
International Journal of Computer Applications (0975 – 8887) 

Volume 70 - No.27, May 2013 

34 

Accelerated Electromagnetic Field Simulation on 
Graphical Processing Unit by the Finite Difference Time 

Domain Method 

 
Mayank Gupta. 

Dept. of Electronics and 
Telecommunication. 

Yeshwantrao Chavan College 
Of Engineering. 
Nagpur, India. 

 

Anagha Choudhhari. 
Dept. of Electronics and 

Telecommunication. 
Yeshwantrao Chavan College 

Of Engineering. 
Nagpur, India. 

 

N. A. Pande. 
Dept. of Electronics and 

Telecommunication. 
Yeshwantrao Chavan College 

Of Engineering. 
Nagpur, India. 

 
 

ABSTRACT 

This paper details about the implementation of the Finite 

Difference Time Domain Method (FDTD) on a Graphical 

Processing Unit (GPU) and demonstrated the ability of low 

cost GPU’s to accelerate real life problems of interest in the 

Electromagnetic Field Simulation domain. Source code and 

the achieved results for a simple simulation problem 

implemented in C is presented. The same problem is then 

discussed by implementation using Nvidia’s software 

development platform CUDA. The methodology for 

implementation of some advanced FDTD simulation problems 

is also described, and the achieved results are presented using 

both, CUDA and MatLab R2011a. Finally, a comparative 

performance analysis of the FDTD implementation using 

CUDA for a 256x256x256 volume is described for 5000 time 

steps, by comparing the CPU implementation time with the 

GPU implementation time. This is a reasonably good example 

for judging the applicability of low cost GPU’s not just for 

Electromagnetic Simulation, but also for real time 

applications. 
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Computing, Finite Difference Time Domain (FDTD) Method. 
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1. INTRODUCTION 

The demands of scientific computing are growing day by day. 

The domain of electromagnetic simulation is no exception to 

this. Issues related to suitable methodologies for 

electromagnetic field simulation are to be addressed not just 

in the industry, but also at the academic institutions. However, 

the commercially available electromagnetic simulation 

packages may not always suit these academic and industrial 

requirements, primarily because of two reasons. Firstly these 

software packages are very expensive, and secondly they tend 

to mask the user from the fundamental mathematics involved 

in simulation processes. Especially in the academic 

institutions, direct exposure to simulation on a commercial 

software packages may fail to impart this fundamental 

understanding, and often leads to intentional or unintentional 

negligence towards the basics of numerical computation. 

Also, at times, it may be difficult to have a customized control 

of simulation parameters in commercial software packages, if 

such need arises in an exceptional case. This brings us to the 

need of platforms where electromagnetic field simulation 

research can be implemented at its most fundamental level. A 

good approach to answer these issues is to start coding from 

scratch. Although long and tedious, but this approach is best 

suited to begin with academic research and in industrial 

projects where cost is constrained.  

One of the most simple, intuitive to understand and useful 

means to find numerical solutions for electromagnetic 

simulation problems is the FDTD method. Also, the FDTD 

method is well suited if one is able to harvest the multi-core 

resources in a computing system. Thus the low cost 

availability of modern GPU’s can be used to the advantage of 

scientific computing. 

The FDTD method is based on the central difference 

approximation to a partial differential equation. Maxwell’s 

Equations are the governing equations for all electromagnetic 

phenomena. The FDTD method solves for these Maxwell’s 

equations in differential form. Being a time domain method, 

this is well suited for wide-band analysis, that is, analysis over 

a wide range of frequencies. Detailed theoretical background 

is well presented in [1]. 

 A simple electromagnetics simulation is presented to describe 

the FDTD method from a programmer’s point of view. The C 

code is slight modification of the bare bones simulation in [2]. 

.  

Figure 1. Output of the simple FDTD implementation. 

 

int main(int argc, char **argv) 

{ 

shrSetLogFileName(shrLogFile); 

shrLog("clc; clear all; close all \n ; 

"); 

float ez[800] = {0.}, hy[800] = {0.}; 
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int imp0 = 377.0, temp; 

for (int t = 0; t < 525; t++)  

 { 

 shrLog(" a = [ ", " "); 

 for (int mm = 0; mm < 500 - 1; mm++) 

 hy[mm]=hy[mm]+(ez[mm+1]-ez[mm])/ imp0; 

 for (int mm = 1; mm < 500; mm++) 

{ 

ez[mm]=ez[mm]+(hy[mm]-hy[mm-1])* imp0; 

shrLog("%g\t",ez[mm]); } 

ez[100]=sinf(((2*3.14)/20)*(t)); 

ez[500] = 0; 

hy[0] = 0; 

shrLog(" ] ; plot(a);"); 

shrLog(" axis([0 500 -2 2]);"); 

shrLog(" getframe();\n"); 

} 

} 

In the output Figure 1, we see that the source is located at 

point 100, which is a hard wired sinusoidal source. The value 

of Ez at point 750 is defined as 0, which is imposing the 

boundary conditions that of a Perfect Electric Conductor 

(PEC). As expected, we see the wave experience reflection 

from this PEC boundary and superimpose additively on the 

incident wave. Similarly, the Hy at point 0 is defined as 0, 

which amounts to imposing Perfect Magnetic Conductor 

(PMC) boundary conditions. As expected, there is no 

reflection from this point. Running the generated log file in 

MatLab gives the output as shown in Figure 1. 

Now, a parallelized version of this same program is presented, 

which is implemented using Nvidia CUDA 4.2. CUDA 4.2, 

on installation, automatically integrates with an existing 

Visual Studio 2010 Express Edition installation. Using the 

same concept as in the serialized code, we make use of , the 

function shrLog(). This function is used for writing a log file, 

and it is defined in shrUtils, which is included in CUDA 4.2 

(This is however not available in the latest CUDA 5 release.) 

The second function is the kernel invocation __global__ void 

VectAdd(). This program does nothing but adds/substracts 

two vectors, in our case these vectors are the electric field 

vector Ez and the magnetic field vector Hy. The kernel 

invocation is done as 

vecAdd<<<blockPerGrid,threadPerBlock>>>() 

in the main function. The kernel code for updating the H 

fields is given below. 

__global__ void VecAdd 

(const float* A, float* Ez, float* Hy, 

int imp0, int N) 

{ 

int i = blockDim.x * blockIdx.x + 

threadIdx.x; 

if (i < N) 

A[i] = Hy[i] + (Ez[i-1]-Ez[i])/imp0; 

// *A is the output of updated *Hy 

// Similarly execute Kernel for E.  

2. SOME ADVANCED FDTD 

SIMULATIONS USING MATLAB AND 

CUDA. 

As it can be seen from the example discussed in section I, a 

typical FDTD simulation involves the following steps : 

 Defining the computational domain, that is 

initializing the electric and magnetic field vectors, typically as 

an array initial with zero value. Also, the ε and μ vectors are 

defined. The size of the domain is equal to the number of 

nodes, or the number of elements in electric and magnetic 

field vectors. 

 Enclosing the computational domain in suitable 

boundary conditions, like the PEC, PMC, Absorbing 

Boundary Condition (ABC) etc. 

 Defining the total number of time steps for which 

the simulation is to be executed. 

 Calculating the value of each, the electric field 

components and magnetic field components, for each node at 

each time interval. 

Besides these steps, certain precautions need to be taken, like 

fulfilling the Courant Stability Criteria by choosing suitable 

step size if space/time. Figure 2 and Figure 3 shows the output 

from the MatLab simulation of a horn antenna and dipole 

antenna respectively, for which the above steps were 

followed. Figure 4 shows the output from the CUDA 

implementation of 3 dimensional FDTD implementation of a 

microstrip patch antenna. The result is however a sequence of 

numbers which needs to be converted in graphical form by 

some plotting function. 

 

Figure 2.Matlab  FDTD Simulation of Horn Antenna. 
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Figure 3.Matlab Simulation of the Dipole Antenna. 

 

Figure 4 : CUDA output for Microstrip Patch  FDTD. 

3. TYPESET TEXT 

The Table 1 shows the achieved speedups obtained by 

comparing the simulation on Intel Pentium E5300 Dual Core 

2.6 GHz CPU against Nvidia GT520, 48 CUDA Cores, 1.4 

GHz clock GPU. As it can be clearly seen, the speedup 

achieved is around an order of magnitude higher in case of 

GPU implementation for a 256x256x256 problem size in 

single precision. Computation time for 5000 time steps is 

presented. The results are measured using Nvidia Visual 

Profiler Tool in CUDS 4.2. 

Problem Size  CPU 

Runtime 

(sec) 

GPU 

Runtime 

(sec) 

Speedup 

128x128x128 990 231 4.29 

256x256x256 4095 459 8.92 

. 

 

 

 

 

 

 

 

 

 

 

 

4. CONCLUSION 

The low cost GPU certainly do possesses tremendous 

processing power, which can be harnessed with suitable 

parallelized modifications in the conventional algorithms, 

such that they become suitable for GPU implementation. 

Although not all algorithms would possesses this inherent 

parallelization ability, but those which do possesses this scope 

of parallelization can be further exploited with the use of 

GPU’s. 
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