Diminished-1 modulo 2n + 1 addition is more complex since

special care is when at least one of the input operand is zero

(1 00…..0). The sum of a diminished-1 modulo adder is

derived according to the following cases:

(1) When none of the input operand is zero (az, bz

≠ 0) their number parts A* and B* are added

modulo 2n + 1. This operation as discussed in

the following can be handled by an IEAC

adder.

(2) When one of the two input’s are zero, the result

is equal to the non zero operand.

(3) When both operands are zero, the result is zero.

In any case that the result is equal to zero (case 1 or 3), the

zero-indication bit of the sum needs to be should be equal to

the all-zero vector. According to above, a diminished-1 adder

is needed only in case 1, while in the other cases the sum is

known in advance.

 When none of the input operands is zero, az, bz ≠ 1, the

number part of the diminished-1 sum is derived by the number

parts A* and B* of the input operand as follows:

S+ = (A* + B*) mod (2n + 1)

In analogous way to that of the modulo 2n – 1 case, [8] has

shown that the carry
 at the ith bit position of an IEAC

adder, when feeding the carry input Cin =
 with the

inverted carry out = can be computed more

simply by

 … (5)

Equivalently, using the ◦ operator the IEAC addition carries

can be expressed as

Where by definition, is equal to (, and the final

sum bits
 are equal to

 Using the above

simplified carry equations.

Fig. 6. Design of a prefix modulo 28 + 1 adder

4 NEW SPARSE MODULO 2
n
+1 ADDERS

In this section, we focus on the design of diminished modulo

adders with a sparse parallel-prefix carry computation stage

that can use the same carry-select block as the sparse integer

adders.

4.1Partially Regular Sparse Parallel-Prefix

Adders

The carries of the diminished-1 modulo 2n + 1 addition are

associated in the very same way as the carries of the integer

addition. To this end, the inverted circular idempotency

property is introduced by the following Theorem:

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.4, May 2013

11

Theorem 1.

=

With according to the definition given in

[8].

Proof: At first, we ungroup the operator with their

equivalent Boolean relation as

=

=

In the following, in the generate part of the prefix relation we

expand the inversion operation, While in the propagate part

we simplify the double appearance of the term as

=

=

The term are reduced to

 which simplifies the initial relation as

follows:

=

If we reuse the operator, the equation is rewritten in the

following way:

=

=

This concludes the proof.

The inverted circular idempotency indicates that we can

repeat (Gi, Pi) terms that appear at the front of a prefix relation

of the form suggested by (5) inverted at its tail. Armed with

the inverted circular idempotency, we will present the

modified proposed methodology by using as an example the

design of a sparse-4 parallel-prefix modulo 216 + 1 adder.

Since we assume a sparsity-4, only one every four carries is

generated at positions 3, 7, 11, 15, and 31 or equivalently -1.

4.2 Totally Regular Parallel-Prefix Units

The methodology presented in [7] is the only approach known

so far that can organize the computation of the carries , in

case of modulo 2n + 1 addition, in a parallel-prefix-like form

with prefix levels. As also shown in the figure some

prefix operator are double up, since two carry computations

need to be performed in parallel; one on normal propagate and

generate signals, while the other on their complements. The

problem gets worse when the input operands’ width is not a

power of two. Although, the sparse version of the parallel-

prefix adders introduced in this paper alleviates a lot the

regularity and the area-overhead problem, as it can be verified

from figure 6, there is still a lot space for improvement.

 In the following, this problem is solved by introducing a new

prefix operator and an even simpler parallel-prefix carry

computation unit. The new technique will be presented via an

example. Let the design of a sparse-4 diminished-1 modulo

216 + 1 adder be considered. In this case, a carry computation

unit is needed that implements the following prefix equation

To this end, a new operator called gray operator is introduced.

The implementation of a gray operator is given in figure. It

accepts five inputs and produces four outputs. Three of the

inputs of a gray operator residing at prefix level j – 1,

namely

,

 and

 form the operator’s vertical

input bus, while the rest two

 and

 form its lateral

input bus. The lateral bus signals are driven inverted to the

operator. The gray operator produces three signals for vertical

successor of prefix level j (

,

 and

) and one (cj) for its

lateral successor. Note that compared to the prefix operator,

the gray one requires one extra gate, but does not require logic

levels. Considering a sparse-2k parallel-prefix carry

computation unit, gray operators will not be used in the first k

prefix levels, since these need only compute the group

generate and propagate terms out of 2k adjacent bit positions.

Fig. 7. Design of a gray operator

The logic equations performed by a gray operator residing at

prefix level j – 1 are

Consider now that we connect

 to 0,

 and

 to and , respectively, and

 and

 to and , respectively.

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.4, May 2013

12

Then, the gray operator will provide

 as its lateral output. More importantly, it will also

provide at its vertical outputs:

An information which as we will show in the following

suffices for the vertical successor to compute

 out of

and . Consider the vertical successor of the

aforementioned gray operator which resides in prefix level j.

by using a gray operator in its place in which we connect

and

 to and , respectively, and

,

and

 to the vertical output of the gray operator of level j-1

mentioned above, that is,

 and

The lateral output of the operator will be equal to

=

= ,

=

=

And will provide at its vertical outputs:

Applying the same procedure recursively, the lateral output of

the last vertical successor of a gray operator will be equal to

That is, equal to

From the above analysis, it is concluded that starting from a

sparse architecture with doubled up operators, it suffices to

1 Remove the doubled up operators that associate inverted

signals,

2 Replace the top operator of every column excluding the

leftmost that accepts a feedback signal with a gray one, with

its input tied to zero, and

Replace every vertical successor of a gray operator introduced

by the previous step with a gray one,

To attain a diminished-1 modulo 2n + 1 adder, in which two

gray operator are used. The top one which resides at prefix

level 3, accepts a feedback signal and therefore has its

input tied to zero. This operator is used to compute

() which is necessary for the

computation of both

 . Its vertical successor is also

replaced by a gray operator that computes the final:

Fig. 8. Design of a Diminished-1 modulo 216 – 1 Adder Using CSB

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.4, May 2013

13

Fig. 9.Design of a 4-bit Carry Select Block

5 Unified Approaches to the Design of

Modulo 2
n
 ± 1 Adder

 Several area-time-power efficient architectures (for example,

[16]) have been proposed for the simpler case of modulo 2n –

1 addition. These architecture preserve all the benefits of

parallel-prefix carry computation units and can be easily

designed for every n. more specifically, Dimitrakopoulos et

al. [16] generalized the design of such units for all values of n

and has provided easy-to-follow topographical design rules.

The resulting structures for n ≠ 2k save significant amount of

area without scarifying delay. Therefore it is concluded that

mapping the diminished modulo 2n + 1 adder design problem

to that of modulo 2n - 1 addition, would beneficial given all

the efficient architectures that have been proposed for the

latter. In the following, it is shown that this mapping requires

a constant time post processing stage and analyzes its area and

time overhead.

5.1 Modulo 2
n
 – 1 Unification Theory

In order to unify the parallel-prefix modulo 2n – 1

addition principles, there is a need to explore the relation

between carries of these two addition operators, that is,

between
 and

The relationship that connects the recirculation carry-out bits

 and
 that are employed for the derivation of the

sum bits on the least-significant position zero is trivial

 …(6)

A = 5Want to compute (A+B) mod 17 = (5+6)mod 17=11

B = 6 Diminished-1 sum = 11-1 = 10

 Input Diminished-1 representations

 = A – 1 = 4 = 0 1 0 0

 = B – 1 = 5 = 0 1 0 1

 Give operands to a modulo 15 adder

 0 1 0 0 (4)

 0 1 0 1 (5)

 Hi

 Hi:0 0 0 0 1

 XOR

 Sum mod 15 1 0 0 1 (9)

 Diminished-1 INV (10)

 Sum mod 17

Fig. 10. An arithmetic example of the new approach for the modulo 2n + 1 sum via the result of the corresponding modulo 2n –

1 addition.

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.4, May 2013

14

In this case both carries are considered as incoming

carries from bit position -1.For all other bit positions with 0≤ i

≤ n – 1, the relation between
 and

 is given by the

following theorem.

Theorem 2.
 =

 with i < n-1.

Proof: By the definition of the XOR operator

 can be rewritten as

 ∙

Replacing
 with its definition in the above relation we get

=

=

Based on modulo 2n – 1 addition equation (5), the derived

term is the definition of the carry signal
 in the case of

diminished-1 modulo 2n + 1 addition.

The direct consequence of the newly derived relationship is

that we can compute the carries for the case of modulo 2n + 1

adders directly from the a modulo 2n – 1 carry computation

unit by a stage of XOR gates that will combine the carries

 with terms

 At first, it may seem complicated to compute

since it requires a complete carry tree to be added for the

computation of . However, based on theorem 2 the

computation of is straightforward and can be

implemented at low cost.

Theorem 3 . where

Proof: By definition we know that

and that Therefore, the term

written as

The term can be easily proven that is equal to .

Hence,

In the manner, the term in the parentheses

 leading to

Applying the same rule recursively n times we get

Therefore, from the two namely introduced theorems, the

diminished-1 modulo 2n + 1 sum can be derived from the

corresponding modulo 2n – 1 sum as follows: by definition,

we know that

Replacing
 with its new value

 we get that

We identify that
 is the corresponding

sum
 .

Thus, it holds that

 for i ≠ 0 …(7)

Also based (6), the sum bit
 is simply equal to

 . An

arithmetic example illustrating the derivation of a diminished-

1 modulo 17 sum via a modulo 15 adder and some extra logic

is given in figure.

According to section 3, one or both the input operands in case

of diminished-1 representation may be equal to zero. It is

decided to handle this case by setting the corresponding

diminished-1 carries
 to zero. However, when using a

modulo 2n – 1 adder for implementation of a diminished-1

adder an even simpler approach can be employed: when at

least of the input operand is zero, i.e., az = 1 or bz = 1, then we

ignore the term for the derivation of the bit
 and

keep the original sum of the modulo 2n – 1 adder. This simple

condition can be efficiently implemented by the following

equations:

 for i ≠ 0 and …(8)

5.2 Modified Pre Processing Stages in Both

Architectures

Fig. 11. Design of a Modified Pre Processing Stage

Here Boolean expressions are used to reduce the

gate count. In normal pre processing stage contain 7 gates and

modified pro processing stage are reduced to 3 gates and it

contain only 4 gates to produce generate, propagate, and half

sum bits.

6 Simulation And Implementation Results

Initially the VHDL coding is performed to the design and

it is then implemented in XILINX ISE 9.1E kit. The

implementation is performed with 8-bit input. The

experimental results for the parameters namely power, delay,

frequency and LUT count obtained for modulo 28+1 design

are obtained. For the parallel addition operation, three stages

are used. Thus the first stage(pre processing stage) are

modified has less amount of power consumption compared to

the earlier method. The results are obtained and are tabulated

as follows.

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.4, May 2013

15

Table 1: Implementation for Pre Processing Stage

Table 2: Comparision of Gate count and delay for

Existing and Modified Pre-processing stage

Table 3: Comparison of Power and Frequency for

Existing and Modified Pre-processing stage

Fig. 12.Unified Design for a Prefix Modulo 28 – 1 Adder

Fig. 13. Unified Design for a Prefix Modulo 28 + 1 Adder

Fig. 11. Design for a diminished-one modulo 216+1adder

Using CSB

7 CONCLUSIONS

Power efficient modulo 2n + 1 adders are appreciated in a

variety of computer applications such as cryptography. In this

paper, two modified contributions are offered to the modulo

2n + 1 addition problem.

A novel architecture has been modified the sparse totally

regular parallel-prefix carry computation unit. This

architecture was modified by using the Boolean expressions

are reduced to parallel-prefix carry computation unit in

modulo 2n + 1 addition. The experimental results indicate that

the modified architecture approximately decrease or increase

the earlier solutions in implementation LUT’S and power

consumption, while maintain the same operating speed and

delay.

The modulo 2n + 1 addition problem was also shown to be

related to the modulo 2n – 1 addition problem. The unified

theory presented in this paper shown that a simple post

processing stage composed of an XOR gate for each output bit

needs to be added to a modulo 2n – 1 adder for attaining a

modulo 2n + 1 adder.

8. REFERENCES

[1] www.cs.kent.edu/~rothstei/modular_arith.ppt

[2] http://www.cs.odu.edu/~cs772/fall04/lectures

/public_key_cryptography.html

[3] G. Dimtra Kopulous, D.G. Nikolos, D. Nikolos, H.T.

Vergos, and C. Efstathiou,’ New Architectures for

Modulo 2n-1 Adders,” proc. IEEE Int’1 Conf.

Electronics, Circuits, and Systems, 2008.

[4] G. Jaberipur and B. parhami,” Unified Approach to the

Design of Modulo-(2n±1) Adders Based on Signed-LSB

Representation of Residues,” proc. 19th IEEE symp.

Computer Arithmetic, pp. 57-64, 2009.

0

2

4

6

8

Gate Count Delay(ns)

Existing
Pre processing
Stage

Modified
Pre processing
Stage

0

1000

2000

3000

4000

Power
(mw)

Frequency
(Hz)

Existing
Pre processing
Stage

Modified
Pre processing
Stage

PARAMETER EXISTING PRE

PROCESSING

STAGE

MODIFIED

PRE

PROCESSING

STAGE

POWER(mw) 3740 3726

GATE 7 4

DELAY(ns) 6.320 6.320

FERQUENCY(hz) 450 450

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.4, May 2013

16

[5] R. Zimmerman,” Efficient VLSI Implementation of

Modulo (2n±1) Addition and Multiplication,” proc. 14th

IEEE symp. Computer Arithmetic, pp. 158-167, Apr.

1999.

[6] R. Zimmerman,”Binary Adder Architectures for Cell-

Based VLSI and Their Synthesis,” PhD dissertation,

Swiss Fed. Inst of Technology, 1977.

[7] H.T. Vergos, C. Efstathiou, and D. Nikolos,”

Diminished-One Modulo 2n+1 Adder Design,” IEEE

Trans. Computers, vol. 51, no. 12, pp. 1389-1399, Dec.

2002.

[8] C. Efstathiou, H.T. Vergos, and D. Nikolos,” Modulo

2n±1 Adder Design Using Select Prefix Blocks,” IEEE

Trans. Computers, vol.52, no. 11, pp. 1399-1406, nov.

2003.

[9] S.-H. Lin and M.-H. Sheu,” VLSI Design of Diminished-

One Modulo 2n+1 Adder Using Circular Carry

Selection,” IEEE Trans. Circuits and Systems II, vol. 55,

no. 9, pp. 897-901, Sept. 2008.

[10] A. Hissat, “High-Speed and Reduced-Area Modular

Adder Structures for RNS,” IEEE Trans. Computers, vol.

53, no. 1, pp. 84-89, Jan. 2002.

[11] C. Efstathiou, H.T. Vergos, and D. Nikolos,” Fast

Parallel-Prefix Modulo 2n+1 adders,” IEEE Trans.

Computers, vol. 53, no. 9, pp. 1211-1216, Sept. 2004.

[12] H.T. Vergos, and C. Efstathiou,” A Unifying Approach

for Weighted and Diminished-1 Modulo 2n+1 Addition,”

IEEE Trans. Circuits and Systems II, vol.55, no. 10, pp.

1041-1045, Oct. 2008.

[13] L. kalampoukas et al., “High-speed Parallel-Prefix

Modulo 2n-1 Adders,” IEEE Trans. Computers, vol. 49,

no.7, pp. 673-680, July 2000.

[14] R.A. Patel, M. Bonaissa, and S. Boussakta,”Fast Parallel-

Prefix Architecture for Modulo 2n-1 Addition with a

Single Representation of Zero,” IEEE Trans. Computers,

vol. 56, no. 11, pp. 1484-1492, Nov. 2007.

