
International Journal of Computer Applications (0975 – 8887)

Volume 70 - No.27, May 2013

34

Accelerated Electromagnetic Field Simulation on
Graphical Processing Unit by the Finite Difference Time

Domain Method

Mayank Gupta.

Dept. of Electronics and
Telecommunication.

Yeshwantrao Chavan College
Of Engineering.
Nagpur, India.

Anagha Choudhhari.
Dept. of Electronics and

Telecommunication.
Yeshwantrao Chavan College

Of Engineering.
Nagpur, India.

N. A. Pande.
Dept. of Electronics and

Telecommunication.
Yeshwantrao Chavan College

Of Engineering.
Nagpur, India.

ABSTRACT

This paper details about the implementation of the Finite

Difference Time Domain Method (FDTD) on a Graphical

Processing Unit (GPU) and demonstrated the ability of low

cost GPU’s to accelerate real life problems of interest in the

Electromagnetic Field Simulation domain. Source code and

the achieved results for a simple simulation problem

implemented in C is presented. The same problem is then

discussed by implementation using Nvidia’s software

development platform CUDA. The methodology for

implementation of some advanced FDTD simulation problems

is also described, and the achieved results are presented using

both, CUDA and MatLab R2011a. Finally, a comparative

performance analysis of the FDTD implementation using

CUDA for a 256x256x256 volume is described for 5000 time

steps, by comparing the CPU implementation time with the

GPU implementation time. This is a reasonably good example

for judging the applicability of low cost GPU’s not just for

Electromagnetic Simulation, but also for real time

applications.

General Terms

General Purpose Graphical Processing Unit (GPGPU)

Computing, Finite Difference Time Domain (FDTD) Method.

Keywords

CUDA, Computational Electromagneticg (CEM).

1. INTRODUCTION

The demands of scientific computing are growing day by day.

The domain of electromagnetic simulation is no exception to

this. Issues related to suitable methodologies for

electromagnetic field simulation are to be addressed not just

in the industry, but also at the academic institutions. However,

the commercially available electromagnetic simulation

packages may not always suit these academic and industrial

requirements, primarily because of two reasons. Firstly these

software packages are very expensive, and secondly they tend

to mask the user from the fundamental mathematics involved

in simulation processes. Especially in the academic

institutions, direct exposure to simulation on a commercial

software packages may fail to impart this fundamental

understanding, and often leads to intentional or unintentional

negligence towards the basics of numerical computation.

Also, at times, it may be difficult to have a customized control

of simulation parameters in commercial software packages, if

such need arises in an exceptional case. This brings us to the

need of platforms where electromagnetic field simulation

research can be implemented at its most fundamental level. A

good approach to answer these issues is to start coding from

scratch. Although long and tedious, but this approach is best

suited to begin with academic research and in industrial

projects where cost is constrained.

One of the most simple, intuitive to understand and useful

means to find numerical solutions for electromagnetic

simulation problems is the FDTD method. Also, the FDTD

method is well suited if one is able to harvest the multi-core

resources in a computing system. Thus the low cost

availability of modern GPU’s can be used to the advantage of

scientific computing.

The FDTD method is based on the central difference

approximation to a partial differential equation. Maxwell’s

Equations are the governing equations for all electromagnetic

phenomena. The FDTD method solves for these Maxwell’s

equations in differential form. Being a time domain method,

this is well suited for wide-band analysis, that is, analysis over

a wide range of frequencies. Detailed theoretical background

is well presented in [1].

 A simple electromagnetics simulation is presented to describe

the FDTD method from a programmer’s point of view. The C

code is slight modification of the bare bones simulation in [2].

.

Figure 1. Output of the simple FDTD implementation.

int main(int argc, char **argv)

{

shrSetLogFileName(shrLogFile);

shrLog("clc; clear all; close all \n ;

");

float ez[800] = {0.}, hy[800] = {0.};

International Journal of Computer Applications (0975 – 8887)

Volume 70 - No.27, May 2013

35

int imp0 = 377.0, temp;

for (int t = 0; t < 525; t++)

 {

 shrLog(" a = [", " ");

 for (int mm = 0; mm < 500 - 1; mm++)

 hy[mm]=hy[mm]+(ez[mm+1]-ez[mm])/ imp0;

 for (int mm = 1; mm < 500; mm++)

{

ez[mm]=ez[mm]+(hy[mm]-hy[mm-1])* imp0;

shrLog("%g\t",ez[mm]); }

ez[100]=sinf(((2*3.14)/20)*(t));

ez[500] = 0;

hy[0] = 0;

shrLog("] ; plot(a);");

shrLog(" axis([0 500 -2 2]);");

shrLog(" getframe();\n");

}

}

In the output Figure 1, we see that the source is located at

point 100, which is a hard wired sinusoidal source. The value

of Ez at point 750 is defined as 0, which is imposing the

boundary conditions that of a Perfect Electric Conductor

(PEC). As expected, we see the wave experience reflection

from this PEC boundary and superimpose additively on the

incident wave. Similarly, the Hy at point 0 is defined as 0,

which amounts to imposing Perfect Magnetic Conductor

(PMC) boundary conditions. As expected, there is no

reflection from this point. Running the generated log file in

MatLab gives the output as shown in Figure 1.

Now, a parallelized version of this same program is presented,

which is implemented using Nvidia CUDA 4.2. CUDA 4.2,

on installation, automatically integrates with an existing

Visual Studio 2010 Express Edition installation. Using the

same concept as in the serialized code, we make use of , the

function shrLog(). This function is used for writing a log file,

and it is defined in shrUtils, which is included in CUDA 4.2

(This is however not available in the latest CUDA 5 release.)

The second function is the kernel invocation __global__ void

VectAdd(). This program does nothing but adds/substracts

two vectors, in our case these vectors are the electric field

vector Ez and the magnetic field vector Hy. The kernel

invocation is done as

vecAdd<<<blockPerGrid,threadPerBlock>>>()

in the main function. The kernel code for updating the H

fields is given below.

__global__ void VecAdd

(const float* A, float* Ez, float* Hy,

int imp0, int N)

{

int i = blockDim.x * blockIdx.x +

threadIdx.x;

if (i < N)

A[i] = Hy[i] + (Ez[i-1]-Ez[i])/imp0;

// *A is the output of updated *Hy

// Similarly execute Kernel for E.

2. SOME ADVANCED FDTD

SIMULATIONS USING MATLAB AND

CUDA.

As it can be seen from the example discussed in section I, a

typical FDTD simulation involves the following steps :

 Defining the computational domain, that is

initializing the electric and magnetic field vectors, typically as

an array initial with zero value. Also, the ε and μ vectors are

defined. The size of the domain is equal to the number of

nodes, or the number of elements in electric and magnetic

field vectors.

 Enclosing the computational domain in suitable

boundary conditions, like the PEC, PMC, Absorbing

Boundary Condition (ABC) etc.

 Defining the total number of time steps for which

the simulation is to be executed.

 Calculating the value of each, the electric field

components and magnetic field components, for each node at

each time interval.

Besides these steps, certain precautions need to be taken, like

fulfilling the Courant Stability Criteria by choosing suitable

step size if space/time. Figure 2 and Figure 3 shows the output

from the MatLab simulation of a horn antenna and dipole

antenna respectively, for which the above steps were

followed. Figure 4 shows the output from the CUDA

implementation of 3 dimensional FDTD implementation of a

microstrip patch antenna. The result is however a sequence of

numbers which needs to be converted in graphical form by

some plotting function.

Figure 2.Matlab FDTD Simulation of Horn Antenna.

International Journal of Computer Applications (0975 – 8887)

Volume 70 - No.27, May 2013

36

Figure 3.Matlab Simulation of the Dipole Antenna.

Figure 4 : CUDA output for Microstrip Patch FDTD.

3. TYPESET TEXT

The Table 1 shows the achieved speedups obtained by

comparing the simulation on Intel Pentium E5300 Dual Core

2.6 GHz CPU against Nvidia GT520, 48 CUDA Cores, 1.4

GHz clock GPU. As it can be clearly seen, the speedup

achieved is around an order of magnitude higher in case of

GPU implementation for a 256x256x256 problem size in

single precision. Computation time for 5000 time steps is

presented. The results are measured using Nvidia Visual

Profiler Tool in CUDS 4.2.

Problem Size CPU

Runtime

(sec)

GPU

Runtime

(sec)

Speedup

128x128x128 990 231 4.29

256x256x256 4095 459 8.92

.

4. CONCLUSION

The low cost GPU certainly do possesses tremendous

processing power, which can be harnessed with suitable

parallelized modifications in the conventional algorithms,

such that they become suitable for GPU implementation.

Although not all algorithms would possesses this inherent

parallelization ability, but those which do possesses this scope

of parallelization can be further exploited with the use of

GPU’s.

5. ACKNOWLEDGMENTS

The authors acknowledge the continued support from Dept. of

Electronics and Telecommunication, YCCE, Nagpur for

providing the research facilities. The authors also

acknowledge the continued motivation of their Head Of the

Dept, Dr. P. L. Zade for encouraging research in the field of

antenna design, electromagnetic simulation and microwave

engineering.

6. REFERENCES

[1] Atef Z. Elsherbeni, Chapter 7, Handbook of Antennas In

Wireless Communication, CRC Press, 2002

[2] John. B Schneider, Understanding the Finite-Difference

Time-Domain Method, www. eecs. wsu.

edu/~schneidj/ufdtd, 2010.

[3] Matthew Livesey et. al., “Development of a CUDA

Implementation of the 3D FDTD Method” IEEE

Antenna and Propogation Magazine, Vol 54, No 5,

October 2012.

[4] Danilo De Donno et. al., “Introduction to GPU

Computing and CUDA Programing : A Case Study on

FDTD” IEEE Antenna and Propogation Magazine, Vol

52, No 3, June 2010.

[5] C. A. Balanis. Advanced Engineering Electromagnetics.

John Wiley & Sons, New York, 1989.

[6] A V Choudhari, N A Pande and M R Gupta. Article:

Feasibility Analysis of Low Cost Graphical Processing

Units for Electromagnetic Field Simulations by Finite

Difference Time Domain Method. International Journal

of Computer Applications 67(24):30-33, April 2013.

[7] A. Taflove, Computational Electrodynamics: The Finite-

Difference Time-Domain Method. , 1995 :Artech House.

IJCATM : www.ijcaonline.org

