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ABSTRACT 

An accurate modeling of multiple-input multiple-output 

(MIMO) channels is a prerequisite for designing multi-

antenna system. In this paper, we propose a geometrical 

mixed-bounce two-ring deterministic model for mobile-to-

mobile channel considering the non-isotropic scattering while 

adopting the Von Mises probability density function for both 

the angle of departure AoD and angle of arrival AoA 

surrounding the transmitter and receiver respectively. 

Beginning with isotropic scattering, the expression for two 

dimensional (2-D) space time cross-correlation (STCC) 

function between any two sub channels is derived. 

Comparison between the statistical properties of the 

deterministic model under the assumption of non-isotropic 

scattering with that of the reference model indicates a good 

agreement, thus, the importance of this model. The result 

obtained is in conformity with that of the double bounce and 

single bounce two ring models.   

General Terms 

Model. 

Keywords 

Mixed bounce, mobile-to-mobile channel, space time 

correlation, Isotropic scattering. 

1. INTRODUCTION 

Designing a very high speed minimum error wireless link 

having good quality of service (QoS) and with considerable 

range capabilities in a highly fading channel attracts 

significant research interest and poses a great challenge in 

communication engineering. Assuming no fading for the 

moment, we can, in principle, meet the 1-Gb/s data rate 

requirement if the product of bandwidth (Hz) and spectral 

efficiency (b/s/Hz) equals 109. As clearly contained in 

literature, a variety of cost, technology, and regulatory 

constraints make such a brute force solution unattractive, if 

not impossible. In an effort to achieve high data rate wireless 

communication services with less interference and fading, 

communication engineers have recently concentrated much of 

their resources and time on the new dimension- the space. It is 

now a well-established fact that higher data rates are 

achievable by employing MIMO which entails the application 

of array of antennas both at the transmitter and receiver 

utilizing the space-time technology. The analysis and 

simulation of space-time wireless communication systems 

need accurate, yet tractable spatio-temporal channel models. 

Here we aim at providing a novel mixed-bounce mobile-to-

mobile deterministic channel model assuming non-isotropic 

scattering of electromagnet waves. Non isotropic scattering is 

a good approximation as it is more near to real phenomena. It 

is natural that the multipath signal components received at any 

antenna may consist of the single-bounce, the double-bounce 

and even both of them. Single-bounce literally means signals 

from the transmitting antenna undergo a single hop through a 

scatterer before arriving at the receiving antenna while double 

bounce involves two hops before arriving at the receiver. We 

in this paper are incorporating all the signal paths in 

determining the channel transfer function and further looking 

at some of its statistical properties. In literature many 

geometrically based MIMO channel models were proposed 

such as the one ring, two ring, multi-ring and spherical 

models. In the two ring model both single bounce [1] and [2] 

and double bounce [3] were discussed. To the best of our 

knowledge no work was done in mixed-bounce where the link 

between the antenna-scatterer-antenna and antenna-scatterer-

scatterer-antenna are considered together which constitutes 

the central point of concentration of this paper. 

The rest part of the paper is arranged as follows. Section two 

discusses the two-ring model; section three gives the cross-

correlation; Section four for computation of AoD and AoA 

while section five is for simulation and result and conclusion 

is in section six..  

2. THE GEOMETRY OF THE TWO-

RING MIXED-BOUNCE MODEL 

The geometry of the two-ring mixed-bounce is shown in fig.1 

for a MIMO mobile-to-mobile channel. For simplicity two 

transmit antennas and two receive antennas are considered 

where local scatterer of k l
T Rs and s  are equally distributed on 

the circumference of a separate rings around the transmitter 

and receiver respectively. The paramount difference between 

our model and other two ring models is that in our model both 

the single and double bounce rays were considered 

simultaneously, since each multipath contributes to the total 

system’s data rate. As  could be easily observed from Fig. 1, 

the local scatterers around the transmitter represented as k
Ts  

(k=1,2,3….,M) are located on a ring of radius TR  and the 

local scatterers around the receiver denoted as l
Rs  

(l=1,2,3…..N) lie on a separate ring with radius RR . The 

symbols  k l
t Rand  represent the main angle of departure 



International Journal of Computer Applications (0975 – 8887)  

Volume 70– No.28, May 2013 

2 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Mixed Bounce Two Ring Model 

 

(AoD) and main angle of arrival (AoA) respectively and the 

auxiliary AoD and AoA are represented by  l k
R Tand   

respectively. It is assumed that the radii  T RR and R are small in 

comparison with D, which is the distance between the 

transmitter and receiver. 

The symbols    T Rand  are used to represent the antenna 

spacing at the transmitter and receiver respectively. Based on 

our assumption the inequalities    T , minmax ,R T RR R   and  

   min , max ,T R T RR R   holds. The tilt angle between the 

x-axis and the orientation of the transmit antenna arrays is 

denoted by T and the tilt angle of the receiver antenna array 

is given by R .  

Both the transmitter and receiver are assumed to move with 

the velocities of    T Rv and v respectively in the direction 

denoted T and R . Furthermore,  2ΔT is the maximum angle 

spread at the transmitter determined by the scatterers around 

the receiver. Similarly  2ΔR represents the maximum angle 

spread at the receiver determined by the scattering around the 

transmitter. The geometrical two ring model is an appropriate 

approximation for scenarios in which neither the transmitter 

nor receiver is elevated but both are surrounded by a large 

number of scatterers. Such scattering condition may exist both 

in indoor and outdoor environment. Using cosine rule and 

other mathematical simplifications, the effective channel 

transfer function is 
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As in [1] the diffuse component of  pqh t  follows that the 

mean value and mean power are equal to 0 and 1respectively 

hence the central limit theorem state that  pqh t is a zero-mean 

complex Gaussian process with unit variance. Consequently 

the envelope  pqh t is a Rayleigh fading process. One can 

show that the diffuse component of the Link 

from
' '

 
p q

T RA to A can be obtained from (1) by replacing   by their 

respective complex conjugates. The rest elements of the 

matrix could be obtained as in [3]. 

2.1 The Space-Time Cross Correlation 

Function CCF 

The non-normalized space-time correlation function between 

two complex faded envelopes ' ' pq p q
h and h is defined 

as       ' ' ' ',
, , [ ]T R qpq p q p q

R E h t h t     . From [5] the 

effective space-time correlation function for the mixed bounce 

can be calculated using the formula in equation (10) where the 

superscripts SBT, SBR, and DB stands for Single Bounce 

Transmitter, Single Bounce Receiver and Double Bounce 

respectively. The effective STCC for the reference model 

reduces to the following expression after some mathematical 

operations and reductions as in equation (11). Furthermore, 

setting sin 0 cos 1and    we obtain equations (12) and (13).  

For values of M and N approaching infinity the discrete angle 

of departure   and discrete angle of arrival   becomes 

continuous random variable AOD   and continuous random 

variable AOA   where each of which are characterize by 

certain distribution represented as  and   respectively. The 

infinitesimal power contribution due from each scatterer 

around the transmitter and receiver corresponding to the 

differential angle and is given as: 
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For non-isotropic scattering, the AoD and AoA have non-

uniform distribution over ,    . From [9] we get equation 

(14) - (19). 

The Von Mises also known as circular normal distribution 

describes a "normal" distribution on a circular path of 2. 

Given by formula in equation (20).  
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is adopted in this paper. Substituting equations (11), (12) and 

(15) to (19) into 11 and undergoing other manipulations we 

obtain equation (21). 

3. THE SIMULATION MODEL 

It is very difficult if not impossible to implement the reference 

model either using hardware or software since it involves 

infinity harmonics, therefore the need to come up with the 

simulation model. We begin by the stochastic simulation 

model considering some of its properties such as its space-

time CCF after which we also discuss the deterministic 

simulation model by applying the principles of deterministic 

channel modeling along with some of its basic properties as in 

SSM [11]. 

3.1 The Stochastic Simulation Model SSM 

The SSM system can easily be derived from the reference 

model by considering finite number of scatterers both around 

the transmitter M and the receiver N.  Of course the scatterers 

are responsible for the multipath propagation ensuring 

multiple copies of the transmitted signals at the receiver. Even 

though we have finite harmonics at the receiver, the phase 

angles  ,    n m mnand   are still i.i.d. random variables each 

with uniform distribution on the interval (0,2] thus we have 

stochastic simulation model SSM where its channel transfer 

function is given by  ˆ
pqh t . This is for the link between, 

The 3-D space –time CCF between two different 

links  ˆ
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phases    ,n m mnand   . The closed form expression is therefore 

 

 

Next, we introduce the information theoretic channel capacity 

of the SSM.  The capacity [4] in the absence of channel 
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sin 2 sin

maxT T T Tf   


 
  
  
  
  
  
  
  
  
  
  
  
            
 

(22) 
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capacity  Ĉ t   is mean ergodic if  ˆ ( )
C

m t  is independent of 

time t and equal 
C

m   thus ˆ CC
m m   [11, Pg. 79].  

4. COMPUTATION of AoD and AoA 

ASSUMING NON-

ISOTROPIC 

SCATTERING 

On choosing appropriate values for M 

and N, in the simulation model we are 

only left with AoD k
T   and AoA  

l
R  to be determined. For non-

isotropic distribution the Modified 

Method of Equal Areas (MMEA) is 

applicable in order to calculate the 

parameters. This method involves 

finding the set of AoAs or AoDs  k

T  such that the ACF for 

the reference model is approximately equal to ACF of the 

deterministic model    r r   , max0,     

for 20N M  . Using numerical root finding techniques [12], 

the AoD and AoA are determined from the expressions (23) 

and (24) 

( )

(0)

1
4 ( ) 0, 1,2,............,

m
T

T

T

T T

m
p d m M

M







 




     (23) 

( )

(0)

1
4 ( ) 0, 1,2,............,

m
T

R

T

T R

n
p d n N

N







 




    (24) 

The closed form AoA and AoD are computed if the inverse of 

the function exist by 

 1
1

4
T R T

n
F

N
  

 
  
 
 

   (25) 

The MMEA has the advantages that the statistical properties 

matches those of the reference model for only small time 

delay while requiring higher values of scatterers (M,N = 40) 

to match the properties of the reference model. 

5. SIMULATION AND RESULTS 

After determining the composite space time cross correlation 

functions for the mixed bounce two ring model, we hereby 

present the result of a special case of isotropic scattering using 

the following model parameters. The antenna tilt 

angle
2T R

   . The transmit antenna is assumed to move 

at 
4T

   while the receiver antenna moves at 0R  . 

Identical maximum Doppler frequency is assumed at both the 

transmitter and receiver given as 91 Hz and  

 

 

wavelength 0.15m  . Under an isotropic scattering we arrive 

at equations (26) and (27). 

Fig. 2 is the mixed bounce composite cross correlation of the 

entire channel. When we critically observe the  figure we find 

that the  it is averaging around zero which clearly indicates 

that the correlation is zero and thus it means that the 

interference between co-channel is less when using MIMO 

system. 

   
 

1
2T RT T R Rp d p d    


              (26) 

Fig 2 Mixed bounce cross correlation function 

6. CONCLUSION 

Here a mixed bounce MIMO mobile-to-mobile deterministic 

channel model is presented using the two rings as a basis 

structure. Our simulation model was derived from non-

realizable reference model by applying the concept of 

deterministic channel modeling. It is assumed that both the 

transmitter and the receiver antenna are surrounded by finite 

number of scatterer with a given radius and are also assumed 

to be moving at a given Doppler frequency. The homogenous 

channel transfer function is presented while the space-time 

cross correlation was derived. Our model particularly 

extended the work done by Matthias Pätzold et al by 

considering mixed bounce. 
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