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ABSTRACT 

Two modified architectures for modulo 2n+1 adders are 

introduced in this paper. Only some of the carries of modulo 

2n+1 addition are computed in sparse carry computation unit 

present in first architecture. This sparse approach is 

introduced by inverted circular idempotency property of the 

parallel-prefix carry operator and in this modified  pre-

processing stage and carry select blocks are combine the 

multiplexer operation of a diminished-one adder can be 

implemented in smaller LUT’s and less consumes power, 

while maintain the same operating speed and delay. The 

modulo adder 2n+1 adders can be easily derived by adding 

extra logic of modulo 2n-1 adders present in second 

architecture. 
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1. INTRODUCTION 

Modulo 2n+1 arithmetic has been used in cryptography [1], 

[2].Cryptography is the art of protecting information by 

transforming encryption into an unreadable format called 

chipper text. Decryption posses a secret key to change the 

message into plain text. Generally cryptography systems can 

be classified into symmetric-key system and public-key 

system. Symmetric-key system uses single key to key both 

sender and recipient and public-key systems are used two 

keys, a public key known to everyone and a private key that 

only the recipient of message uses. 

 The modulo 2n+1 arithmetic unit complexity is determined by 

chosen for the operands representation. Three representations 

are considered namely, the normal weighted-one, diminished-

one [3], and the signed-LSB representation [4]. In above only 

we consider the first two representations, since the adoption of 

the signed-LSB representation does not lead to more efficient 

circuits in delay or area terms. In every case, when performing 

modulo 2n+1 arithmetic operation, the input operands and 

results are limited between 0 and 2n. In the normal-weighted 

representation, each operand requires n+ 1 bit for its 

representation but only utilizes 2n+1 representation out of the 

2n+1 that these can provide. A denser encoding of the input 

operands and simplified arithmetic operations modulo 2n+1 

are offered by the diminished-1 representation. In the 

diminished-1 representation, each number Z IS represented by 

as azZ
*, where az is a single bit, often called the zero 

indication bit, and Z* is an n-bit vector, often called the 

number part. If Z>0, then az=0 and Z* = Z-1, Where for A=0, 

az = 1 and Z* = 0. 

1.1 Related Work 

Many papers have attacked the problem of designing efficient 

diminished adders. The majority of them rely on the use of an 

inverted end around carry (IEAC) n-bit adder, which is an 

adder that accepts two n-bit operands provides a sum 

increased by one compared to their integer sum if their integer 

addition does not result in a carry output. Although an IEAC 

adder can be implemented by using an integer adder in which 

carry output is connected back to its carry input via an 

inverter, such a direct feedback is not a good solution. Since 

the carry input, a direct connection between them forms a 

combinational loop that may lead to an unwanted race 

condition [5].Considering diminished-1 representation foe 

modulo 2n+1 arithmetic operation, [3], [4], used an IEAC 

adder which is based on an integer adder along with an extra 

carry look ahead (CLA) unit. The CLA unit computes the 

carry output which is then inverted used as the carry input of 

the integer adder. Zimmerman [6], proposed IEAC adders that 

makes use of a parallel-prefix computation unit along with an 

extra prefix level that handles the inverted end around carry. 

Although these architectures are faster than the carry look 

ahead ones proposed in [7], for sufficiently wide operands, 

they are slower than the corresponding parallel-prefix integer 

adders because of the need for the extra prefix level. In [7] it 

has been shown that the recirculation of the inverted end 

around carry can be performed within existing prefix levels, 

that is, in parallel with the carries computation. In this way, 

the need of the extra prefix level is canceled and parallel-

prefix IEAC adders are derived that can operate as fast as their 

integer counter parts. Unfortunately, this level of performance 

require more area then the solutions of [6], since a double 

parallel-prefix computation tree is required in several levels of 

the carry computation unit. For reducing area complexity of 

the parallel-prefix by select-prefix [8] and circular carry select 

[9] IEAC adders can be proposed. Although a modulo 2n+1 

adder follows the (n+1)-bit weighted representation can be 

designed following principles of generic modulo adder design 

[10], [11]. However, it has been recently shown [12] that 

weighted adder can be designed efficiently by using an IEAC 

one and a carry save adder (CSA) stage. As a result, 

improving the design for an IEAC adder would improve 

weighted adder design as well. 

2    Parallel-Prefix Addition Basics 

Generally parallel-prefix n-bit adder considered as a 

three stage circuit. They are pre-processing-stage, carry-

computation-unit and post-processing-stage. Suppose that 

              and B = Bn-1 Bn-2 . . . B0 represent the 

two numbers to be added and    S = Sn-1 Sn-2 . . . S0 denotes 

their sum. 
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Fig. 1. Parallel-Prefix Addition Basics 

2.1 Pre Processing Stage 

 The pre processing stage computes three type of signal bits. 

They are carry-generate bits Gi, the carry-propagate bits Pi, 

and the half-sum bits Hi, for every I, 0 ≤ i ≤ n-1, according to  

                         

Where ∙, +,   denote the logical AND, OR, and 

EXCLUSIVE-OR, respectively. The pre-processing-stage is 

shown in the figure 2.  

 

 

Fig. 2. Pre processing stage 

2.2 Carry Computation Unit 

  The second stage of the adder, here after  called the carry 

computation unit, computes the carry signals Ci, for 0 ≤ i ≤ n-

1 using the carry generate and carry propagate bits Gi and Pi. 

Carry computation transformed into a parallel prefix problem 

using the ◦ operator, which associate pairs of generate and 

propagate signals and defined as  

(G, P) ◦ (G’, P’) = (G + P . G’, P∙P’)   

In a serious of associations of consecutive 

generate/propagate pairs (G, P) , the notation (Gk:j, Pk:j) with 

k>j, used to denote the group generate/propagate term 

produced out of bits k, k-1, . . .j, that is, 

(Gk:j, Pk:j) = (Gk, Pk) ◦ (Gk-1, Pk-1) ◦ . . . ◦ (Gj, Pj) 

Since every carry Ci = Gi:0, a number of algorithms have been 

introduced for computing all the carries using only ◦ operator. 

The prefix operator is shown in the figure 3. 

 

Fig. 3. Carry computation unit 

2.3 Post Processing Stage 

The third computes the half sum bits according to 

                          Si = Hi  Ci-1 

The post processing stage is shown in the figure 4. 

 

Fig. 4. Post Processing Stage 

3 Modulo 2
n
±1 Addition Basics  

3.1 Modulo 2
n
–1 Adders 

  The computation of modulo 2n – 1 addition is, in fact, a 

conditional operation defined as, 

 

               

  
                

                    
         

 

A modulo 2n – 1 adder can be implemented using an integer 

adder that increments also its sum when the carry output is 

one, that is, when A + B ≥ 2n. the conditional increment can 

be implemented by an additional carry incremental stage as 

shown in figure 5. In this case, one extra level of • cells driven 

by the carry output of the adder, is required. 

      Depending on the implementation of the modulo 2n – 1 

adder, for bitwise-complementary inputs, i.e., when A + B = 

2n + 1, the adder may produce an all 1s output vector, in place 

of the expected result which is equal to zero. In most 

applications, this is acceptable as a second representation for 

zero. 
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Fig. 5. Design of a prefix modulo 28 – 1 adder 

The implementation of a modulo 2n – 1 adder 

requires the connection of the carry output Cn-1 = Gn-1:0 of a 

integer adder to its carry-input port. The carries of the modulo   

2n – 1 adder C-i that take place also a carry-input port are 

equal to   
 = Gi:0 + Pi:0 . Cin. Therefore, connecting the carry 

output to the carry input leads to   
 = Gi:0 + Pi:0 . Gn-1:0. This 

relation contains many redundant terms and according and 

simplified to 

  
  = Gi:0 + Pi:0 . Gn-1:i+1….(2) 

The simpler equation can be equivalently expressed using the 

◦ operator as follows: 

  
 

↔ (Gi, Pi) ◦ . . . (G0, P0) ◦ (Gn-1, Pn-1) ◦ . . . ◦(Gi+1, Pi+1) …(3) 

The above equation (3) that computes the modulo 2n – 1 

carries has a cyclic form and, in contrast to integer addition, 

the number of generate and propagate pairs (Gi, Pi) that need 

to be associated for each carry is equal to n. This means that 

the parallel-prefix carry computation unit of a modulo 2n -1 

adder has significantly increased area complexity than that of 

a corresponding integer adder. In terms of delay, the carries C- 

can be computed in log2 n levels using regular parallel-prefix 

structures using end around technique. At each level of the 

parallel-prefix structure, larger groups of (Gi, Pi) are 

progressively associated and the carries C- are computed at 

the last level. The final sum bits S-
i are equal to Hi     

 . The 

above from of modulo 2n – 1 adder suffers from the double 

representation of zero. Few solutions have been reported on 

the design of a modulo 2n – 1 adder with a single zero 

representation. Those proposed by [13] have an increased 

delay compared to those with a double zero representation 

since they rely on using Hi instead of Pi as the carry propagate 

signal, while those proposed in [14] compute the modulo 

carries C- as 

  
 

↔ (Gi, Pi) ◦ . . . (G0, P0) ◦ (Gn-1, Pn-1) ◦ . . . ◦(Pi+1, Pi+1) 

that is, by using Pi+1 instead of Gi+1. Although this change 

seems minor, it ruins the regularity of the adders, and the 

interconnect area. In the rest of this paper, we consider 

modulo 2n – 1 adder with a double representation for zero. 

3.2 Modulo 2
n
+1 Adder 

 Diminished-1 modulo 2n + 1 addition is more complex since 

special care is when at least one of the input operand is zero 

(1 00…..0). The sum of a diminished-1 modulo adder is 

derived according to the following cases: 

(1) When none of the input operand is zero (az, bz 

≠ 0) their number parts A* and B* are added 

modulo 2n + 1. This operation as discussed in 

the following can be handled by an IEAC 

adder. 

(2) When one of the two input’s are zero, the result 

is equal to the non zero operand. 

(3) When both operands are zero, the result is zero. 

In any case that the result is equal to zero (case 1 or 3), the 

zero-indication bit of the sum needs to be should be equal to 

the all-zero vector. According to above, a diminished-1 adder 

is needed only in case 1, while in the other cases the sum is 

known in advance. 

 When none of the input operands is zero, az, bz  ≠ 1, the 

number part of the diminished-1 sum is derived by the number 

parts A* and B* of the input operand as follows: 

S+ = (A* + B*) mod (2n + 1) 

  
                        

                        
        

In analogous way to that of the modulo 2n – 1 case, [8] has 

shown that the carry    
  at the ith bit position of an IEAC 

adder, when feeding the carry input Cin =    
  with the 

inverted carry out      =         can be computed more 

simply by 

  
                        … (5) 

Equivalently, using the ◦ operator the IEAC addition carries 

can be expressed as 

  
 

                                                 

Where by definition,       is equal to (    , and the final 

sum bits   
  are equal to         

   Using the above 

simplified carry equations. 

 

 

Fig. 6. Design of a prefix modulo 28 + 1 adder 

4 NEW SPARSE MODULO 2
n
+1 ADDERS 

In this section, we focus on the design of diminished modulo 

adders with a sparse parallel-prefix carry computation stage 

that can use the same carry-select block as the sparse integer 

adders. 

4.1Partially Regular Sparse Parallel-Prefix 

Adders 

The carries of the diminished-1 modulo 2n + 1 addition are 

associated in the very same way as the carries of the integer 

addition. To this end, the inverted circular idempotency 

property is introduced by the following Theorem: 
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Theorem 1. 

                                                

=                                  

With              according to the definition given in 

[8]. 

Proof: At first, we ungroup the   operator with their 

equivalent Boolean relation as  

                                                

=                                                    
       

=                                                 

                  

In the following, in the generate part of the prefix relation we 

expand the inversion operation, While in the propagate part 

we simplify the double appearance of the term      as  

                                                

=                                                

            

=                                            

                                    

The term                            are reduced to 

                     which simplifies the initial relation as 

follows: 

                                                

=                                        

If we reuse the  operator, the equation is rewritten in the 

following way: 

                                                

=                                    

=                                    

This concludes the proof. 

The inverted circular idempotency indicates that we can 

repeat (Gi, Pi) terms that appear at the front of a prefix relation 

of the form suggested by (5) inverted at its tail. Armed with 

the inverted circular idempotency, we will present the 

modified proposed methodology by using as an example the 

design of a sparse-4 parallel-prefix modulo   216 + 1 adder. 

Since we assume a sparsity-4, only one every four carries is 

generated at positions 3, 7, 11, 15, and 31 or equivalently -1. 

4.2 Totally Regular Parallel-Prefix Units 

The methodology presented in [7] is the only approach known 

so far that can organize the computation of the carries  , in 

case of modulo 2n + 1 addition, in a parallel-prefix-like form 

with       prefix levels. As also shown in the figure some 

prefix operator are double up, since two carry computations 

need to be performed in parallel; one on normal propagate and 

generate signals, while the other on their complements. The 

problem gets worse when the input operands’ width is not a 

power of two. Although, the sparse version of the parallel-

prefix adders introduced in this paper alleviates a lot the 

regularity and the area-overhead problem, as it can be verified 

from figure 6, there is still a lot space for improvement. 

 In the following, this problem is solved by introducing a new 

prefix operator and an even simpler parallel-prefix carry 

computation unit. The new technique will be presented via an 

example. Let the design of a sparse-4 diminished-1 modulo 

216 + 1 adder be considered. In this case, a carry computation 

unit is needed that implements the following prefix equation 

     
                    

  

                                  

   
                                

   
                                

To this end, a new operator called gray operator is introduced. 

The implementation of a gray operator is given in figure. It 

accepts five inputs and produces four outputs. Three of the 

inputs of a gray operator residing at prefix level j – 1, 

namely  
   

,   
   

 and   
   

 form the operator’s vertical 

input bus, while the rest two   
   

 and   
   

 form its lateral 

input bus. The lateral bus signals are driven inverted to the 

operator. The gray operator produces three signals for vertical 

successor of prefix level j (  
 
,   

 
 and   

 
 ) and one (cj) for its 

lateral successor. Note that compared to the  prefix operator, 

the gray one requires one extra gate, but does not require logic 

levels. Considering a sparse-2k parallel-prefix carry 

computation unit, gray operators will not be used in the first k 

prefix levels, since these need only compute the group 

generate and propagate terms out of 2k adjacent bit positions. 

 

Fig. 7. Design of a gray operator 

The logic equations performed by a gray operator residing at 

prefix level j – 1 are  

     
 
    

   
    

   
   

  
 
    

   
      

   
   

  
 
    

 
    

   
  

      
 
    

 
  

Consider now that we connect 

  
   

 to 0, 

  
   

 and    
   

 to      and     , respectively, and   
   

 and 

  
   

 to        and       , respectively. 
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Then, the gray operator will provide               

       as its lateral output. More importantly, it will also 

provide at its vertical outputs: 

  
 
        

  
 
               

  
 
                      

An information which as we will show in the following 

suffices for the vertical successor to compute             

                out of                              

and                  . Consider the vertical successor of the 

aforementioned gray operator which resides in prefix level j. 

by using a gray operator in its place in which we connect   
 
 

and   
 
 to          and       , respectively, and    

 
,   

 
 

and   
 
 to the vertical output of the gray operator of level j-1 

mentioned above, that is, 

   
 
           

  
 
                    and  

  
 
                        

The lateral output of the operator will be equal to 

      
 
    

 
                              
                  

=                                       

=                                     ,  

=                                     

=                    

And will provide at its vertical outputs: 

  
   

        

  
   

               

  
   

                      

Applying the same procedure recursively, the lateral output of 

the last vertical successor of a gray operator will be equal to  

                     

That is, equal to   
   

From the above analysis, it is concluded that starting from a 

sparse architecture with doubled up operators, it suffices to 

1   Remove the doubled up operators that associate inverted 

signals, 

2   Replace the top operator of every column excluding the 

leftmost that accepts a feedback signal with a gray one, with 

its    input tied to zero, and 

Replace every vertical successor of a gray operator introduced 

by the previous step with a gray one, 

To attain a diminished-1 modulo 2n + 1 adder, in which two 

gray operator are used. The top one which resides at prefix 

level 3, accepts a feedback signal and therefore has its   
  

input tied to zero. This operator is used to compute 

(         )                   which is necessary for the 

computation of both  
         

 . Its vertical successor is also 

replaced by a gray operator that computes the final: 

  
                                              

 

 

Fig. 8. Design of a Diminished-1 modulo 216 – 1 Adder Using CSB 
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Fig. 9.Design of a 4-bit Carry Select Block 

 

5 Unified Approaches to the Design of 

Modulo 2
n
 ± 1 Adder 

 Several area-time-power efficient architectures (for example, 

[16]) have been proposed for the simpler case of modulo 2n – 

1 addition. These architecture preserve all the benefits of 

parallel-prefix carry computation units and can be easily 

designed for every n. more specifically, Dimitrakopoulos et 

al. [16] generalized the design of such units for all values of n 

and has provided easy-to-follow topographical design rules. 

The resulting structures for n ≠ 2k save significant amount of 

area without scarifying delay. Therefore it is  concluded  that 

mapping the diminished modulo 2n + 1 adder design problem 

to that of modulo 2n - 1 addition, would beneficial given all  

 

 

the efficient architectures that have been proposed for the 

latter. In the following, it is shown that this mapping requires 

a constant time post processing stage and analyzes its area and 

time overhead. 

5.1 Modulo 2
n
 – 1 Unification Theory 

In order to unify the parallel-prefix modulo 2n – 1 

addition principles, there is a  need to explore the relation 

between carries of these two addition operators, that is, 

between   
  and   

   

The relationship that connects the recirculation carry-out bits 

    
 

 and     
  that are employed for the derivation of the 

sum bits on the least-significant position zero is trivial 

    
      

            
     …(6)

A = 5Want to compute (A+B) mod 17 = (5+6)mod 17=11 

B = 6  Diminished-1 sum = 11-1 = 10 

   Input Diminished-1 representations 

   = A – 1 = 4 = 0 1 0 0 

   = B – 1 = 5 = 0 1 0 1 

   Give operands to a modulo 15 adder  

                                              0 1 0 0  (4) 

                                              0 1 0 1   (5) 

                                         Hi        

                               Hi:0             0 0 0 1 

                                                         XOR 

 

           Sum mod 15           1 0 0 1              (9) 

         Diminished-1                       INV (10) 

         Sum mod 17 

 

Fig. 10. An arithmetic example of the new approach for the modulo 2n + 1 sum via the result of the corresponding modulo 2n – 

1 addition. 
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In this case both carries are considered as  incoming 

carries from bit position -1.For all other bit positions with 0≤ i 

≤ n – 1, the relation between   
   and   

  is given by the 

following theorem. 

Theorem 2.   
  =   

                 with i < n-1. 

Proof: By the definition of the XOR operator   
         

        can be rewritten as  

  
  ∙                

                

Replacing   
  with its definition in the above relation we get  

                                            

                              

=                              

=                        

Based on modulo 2n – 1 addition equation (5), the derived 

term is the definition of the carry signal   
  in the case of 

diminished-1 modulo 2n + 1 addition. 

The direct consequence of the newly derived relationship is 

that we can compute the carries for the case of modulo 2n + 1 

adders directly from the a modulo 2n – 1 carry computation 

unit by a stage of XOR gates that will combine the carries 

  
 with terms             

 At first, it may seem complicated to compute             

since it requires a complete carry tree to be added for the 

computation of     . However, based on theorem 2 the 

computation of              is straightforward and can be 

implemented at low cost. 

Theorem 3 .                   where           
               

Proof: By definition we know that                      

and that                    Therefore, the term             

written as  

                            
                           

The term         can be easily proven that is equal to   .  

Hence,  

                                    

In the manner, the term in the parentheses                 

                     leading to 

                                         

Applying the same rule recursively n times we get 

                                     

Therefore, from the two namely introduced theorems, the 

diminished-1 modulo 2n + 1 sum can be derived from the 

corresponding modulo 2n – 1 sum as follows: by definition, 

we know that  

  
            

   

Replacing     
 with its new value     

         we get that  

  
            

            

We identify that          
  is the corresponding 

sum   
 . 

Thus, it holds that  

  
     

          for i ≠ 0   …(7) 

Also based (6), the sum bit   
  is simply equal to   

 . An 

arithmetic example illustrating the derivation of a diminished-

1 modulo 17 sum via a modulo 15 adder and some extra logic 

is given in figure.  

According to section 3, one or both the input operands in case 

of diminished-1 representation may be equal to zero. It is 

decided to handle this case by setting the corresponding 

diminished-1 carries   
  to zero. However, when using a 

modulo 2n – 1 adder for implementation of a diminished-1 

adder an even simpler approach can be employed: when at 

least of the input operand is zero, i.e., az = 1 or bz = 1, then we 

ignore the term        for the derivation of the bit   
  and 

keep the original sum of the modulo 2n – 1 adder. This simple 

condition can be efficiently implemented by the following 

equations: 

  
     

                       for i ≠ 0 and   …(8) 

  
     

                

5.2 Modified Pre Processing Stages in Both 

Architectures 

 

Fig. 11. Design of a Modified Pre Processing Stage 

Here Boolean expressions are used to reduce the 

gate count. In normal pre processing stage contain 7 gates and 

modified pro processing stage are reduced to 3 gates and it 

contain only 4 gates to produce generate, propagate, and half 

sum bits. 

6 Simulation And Implementation Results 

Initially the VHDL coding is performed to the design and 

it is then implemented in XILINX ISE 9.1E kit. The 

implementation is performed with 8-bit input. The 

experimental results for the parameters namely power, delay, 

frequency and LUT count obtained for modulo 28+1 design 

are obtained. For the parallel addition operation, three stages 

are used. Thus the first stage(pre processing stage) are 

modified  has less amount of power consumption compared to 

the earlier method. The results are obtained and are tabulated 

as follows.  
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Table 1: Implementation for Pre Processing Stage 

 

 

Table 2: Comparision of Gate count and delay for 

Existing   and Modified Pre-processing stage 

 

Table 3: Comparison of Power and Frequency for 

Existing   and Modified Pre-processing stage 

 

 

Fig. 12.Unified Design for a Prefix Modulo 28 – 1 Adder 

 

Fig. 13. Unified Design for a Prefix Modulo 28 + 1 Adder 

 

 

Fig. 11. Design for a diminished-one modulo 216+1adder 

Using CSB 

7 CONCLUSIONS 

Power efficient modulo 2n + 1 adders are appreciated in a 

variety of computer applications such as cryptography. In this 

paper, two modified contributions are offered to the modulo 

2n + 1 addition problem. 

A novel architecture has been modified the sparse totally 

regular parallel-prefix carry computation unit. This 

architecture was modified by using the Boolean expressions 

are reduced to parallel-prefix carry computation unit in 

modulo 2n + 1 addition. The experimental results indicate that 

the modified architecture  approximately decrease or increase 

the earlier solutions in implementation LUT’S and power 

consumption, while maintain the same operating speed and 

delay. 

The modulo 2n + 1 addition problem was also shown to be 

related to the modulo 2n – 1 addition problem. The unified 

theory presented in this paper shown that a simple post 

processing stage composed of an XOR gate for each output bit 

needs to be added to a modulo 2n – 1 adder for attaining a 

modulo 2n + 1 adder. 
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