
International Journal of Computer Applications (0975 – 8887)

Volume 70– No.3, May 2013

11

Program Slicing Techniques and their Need in Aspect

Oriented Programming

Preeeti Sikka
Ph. D. Scholar

Punjab Technical University
Jalandhar, Punjab, India

Kulwant Kaur
School of Information Technology
Apeejay Institute of Management

Technical Campus, Jalandhar

ABSTRACT

Analysis of various studies has proved the importance of

applying program slicing on the source code while debugging,

testing, quality assurance, software measurement and

maintenance by extracting out the code irrelevant to criteria

on behalf of which program slicing is applied, without

affecting the relevancy in the information of the code.

Program slicing techniques has been upgraded by its different

types emerged to overcome the limitation of its previous types

with different types of dependence graphs, criteria and on

different types of programming paradigm with different types

of tools. Paper highlights the effectiveness of hybrid slicing

over static and dynamic slicing using case study for applying

different types of slicing on same program. Paper also

discusses the Aspect Oriented Programming and the areas

where it has been proved better than object oriented

programming and upholds the need for applying hybrid

slicing on Aspect Oriented Program.

General Terms

Aspect Oriented Programming (AOP), Object Oriented

Programming (OOP), Program Dependence Graph (PDG),

Keywords

Program Slicing, Static slicing, Dynamic slicing, Hybrid

Slicing, Aspect Oriented Programming.

1. INTRODUCTION
‘Program Slicing’ as the name refers is to slice a problem to

remove the part of a program without which the result of

testing, maintenance, debugging would not be influenced and

be the same as if slicing not applied but with lesser cost and

time. Program Slicing applied for all general inputs, known as

static slicing has the disadvantage that code may not be get

reduced as expected. Dynamic Slicing comes into existence to

overcome static slicing by slicing the program for specific

input variable however in return pay memory to store the slice

for different input variables. Hybrid Slicing takes the

advantage of both static slicing and dynamic slicing. One over

other different types of Slicing with their pros and cons are

described in section 2. The pattern of the rest of the paper is as

follows: Section 3 gives the case study of different types of

slicing applied on same program with program dependence

graph. With brief introduction of AOP Section 4 introduces

two major areas in the programming where object oriented

paradigm is lacking behind to be fit and will elaborate how

Aspect Oriented approach enhances the Object oriented

approach and will proposed the need of applying program

slicing on Aspect oriented programs. Section 5 concludes the

paper.

2. RELATED STUDY OF PROGRAM

SLICING AND ITS TYPES
Static Slicing is the first type of slicing developed by Mark

Weiser in 1988[1]. Static Slice of a program with respect to

statement number ‘x’ will contain only those statements

which are related to ‘x’ either by affecting the statement ‘x’ or

getting affected by it resulting in reduction of the overall cost

of software budget to test, debug or maintain a program due to

reduction in lines of code. Static slicing is general for all set

of inputs, length of code can be reduced more if slice could be

obtained for specific input variable, and this idea was bought

by Bodgan Korel and Janusz Laski in 1988 and termed as

Dynamic slicing [2]. Dynamic slice being created for

distinguished input variable is more précised over static slice

and overcome the problems faced by static slicing in arrays

and pointers of not knowing the result information about

specific element of an array because of array being treated as

a single variable in static approach. Dynamic data structures

handle them more precisely [2]. Dynamic slicing can

determine the value of array subscript during program

execution allowing every element of an array to be treated as a

separate variable resulting in more number of statements to be

excluded after checking the influence of the specified element

on the program. Pointer in program is another area where

dynamic slicing is preferred over static slicing having the

ability to create and manipulate dynamic variables needed to

deal with pointers. Along with given advantages of working

with specific input the main disadvantage is its run time

overhead to collect the information traced in program

execution for different provided inputs. Hybrid Slice

integrates the dynamic information from a specific execution

into a static slice analysis [3]. It uses dynamic information i.e.

breakpoints and call history information into the static slice

giving the reduced run time overhead than of dynamic slice.

Another approach of slicing with reduced slice than static

slice and less overhead than dynamic slice is Dependence

cache slicing [4] which reduces the slice size than static slice

especially in case of arrays and pointers . Dependence cache

Slicing takes less cache size proportional to the number of

variables instead of preparing caches for all as in static slice.

Run time overhead of Dependence Cache slicing is

proportional to the number of the variable access [4], reducing

the run time overhead than the dynamic slice.

3. CASE STUDY: COMPARISION OF

TYPES OF SLICING
Simple program of calculating the area of plane shapes based

on the user’s choice has been taken with line numbers (Figure

1) and shown the outputs with reduced line of code after

applying different type of slicing on it (Figure 2 and Figure 3).

Figure 2 has proved that there are instances when static slice

size is approximately equal to the original size of code and

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.3, May 2013

12

Figure 3 has proved that dynamic slice can reduce the slice

size up to 50 %. Figure 3 has shown that applying the

dynamic slice with specific input value, slice size can be

reduced up to 50% than the size of static slice. Dynamic slice

taken is for single input value ch=2. What for other input

values? Dynamic slicing is to keep the trace for different

slices created with different inputs. Need to keep different

traces in memory results in high run time overhead. To

overcome this issue Hybrid slicing has integrated the dynamic

information into static slicing analysis [3]. Hybrid slice can be

computed by applying breakpoints on program dependency

graph. Program Dependence Graph (PDG), used to represent

program slices [5] has been created to show the flow of data

and control from one statement to another (Figure 4).

Breakpoints are kept on statement no. 1,6,7,8,9,10. For

mentioned program dynamic slice has to trace the slice for

ch=1, ch=2, ch=3 and ch=4. To reduce this overhead hybrid

Slicing first will execute the value of variable at breakpoint

and Slice will only be created for the variable whose value is

not as expected. Hybrid Slicing is proved to be better than

dynamic slice and static slice as it reduces the memory

overhead as compared to memory overhead in dynamic

slicing and by predicting the control flow through

breakpoints, higher accuracy is there as compared to

prediction of control flow in static slicing.

1. float area_sqr(float x)

2. {

3. return x*x;

4. }

5. float area_rect(float x, float y)

6. {

7. return x*y;

8. }

9. float area_cir(float x)

10. {

11. return 3.14*x;

12. }

13. void main ()

14. {

15. float len, br, s, r, ch;

16. clrscr();

17. …………..

22. cin>>ch;

23. switch(ch)

24. {

25. case 1:cout<<”\nEnter the length and breadth of

rectangle\n” ;

26. cin>>len>>br;

27. cout<<”Area of Rectangle is “<<Area_rect (len, br);

28. break;

29. case 2: cout<<”Enter the side of square”;

30. cin>>s;

31. cout<<”Area of Square is “<< Area_sqr (s);

32. break;

33. case 3: cout<<”Enter the radius of circle”;

34. cin>>rad;

35. cout<<”Area of Circle is “<<Area_cir (r);

36. break;

37. case 4: exit;

38. default: cout<<”Enter valid choice”;

39. }

40. getch();

41. }

Figure 2: Static Slicing- Slice of Program with respect to variable ch.

1. float area_sqr(float x)

2. {

3. return x*x;

4. }

5. float area_rect(float x, float y)

6. {

7. return x*y;

8. }

9. float area_cir(float x)

10. {

11. return 3.14*x;

12. }

13. void main ()

14. {

15. float len, br, s, r, ch ;

16. clrscr();

17. cout<<”Enter your choice/n”;

18. cout<<”\n1. Area of rectangle”;

19. cout<<”\n2. Area of Square”;

20. cout<<”\n3. Area of circle”;

21. cout<<”\n 4. Exit”:

22. cin>>ch;

23. switch(ch)

24. {

25. case 1:cout<<”\n Enter the length and breadth of

rectangle\n”;

26. cin>>len>>br;

27. cout<<”Area of Rectangle is “<<Area_rect (len, br);

28. break;

29. case 2: cout<<”Enter the side of square”;

30. cin>>s;

31. cout<<”Area of Square is “<< Area_sqr (s);

32. break;

33. case 3: cout<<”Enter the radius of circle”;

34. cin>>rad;

35. cout<<”Area of Circle is “<<Area_cir (r);

36. break;

37. case 4: exit;

38. default: cout<<”Enter valid choice”;

39. }

40. getch();

41. }

Figure 1: Program to Calculate the Area of Plane Shapes as per user choice.

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.3, May 2013

13

4. ASPECT ORIENTED

PROGRAMMING

4.1 Deficiency in Object Oriented

Programming
Basic principle of object oriented paradigm is the separate

concern of every class but it is not happened actually. There

are few codes that are cross cutting for an example code for

exception handling that is common to all classes, if that code

is put into class than it will violate the principle of OO that

every class has its specific functionality [4] and if that code is

not put inside any of the class then it results in tangled code

which itself is a problem related to complexity and

maintenance. The effectiveness of the program slicing for the

programs with object oriented paradigm is discussed in the

paper; analysis of program slicing effectiveness has also been

done [6]. Another major issue with program slicing tools

developed for object oriented language i.e. java is the

difficulty to maintain the tools when language will get revised

[7].

4.2 Need for program slicing on Aspect

Oriented Programming
Aspect oriented approach solves the problem of tangled code

by following the principle of Separation of Concerns [7].

Cross cutting concerns are linked to several parts of the

program, AOP deals with them by putting them into a

separate modular unit known as Aspects and has overcome

the issue faced by Object oriented programs.

AOP implementation has been proved as both easy to

understand and efficient [8] but due to the advanced features

like aspects, join points, advice Aspect oriented programs are

large, complex and difficult to analyze [9].If program slicing

is applied to Aspect oriented program to convert the complex

program to small slices then this only difficulty will get

solved. Dynamic Slicing algorithm for aspect oriented

program has been proposed [5] using dynamic aspect oriented

dependence graph. Due to the feature of separation of

concerns of AOP, developed tools can be easily maintained

with newer versions of the respective language. AOP

approach reduces the cost even more than the cost needed by

Figure 4: Program Dependence Graph with breakpoints applied

1. float area_sqr (float x)

2. {

3. return x*x;

4. }

…………………..

13. void main ()

14. {

…………………..

29. case 2: cout<<”Enter the side of square”;

30. cin>>s;

31. cout<<”Area of Square is “<< Area_sqr (s);

39. }

40. getch();

41. }

Figure 3: Dynamic Slicing- Slice of Program with respect to variable ch and input value = 2

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.3, May 2013

14

dependence cache slicing. There is need for tools to apply

program slicing on Aspect Oriented program to overcome all

the stated limitations and to reduce the software cost and time

eminently.

Priority of different slicing techniques on behalf of the

parameters defined is shown in the following table.

Table 1. Priorities as Low (L), Medium (M), High (H) of

slicing techniques to be used on behalf of the parameters

defined

PS in OOP PS in AOP

Parameters\Types of

Slicing
SS DS HS

Any slicing

Technique

Reduced Slice Size L H M Comparison will

be same as in

OOP amongst

the slicing

technique for

given parameters

Less Runtime

Overhead
H L M

Capability of Dealing

with Array/ Pointers
L H M

Capability of Dealing

with Inter procedural

functions

L H

SS: Static Slicing; DS: Dynamic Slicing; HS: Hybrid Slicing

(HS)

5. CONCLUSION
Paper focuses on the pros and cons of different types of

slicing and seen that with the time new type of slicing has

added advantage over the previous type of slicing. Example of

simple program has been taken to illustrate the difference of

size of slice obtained by applying static and dynamic slicing.

Object Oriented approach being based on object fits with real

world problems and it has been discussed that aspect oriented

programming is better than the object oriented programming

by improving the areas where object oriented approach is still

lacking behind, Hybrid slicing has been analyzed as a good

slicing technique to slice the program with lesser run time

overhead and with higher precision. Paper establishes the idea

of increasing the efficiency of Aspect oriented programming

by providing the facility of hybrid slicing to it.

In future work, we would provide the features of hybrid

slicing with other improved types of slicing to the aspect

oriented programming to increase the efficiency of aspect

oriented programs within lesser time and cost.

6. REFERENCES
[1] Weiser, M., “Program Slicing”, IEEE Transactions on

software engineering, Vol. 10, Issue 4, 1984, 352-357

[2] Korel, B. and Laski, J., “Dynamic Program Slicing”,

Information Processing Letters, Vol. 29, Issue 3,

doi>10.1016/0020-0190(88)90054-3, 26 October 1988,

155-163.

[3] Gupta, R., Soffa, M.L., and Howard, J., “Hybrid slicing:

Integrating Dynamic Information with static analysis”,

ACM Transactions on Software Engineering and

Methodology, Vol. 6, Issue 4, October 1997.

[4] Takada, T., Ohata F., Inoue K., “Dependence-Cache

Slicing: A Program Slicing Method Using Lightweight

Dynamic Information”, IWPC, 2002, 169-177

[5] Pan, K., Kim, S., E. J. Whitehead, Jr., "Bug

Classification Using Program Slicing Metrics," Sixth

IEEE International Workshop on Source Code Analysis

and Manipulation, ISBN: 0-7695-2353-6, 2006, 31 – 42.

[6] Saleem, M., Hussain, R., Ismail, Y., Mohsin, S., “Cost

Effective Software Engineering using Program Slicing

Techniques”, Proceedings of the 2nd International

Conference on Interaction Sciences: Information

Technology, Culture and Human, ACM New York, NY,

USA ©2009, ISBN: 978-1-60558-710-

3 doi>10.1145/1655925.1656065, 2009, 768-772.

[7] Ishio, T., Kusumoto, S., Inoue, K., “Program slicing tool

for effective software evolution using aspect-oriented

technique”, Proceedings of the 6th International

Workshop on Principles of Software Evolution, ISBN: 0-

7695-1903-2, 1-2 Sept. 2003, 3-12.

[8] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,

Lopes, C., Loingtier,J.M., Irwin, J., “Aspect Oriented

Programming” , Published in proceedings of the

European Conference on Object-Oriented Programming,

Finland. Springer-Verlag LNCS 1241, Print ISBN: 978-

3-540-63089-0; Online ISBN: 978-3-540-69127-3, June

1997.

[9] Mohapatra, D.P., Sahu, M., Kumar, R., and Mall, R.,

“Dynamic Slicing of Aspect-Oriented Programs”,

Informatica 32, 2008, 261–274.

http://dx.doi.org/10.1016/0020-0190(88)90054-3
http://www.informatik.uni-trier.de/~ley/db/conf/iwpc/iwpc2002.html#TakadaOI02
http://dx.doi.org/10.1109/SCAM.2006.6
http://www.acm.org/publications
http://dx.doi.org/10.1145/1655925.1656065

