
International Journal of Computer Applications (0975 - 8887)
Volume 70 - No. 4, May 2013

The Weighted Factors Automaton : A Tool for DNA
Sequences Analysis

Christiane Hespel
IRISA-INSA

20 avenue des Buttes de Coesmes
35043 Rennes cedex, France

Farida Benmakrouha
IRISA-INSA

20 avenue des Buttes de Coesmes
35043 Rennes cedex, France

Danielle Quichaud
IRISA-INSA

20 avenue des Buttes de Coesmes
35043 Rennes cedex, France

ABSTRACT
A lot of computing tools are often used for analyzing DNA se-
quences like trees, automata, dictionaries, every one being re-
served for a particular problem. A. Blumer and al. have proposed
a more general computing tool : the smaller automaton recogniz-
ing the subwords of a text (DAWG).
In this paper we propose the concept of “weighted factors au-
tomaton” producing every occurrence of any factor. Its transi-
tions are labeled by the read letter and weighted by the set of
the indices of the factors beginnings. The factors are obtained by
concatenating the read letters and the indices of the factors begin-
nings are obtained by computing the intersection of the weight-
ing sets, when advancing from the initial state to a final state.
We think that this automaton can be more easily processed than
DAWG and we present a comparison between DAWG and our
automaton: the set of the factors beginnings indices and the fac-
tors frequency are more easily obtained by our automaton and
the restriction of our automaton to the factors of length ≤ k
maintains the automaton structure, when DAWG cannot be eas-
ily restricted.
The applications are numerous: By selecting factors of length
1, we obtain the coding regions, factors of length 3, we obtain
the expression level of some gene. The “weighted factors au-
tomaton” allows us to find matches of pattern, to study homol-
ogy, FASTA and BLAST algorithms being significantly simplified.

General Terms:
Theory, Algorithms

Keywords:
Algorithms on Strings, Weighted automata, Bioinformatics,
DNA Sequences Analysis, DNA Sequences Biasis

1. INTRODUCTION
Several tools are often used for analyzing DNA sequences: suf-
fix table, suffix tree and suffix automaton are efficient for the pat-
tern matching, the dictionary of the k-uples is built by BLAST or
FASTA algorithms for the study of homology, the dynamic pro-
gramming is used for the search of the best exact alignment with
gap of 2 sequences [4, 5, 10]. For large sequences like entire
chromosomes, heuristic methods are used for analyzing them,
particularly for detecting repetitions [13].
The factors automaton, directly derived from the suffix automa-
ton, is described by Blumer [2] and Crochemore [3]. The fac-
tors transducer [3, 9] provides the factors with the index of their
first occurrence when DAWG [2] provides the index of every
occurence. In this paper, we propose an expansion of a small

DNA sequence S by its “weighted factors automaton”, built on
the four letters of the alphabet X = {A,C,G, T}, providing
the factors (subsequences) of the sequence, every factor being
given with the set of the indices corresponding to its occurrences
beginnings.
After some preliminaries about the theoretic aspects of the
words, languages and automata, we present a construction of the
“weighted factors automaton”, some remarks relating to the size
of this automaton and a comparison between DAWG and this au-
tomaton. We show that some operations over the automata like
mirror and star allow to analyze the reverse subsequences and to
study the repetitions in the original sequence. Then we show that
some operations over the sequences like concatenation or trun-
cation can induce corresponding operations over the “weighted
factors automata”.
The main interest of this tool is in the applications to bioinfor-
matics: When analyzing some DNA sequence, it is better to use a
full tool containing all the informations instead of several tools,
allowing us to obtain the indices, the frequencies of the factors
beginnings in order to know the coding regions, the expression
level of genes, to study homology.

2. PRELIMINARIES : WORDS AND AUTOMATA
2.1 Alphabet, words, factors (subsequences)
An alphabetA being a finite nonempty set, its elements are called
letters. A word over an alphabet A is a finite string built with
the letters of A. The empty word denoted by ε is made of zero
letter. The juxtaposition of two words is called concatenation.
A language L being a set of words, w ∈ L, β is a factor (or a
subsequence) of w if there are α, γ ∈ L such that w = αβγ.

2.2 Automaton
See [1, 8, 11]. A finite automaton M over an alphabet A is a
4-uple made of

(1) A finite set Q of states
(2) An initial state q0
(3) A set T ⊆ Q of final states
(4) A set F ⊆ Q×A×Q of transitions

A word is recognized by an automaton if there exists a path from
the initial state to a final state, labeled by the letters of this word.
Knowing that every finite language is recognized by some finite
automaton, the next section consists firstly in constructing the
finite automaton recognizing the language equal to the finite set
of the subsequences (factors) of a given finite DNA sequence
built on the alphabet {A,C,G, T}

1

International Journal of Computer Applications (0975 - 8887)
Volume 70 - No. 4, May 2013

3. “THE WEIGHTED FACTORS AUTOMATON”
First we present the automaton recognizing the set of nonempty
factors of a given DNA sequence S. It is based on the idea that
every nonempty subsequence of S is nonempty prefix of a suffix
of S. Knowing the minimal suffixes automaton of S [2], we have
just to allow every state different from the initial state, to be final
state.

3.1 The suffixes automaton
M. Crochemore [4] present the suffixes automaton Suf(S) as
the minimal automaton recognizing the set of the suffixes of a
sequence S. A lot of applications like exact online string match-
ing are available [6].
For a sequence S of length n, they prove that the states number
and the transitions number are linear in n and are ≤ Sup(2n −
1, 3n− 4). They prove that the time complexity ([7]) of the con-
struction of Suf(S) is O(n).

3.2 The “weighted factors automaton”
The factors automaton recognizes the set of nonempty factors (or
subsequences) if and only if it recognizes the nonempty prefixes
of the suffixes. Then it is obtained, from the suffixes automa-
ton, by allowing every state, except the initial one, to be final.
This automaton has the same size as the previous one. And then,
the unexpected property is that the size (sum of the states and
the transition numbers) is linear in n when the number of subse-
quences is generally quadratic [3].
But our aim is to provide the subsequences with the indices of
each occurrence appearing in the sequence S. So we propose
that this automaton should be more informed: The transitions
are labeled by the read letter and are weighted by the set of the
indices of the recognized subsequences beginnings. By starting
at the initial state, by reading the letter labeling the transition and
by maintaining the same subsequence index when advancing up
to a final state, every subsequence can be provided with its index.
Example 1 : For S = ACACGT , we obtain the automaton
given by Figure 1.

3.2.1 Construction of the “weighted factors automaton”. First
we build the whole sequence automaton, we enrich it by adding
some transitions and states in order to recognize the sequence
suffixes and we end by allowing every state, except the initial
one, to be final.
Two informations are provided for every transition : the label,
expressed by the read symbol (letter) and the weight, expressed
by the set of the occurrences beginnings indices.
Example 1 :
For S = ACACGT , let us denote by i the index of the suffix
beginning.

(1) i = 1 : ACACGT and its proper nonempty prefixes
{A,AC,ACA,ACAC,ACACG}

(2) i = 2 : CACGT and its proper nonempty prefixes
{C,CA,CAC,CACG}

(3) i = 3 : ACGT and its proper nonempty prefixes
{A,AC,ACG}

(4) i = 4 : CGT and its proper nonempty prefixes {C,CG}
(5) i = 5 : GT and its proper nonempty prefixes {G}
(6) i = 6 : T

The Algorithm is the following for n = length(S)

(1) For every transition, the indices set is equal to ∅ and we set
i = 0

(2) For i = 1 to nwe add i to the indices set, on every transition
composing the path corresponding to the factor beginning at
index i.

If we are processing S = ACACGT for i = 4, we add 4, index
of the beginning of C,CG,CGT , to the sets weighting the 3
transitions of the path CGT .

3.2.2 This automaton provides the subsequences with their in-
dices set

(1) by starting at the initial state,
(2) by following a successful path (from the initial state to a fi-

nal state) compounded of the letters labeling the transitions,
while
(a) concatenating the letters in order to build the corre-

sponding subsequence and while
(b) calculating the nonempty intersection of the sets

weighting these transitions.

Example 1 : For S = ACACGT , AC is a subsequence of
ACACGT and the set of its occurrence beginnings indices is
{1, 3} = {1, 3} ∩ {1, 3}.
CG is a subsequence ofACACGT and the set of its occurrence
beginnings indices is {4} = {2, 4} ∩ {3, 4}.

3.3 Comparison between DAWG and the “weighted
factors automaton”

The two automata structures are the same but the informations
are different: in DAWG, the states are denoted by the set of the
letters indices composing the factors, when in the “weighted fac-
tors automaton”, the transitions are weighted by the set of the
factors beginnings indices.
And then, for providing some factor of DAWG, we have to
start at the initial state, to follow a path by incrementing the
state index (corresponding to the current letter index) from this
state to the next state, up to a final state. On the contrary, in the
“weighted factor automaton”, we have just to follow a path by
maintaining the same transition index.

Example 2 : S = ACCCCCG. We present the two au-
tomata in Figure 2, Figure 3.
For instance, the beginning index of factor CCCG is obtained
by computing the intersection of the intervals 2..6 and 2..5 and
2..4 and 4..4 = 4..4, weighting the corresponding path in the
second automaton (Fig 3) when the computing is more hard in
the first automaton (Fig 2) since we have to compute an indices
incrementation (from the current letter to the next letter) and an
intervals intersection.

3.4 Some operations over the “weighted factors
automata” inducing some operations on the
sequences

The operations over automata such as mirror and star are partic-
ularly interesting. The mirror automaton allows us to provide the
palindromes of a DNA strand and to study the DNA strand in the
opposite direction. The star automaton is useful for modeling the
repetition of motifs constituting a DNA strand.
3.4.1 The mirror automaton. An automaton recognizing a lan-
guage L = {wi = zi1 · · · zil}i∈I where zik ∈ A, its mirror
recognizes the reverse language L′ = {wi

R = zil · · · zi1}i∈I .
The construction of M ′, mirror automaton of an automaton M
consists in inverting the direction of the transitions and in ex-
changing initial state for final state. The original automaton rec-
ognizing the prefixes of the suffixes of the original sequence S,
the mirror automaton recognizes the suffixes of the prefixes of
the reverse sequence SR.
Instead of calculating the indices of the subsequences begin-
nings, the construction of the mirror automaton incites us to cal-
culate the indices j of the subsequences ends, either directly or
by using the indices i of the subsequences beginnings of the orig-
inal automaton in terms of n: j = n+ 1− i

2

International Journal of Computer Applications (0975 - 8887)
Volume 70 - No. 4, May 2013

Fig. 1. “Weighted factors automaton” of ACACGT

Fig. 2. DAWG of AC5G

Example 1 : For S = ACACGT , let us denote by j the index
of the prefix end of SR = TGCACA.

(1) j = 6 : TGCACA and its proper nonempty suffixes
{A,CA,ACA,CACA,GCACA}

(2) j = 5 : TGCAC and its proper nonempty suffixes
{C,AC,CAC,GCAC}

(3) j = 4 : TGCA and its proper nonempty suffixes
{A,CA,GCA}

(4) j = 3 : TGC and its proper nonempty suffixes {C,GC}
(5) j = 2 : TG and its proper nonempty suffix {G}
(6) j = 1 : T

By computing j = 7 − i, the subsequences are provided with
their indices set according to the steps:

(1) by starting at an initial state,
(2) by following a successful path (from an initial state to a final

state), while
(a) concatenating the letters in order to build the corre-

sponding subsequence
(b) calculating the intersection of the sets (of the indices j)

weighting these transitions.

GC is a subsequence whose weight is {3, 4}∩{3, 5} = {3} and
CA is a subsequence whose weight is {4, 6} ∩ {4, 6} = {4, 6}.
The palindromes (recognized by the automaton and its mirror)
are:A,C,G, T,ACA,CAC. See Figure 4.

3.4.2 The star automaton. An automaton recognizing a lan-
guage L, its star recognizes the star language L∗ = Σ∞k=0L

k

The construction ofM ∗, star automaton of an automatonM con-
sists in adding a transition from the last final state (associated
with the last letter of the whole sequence) to the state (associated

with the first letter of the whole sequence) successor of the initial
state and in allowing the initial state to be final state. See Figure
5.
For providing the non empty subsequences of a finite sequence,
we bound the number of repetitions and prohibit the initial state
from being final. So we use a weight of the form kl + r where
l is the length of the motif, k ∈ N is bounded by the number of
repetitions and r is the index in the first occurrence of the motif.
For S = (ACACGT)5, the weight indices have to be added to
6k for 0 ≤ k ≤ 4.

3.4.3 The sub-automaton of k-subsequences. For a lot of prob-
lems, the sub-automaton recognizing the subsequences of length
≤ k is the right tool. It is obtained by selecting the successful
paths of length ≤ k. In Algorithm 3.2.1, we restrict the length
of the paths to k. And then the automaton structure is maintained
but some indices sets are restricted.
See Figure 6 for ACACGT, k ≤ 3.
Remark 1 : Such a sub-automaton of DAWG cannot be pro-
vided, this restriction of the indices sets weighting some transi-
tions in the sub-automaton being impossible with DAWG.
Remark 2 : The automaton recognizing subsequences of length
≤ k+1 is obtained by growing the indices sets of the automaton
recognizing subsequences of length ≤ k.

3.5 Some operations over the “weighted factors
automata” induced by some operations on
sequences

Concatenation, truncation on sequences can be transfered to the
corresponding “weighted factors automata”.

3

International Journal of Computer Applications (0975 - 8887)
Volume 70 - No. 4, May 2013

Fig. 3. Weighted factors automaton of AC5G

Fig. 4. Mirror weighted factors automaton of ACACGT

3.5.1 Concatenation of 2 sequences S1 et S2. Let
be Subseq(S) the “weighted factors automaton” of S.
Subseq(S1.S2) is obtained from Subseq(S1), Subseq(S2):

(1) In the “weighted factors automaton” Subseq(S1) of S1, we
add the sequence automaton of S2 by identifying the initial
state of S2 to the final state of S1 associated with the end of
the reading of S1.

(2) We add the transitions starting from the initial state of
Subseq(S2) to the initial state of Subseq(S1).

(3) Transitions appearing in Subseq(S2) or overlapping
Subseq(S1) and Subseq(S2) have to be studied.

3.5.2 Suppression of a subsequence S1 of S. Let be S ′, the
new sequence S − S1, made of a left remainder Sl and a right
remainder Sr . Subseq(S ′) is obtained:

(1) In the “weighted factors automaton” Subseq(S), we sup-
press the transitions labelled by the letters of S1.

(2) We reconstruct the sequence automaton of S ′.
(3) The transitions appearing between Sl and Sr in Subseq(S ′)

have to be studied.

Two particular cases occur when Sl is empty (suppression of the
already studied beginning) or when Sr is empty (suppression of
the non relevant end).

4. ADVANTAGES OF THE “WEIGHTED
FACTORS AUTOMATON” FOR DNA
SEQUENCES ANALYSIS

We present direct applications of this representation to some
problems of bioinformatics, this automaton providing for every
subsequence, its beginnings indices and then its frequency. By

using this automaton for subsequences of length≤ 3 , the search
of the coding regions, of the reading frame, of the gene expres-
sion rate becomes elementary. The sequences homology is easier
by using this automaton. Moreover, this automaton is an adaptive
tool: It is possible to advance from the initial state to a final state,
up to a suitable length for some object and to extend it to an up-
per length for an other object.
Remark 3 : In oder to simplify the explanations, we will assume
that every subsequence is weighted by a pair made of the set
{i1, · · · , iocc} of the subsequence indices in S and of its cardi-
nal occ instead of the only set of the subsequences indices. For
instance, for S = ACA, the recognized subsequences are, with
their weight w:

w(A) = ({1, 3}, 2) w(C) = ({2}, 1) w(AC) = ({1}, 1)

4.1 Search for the 3 DNA reading frame
By using the sub-automaton of 3-subsequences of the “weighted
factors automaton”, the reading frame number k ∈ {0, 1, 2} is
obtained by selecting in the set {i1, · · · , iocc} of the indices of
the subsequence, the indices ij such as (ij −1) mod 3 = k (or
such as ij = 3p+ k + 1 for p ∈ N) .
Let be S1 = ATGAGTAAGCTGAAAGAGTACAGAGT
GAACAGACAGATAAGGGCAAAGGAGTGCA
Its “weighted factors automaton” contains the subsequence AAG
appearing with the weight ({7, 14, 39, 46}, 4). The codon AAG,
corresponding to the 0−reading frame, appears twice at the in-
dices {7, 46}.

4

International Journal of Computer Applications (0975 - 8887)
Volume 70 - No. 4, May 2013

Fig. 5. Star weighted factors automaton of ACACGT

Fig. 6. Weighted factors sub-automaton of ACACGT (k ≤ 3)

4.2 Period-3 component: detection of nucleotide bias
and coding regions

The more important biases are found in the coding regions. They
are detected by computing the following bias:

∆ =
∑

N=A,C,G,T

2∑
k=0

|freqN − freqN,frame k|

where freqN,frame k indicates the frequency of the nucleotide
N in the frame k and freqN indicates the frequency of the nu-
cleotide N in the sequence. By computing this score ∆ along
a window of P codons, P going from 10 to 100, we detect the
coding regions, corresponding to the more important biases.
By using the sub-automaton of 1-subsequences of the “weighted
factors automaton”, the computing of freqN is made by dividing
the number of occurrences of N by the length of the sequence.
The computing of freqN,frame k is made in the same way, by
restricting it to k−reading frame.
For instance, for the sequence S1, of length 55, the bias ∆ is
easily computed:
S1 =ATGAGTAAGCTGAAAGAGTACAGAGTGAACA
GACA-
GATAAGGGCAAAGGAGTGCA
Its “weighted factors automaton” contains the subsequence A of
lenght 1 with the weight
({1,4,7,8,13,14,15,17,20,22,24,28,29,31,
33,35,37,39,40,45,46,47,50,55 }, 24)

So freqA = 24/55 and the nucleotide A appearing at the
1−reading frame at indices {8, 14, 17, 20, 29, 35, 47, 50}, 8
times, then freqA,frame 1 = 8/18. (There are 18 = 55/3
nucleotides at 1−reading frame).

4.3 Expression level of genes
We consider all its codons (1 ≤ i ≤ L), and we define for every
codon i, the ratio wi = freqcodon i/freqmajor codon

The codon adaptation index (CAI) used to predict gene expres-
sion level is then Index = (Πi=L

i=1wi)
1/L

With our representation, the acquisition of every codon i is made
by extracting the subsequences of length 3 in the 0−reading
frame, i.e. such as (i − 1) mod 3 = 0. Their frequency
is computed by dividing the number of occurrences of this
codon at 0−reading frame, by the whole number of codons at
0−reading frame.
For instance, for the sequence S2 of length 54:
S2 = ATGAGTAAGCTGAAAGAGTACAGAGTGAACA-
GACAGATAAGGGCAAAGGAGGAG
the sub-automaton of 3-subsequences of the “weighted factors
automaton”, contains the subsequence AAG with the weight
({7, 14, 39, 46}, 4). This codon appears twice (see 4.1), at
0−reading, in the indices {7, 46}. Its appearance orders, as a
codon, are {3 = (7 + 2)/3, 16 = (46 + 2)/3}. And then,
it is the third codon of the sequence and its frequency is
freqcodon 3 = 2/18.
The major codon is the subsequence of length 3 at 0−reading
frame whose the number of occurrences is maximum. The

5

International Journal of Computer Applications (0975 - 8887)
Volume 70 - No. 4, May 2013

codon GAG appearing three times in the sequence at 0−reading
frame, it is major and

w3 = freqcodon 3/freqmajor codon = (2/18)/(3/18)

Then the codon adaptation index is easily computed.

4.4 Repetitions and palindromes
The search of repetitions of the same subsequence in a sequence
is given by looking at the weight of this subsequence in the
“weighted factors automaton” or by using the star automaton.
The search of the palindromes of a sequence is simplified by
knowing the subsequences of this sequence and by using the mir-
ror automaton.

4.5 Common longest subsequence
In order to simplify the search of the longest common subse-
quence to 2 sequences, we propose to add some informations
to the “weighted factors automaton”. We have to extract subse-
quences, from one of the automata, by decreasing length, know-
ing only their beginning index i. So we number every state of the
whole sequence by the index of the last read letter and we add a
link from every other state towards the corresponding numbered
state. Then every state contains the index (or the link towards the
state number) e of the subsequence end and the length l of the
subsequence is l = e−i+1. So, for the sequenceACCCCCG,
the beginning index of the subsequence CCC belongs to the set
{2, 3, 4} and its length is given by the 1+ the difference between
the state number (4) linked with the final state (10) and the min-
imal beginning index 2 of the set. See Figure 7.

4.6 Homology of sequences, search of the longest
common subsequence

Two sequences being given, the FASTA or BLAST methods [5]
consist in extracting from one of these sequences, the dictionary
of its k−tuples and the set of their indices, and in searching their
occurrence in the other sequence.
By using our tool, the k−tuples dictionaries of the 2 sequences
are already in their “weighted factors automata”, when we re-
strict the automata to order k: FASTA or BLAST algorithms are
significantly simplified.
The search of the longest common subsequence to 2 sequences
is also significantly simplified since we have just to move along
one of the “weighted factors automata” by decreasing length
of the subsequence, looking for this subsequence in the other
“weighted factors automaton”.

5. DISADVANTAGES
Our method is based on the extraction and the utilization of the
subsequences. Some algorithms do not lend themselves to this
representation, particularly the algorithms based on the chain of
the successive characters, like dynamic programming [4, 12].
Our method is not convenient to large sequences that need
heuristic methods.

6. CONCLUSION
The advantages of the “weighted factors automaton” providing
index and frequency of every subsequence, are numerous. It is
a global computer tool: The same “weighted factors automaton”
can be used by truncating the indices sets weighting the transi-
tions, to the suitable order, according to the problem. For search-
ing coding regions, the “weighted factors automaton” truncated
at order 1 is suitable. For computing the gene expression level,
the “weighted factors automaton” truncated at order 3 is suitable.
In order to improve the homology search algorithms (BLAST,
FASTA), the “weighted factors automaton” truncated at order k
is suitable. And for searching for the longest common sequence,
we can use the expanded “weighted factors automaton” with
links.
Moreover, by using the “weighted factors automaton”, the op-
erations over the automata like mirror and star induce naturally
some applications such as the search of palindromes, the studies
of reverse strand and repetitions.
For these reasons, the “weighted factors automaton” is a right
tool for the analysis of small DNA sequences.

7. REFERENCES
[1] J. BERSTEL, C. REUTENAUER, Rational series and their

languages. Springer-Verlag, 1988.
[2] A. BLUMER, J. BLUMER, D. HAUSSLER, A. EHREN-

FEUCHT, M.T. CHEN, J. DEIFERAS, The smallest automa-
ton recognizing the subwords of a text. Theor. Comput. Sci.
40, 1985, 31–35.

[3] M. CROCHEMORE, Transducers and repetitions. Theor.
Comput. Sci. 45, 1986, 63–86.

[4] M. CROCHEMORE, C. HANCART, T. LECROQ, Algo-
rithms on strings. Cambridge University Press, 2007.

[5] F. DARDEL, F. KÉPÈS, Bioinformatique, Génomique et
post-génomique. Editions de l’Ecole Polytechnique, 2002.

[6] S. FARO, T. LECROQ, A Fast Suffix Automata Based Al-
gorithm for Exact Online String Matching. LNCS 7276,
Springer-Verlag, to appear, 149–158.

[7] P. FLAJOLET, R. SEDGEWICK, Introduction à l’analyse
des algorithmes. International Thomson Publishing, 1998.

[8] M. FLIESS, Un outil algébrique : les séries formelles
non commutatives. In: G. MARCHESINI, S. K. MIT-
TER (ed.), Mathematical System Theory. LNEMS 131,
Springer-Verlag, 1976, 122–148.

[9] D. GUSFIELD, Algorithms on Strings, Trees and Se-
quences. Cambridge University Press, 1997.

[10] D. L. HARTL, E. W. JONES, Génétique, Les grands
principes. Dunod, 2003.

[11] C. HESPEL, Une étude des séries formelles non commuta-
tives pour l’Approximation et l’Identification des systèmes
dynamiques. Thèse d’état, Univ. of Lille 1, 1998.

[12] C. N. JONES, A. P. PEVZNER, An introduction to Bioinfor-
matics Algorithms. MIT Press, 2004.

[13] A. LEFEBVRE, T. LECROQ, H. DAUCHEL, J. ALEXAN-
DRE, FORRepeats Bioinformatics (2003).

6

International Journal of Computer Applications (0975 - 8887)
Volume 70 - No. 4, May 2013

Fig. 7. “Weighted factors automaton” of ACCCCCG with links (double arrow)

7

	Introduction
	Preliminaries : Words and automata
	Alphabet, words, factors (subsequences)
	Automaton

	``The weighted factors automaton''
	The suffixes automaton
	The ``weighted factors automaton''
	Construction of the ``weighted factors automaton''
	This automaton provides the subsequences with their indices set

	Comparison between DAWG and the ``weighted factors automaton''
	Some operations over the ``weighted factors automata'' inducing some operations on the sequences
	The mirror automaton
	The star automaton
	The sub-automaton of k-subsequences

	Some operations over the ``weighted factors automata'' induced by some operations on sequences
	Concatenation of 2 sequences S1 et S2
	Suppression of a subsequence S1 of S

	Advantages of the ``weighted factors automaton'' for DNA sequences analysis
	Search for the 3 DNA reading frame
	Period-3 component: detection of nucleotide bias and coding regions
	 Expression level of genes
	 Repetitions and palindromes
	 Common longest subsequence
	Homology of sequences, search of the longest common subsequence

	Disadvantages
	Conclusion
	References

