
International Journal of Computer Applications (0975 – 8887)

Volume 70 No.26, May 2013

16

Case-Based Reasoning for Design Patterns

Searching System

Weenawadee Muangon

Software System Engineering Laboratory,
Department of Mathematics and Computer Science,

Faculty of Science, King Mongkut’s Institute of
Technology Ladkrabang, Bangkok, Thailand

E-mail: s9062903@kmitl.ac.th

Sarun Intakosum
Software System Engineering Laboratory,

Department of Mathematics and Computer Science,
Faculty of Science, King Mongkut’s Institute of
Technology Ladkrabang, Bangkok, Thailand

E-mail: kisarun@kmitl.ac.th

ABSTRACT

Design patterns are graceful solutions to specific software

design problems. However, choosing proper design patterns

for given software design problems might not be an easy task

especially for novice developers. The design patterns

searching tools are therefore needed to solve the problem. One

major problem of the existing researches in this field is the

indexing problem. This paper aims to solve the problem by

presenting an elegant design pattern searching model that

combines Case Based Reasoning (CBR) and Formal Concept

Analysis (FCA) techniques. This model proposes a newly

refinement technique. The technique allows experts to

organize indexes to gain more complete software problem

description in order to retrieve more appropriate design

patterns. The indexes and cases similarity is calculated using

FCA. The learning model to store new knowledge for

retention process is also provided. Mean Average Precision

(MAP) is used to assess the performance of the model. The

preliminary experimental results show that the presented

model has more retrieval ability in term of MAP comparing to

the traditional model of CBR.

General Terms

Software Engineering, Reasoning, Knowledge Extraction,

Knowledge Management.

Keywords

Design pattern, Design pattern retrieval, Knowledge

Representation, Case Based Reasoning, Formal Concept

Analysis.

1. INTRODUCTION
Design patterns are important techniques used to capture

software design knowledge in order to solve software design

problems. In general, design patterns are collected by

experienced software designers [1] [2] [3] who formulate

solutions in the specific context of recurring software design

problems. Although design patterns are extremely useful in

software design, choosing the right design pattern for a given

design problem is a very difficult task. Especially,

inexperienced software designers who have less knowledge of

the field may not be able to cope with the large number of

design patterns. For this reason, software design pattern

searching tools for retrieving the right design patterns that can

solve specific software design problems are considered

helpful. Existing techniques for searching design patterns

generally do not support efficient searching because of the

major problem of indexing limitation. Usually, index

assignment is performed by authors, which is difficult to

match with the keywords of users. One way to solve this

problem can be made by using a construction learning model.

This paper proposes such a new model that applies both Case

Based Reasoning (CBR) and Formal Concept Analysis

(FCA). CBR is a smart knowledge learning model, which is a

powerful tool used in problem-solving systems. FCA is a data

analysis technique that can be used to discover hidden

knowledge between indexes and cases in a case base.

Utilizing the two approaches is very useful to solve the index

limitation problem. This paper’s model starts when a user

inputs a new problem description. The system retrieves

similar cases that are relevant to the problem by using a

similarity function. Retrieved solutions are proposed to users

and also stored to the system as new knowledge that can be

reused for solving new problems. If users do not satisfy with

the retrieved solutions, the system can find the right design

pattern by giving alternative methods using FCA

implementation. First, the structure of FCA enables discovery

of related cases. The problem descriptions of related cases are

presented to the user in order to extend comprehension of

their problems. Second, FCA technique generates relevant

indexes to make a more complete problem description. Lastly,

using CBR retains new experiences in retrieval and revising

processes as knowledge instrumental in solving similar

problem in the future.

The remainder of this paper is organized as follows: Section

(2) provides a concise survey of related work. Section (3)

discusses important background knowledge to be applied to

this paper’s model. Section (4) presents a design pattern

searching model. Section (5) proposes a simple prototype of

the approach. Section (6) presents a preliminary evaluation of

the model and explains the experimental results.

2. RELATED WORKS
This section briefly looks at some studies that relate to design

pattern searching models. The goal of this section is to collect

the studies in the field of design patterns retrieval. The studies

in this field can be divided into two categories design pattern

indexing and searching models.

2.1 Design Patterns Indexing
Research in [4] proposes formalizing technique to support

design pattern retrieving system. It formalizes the text from

intent section specified by [2] into phrases that are used to

identify the roles of specific design patterns. The indexes that

will be used in the searching model, discussed next, can be

generated from these phrases. Research in [5] provided a way

to find appropriate indexes to indicate the problem situation of

design patterns. The research applied Pattern Component

Markup Language (PCML) metadata of design patterns by

adding pairs of subjects and predicates according to the

software problem situation. This metadata can extend to a

International Journal of Computer Applications (0975 – 8887)

Volume 70 No.26, May 2013

17

design pattern search tool that uses verbs and subjects as

queries. Both researches proposed a high performance method

for design pattern indexing. However, a complete model to

retrieve design patterns is not provided.

2.2 Design Patterns Searching Models

Researchers in [6] [7] proposed ReBuilder, a hybrid model of

case based reasoning and WordNet ontology. The ReBuilder

model represents a diagram of software application as a case

and retrieves solutions by using a similarity metric of object-

oriented elements. ReBuilder is a smart model which is easy

to use and provides a clear solution. Unfortunately, while it

focuses on retrieving related software applications, it ignores

the problem-solving based on the context of software

problem. Research in [8] offered a multi-agent system

dependent on an implicit culture framework to search for

solutions based on software design domains. This approach

shares software design experiences between communities of

users in order to choose the design pattern suitable for solving

software design problem. This system allows previous

knowledge to be used effectively; however, sharing unverified

knowledge is the main weakness of this system. The design

pattern search tool that is well-known for reliability is the

Expert System for Suggesting Design Pattern (ESSDP) [9]. It

uses a question-answering as knowledge given by human

experts, and develops a user friendly interface to easily access

the solution. The interface consists of a software design

question and allows a choice to discover a more specific

solution. This system is very reliable because the knowledge

base is created by experts, but the knowledge of these human

experts does not cover all the problems of that might be

posted by users.

One way to solve the aforementioned problems is to use

design pattern searching models that based on information

retrieve (IR) [10] technique. Research in [11] focuses on

index search and weight assignment. The vector space model

is used to calculate the similarly calculates between queries

and document. This model provides reasonable results, but the

precision ratio is still considered low. Research in [12] adds a

CBR approach o solve the problem. The research focuses on

design pattern representation. It uses flat structure to represent

a problem case of software design in which each case is

described by the structure presented in [11]. The increase in

precision percentage proves the efficiency of this model;

however, using only flat structure to represent the case does

not utilize the capability of CBR.

For this reason, the researches in [13], and [14], apply FCA

method to discover embedded knowledge within a case base.

However, the research is still lack of support for indexing

problem. This research paper presents a more enhanced

concept that can solve all previous mention problems as

discussed in section 4.

3. BACKGROUND KNOWLEDGE

3.1 Design Patterns
Design patterns are reusable solutions that are used as an

effective tool for solving the recurring software design

problems. Experienced developers in the software design field

found the common design problems that always occur in

various design problems. Therefore, they collect and record

the solutions to such problems in the form of reusable

techniques and called them design patterns [1] [2] [3]. The

design patterns provide efficient software design by not

having to spend much time to find the solutions to problems

that have already been solved. One of the books that provide

collection of design patterns is GOF [2]. There are many

studies that use GOF design patterns as a resource in their

approaches. GOF collects 23 design pattern by dividing in to

three categories, Creational, Structural and Behavioral.

Creational aims to solve problems related to object creation.

Structural focuses on creating a collection of related objects.

Behavioral is a collection of design patterns that are used to

capture behavior among related objects.

Generally, the GOF book describes a design pattern using the

following template: Pattern name, Category, Intent,

Motivation, Applicability, Structure, Participants,

Collaboration, Consequence, Implementation, Sample Code,

Known uses and Related Patterns. The proposed design

pattern retrieval model focuses on sections that describe the

problems and solutions of a design pattern. In sense the

Pattern name and Category are the easiest sections that

developers can understand a function of a design pattern

quickly as possible. Further, research [4] [15] believed the

Intent section is a shortest path to comprehend a design

pattern. Hence, the training case base uses the information

from these sections as cases problem descriptions.

3.2 Formal Concept Analysis Support in the

Case Based Reasoning System
Case Based Reasoning (CBR) [16] [17] is a problem solving

system that uses past experiences as knowledge used to solve

similar problems. The knowledge is represented as a case that

consists of problem descriptions and solutions. Several cases

are collected into the case base. CBR processes consist of (i)

retrieving the most similar cases from previous cases, (ii)

reusing the retrieved solution to a new problem, (iii) revising

the solution to adapt the result with precision (iv) retaining a

new problem to use in future problem solving.

In order to carry out a CBR process, Formal Concept Analysis

(FCA) [18] [19] [20] is applied to handle the knowledge in the

case base. FCA is a mathematical approach that efficiently

uses a data analysis method based on a concept lattice. FCA

extracts dependent knowledge between attributes describing

the objects. To implement FCA, a formal context is necessary.

The formal context is defined as a triple (G, M, I), where G is

object set and M is attribute set, and I is incidence relationship

I GM.

From the formal context, FCA implements a set of concepts in

which each concept consists of a maximal group of objects

that are correlated with attributes. A formal concept

formalizes the notions of extension and intension. The

extension consists of all objects that share the given attributes,

and the intension consists of all attributes shared by the given

objects. Pairs of formal concepts might be ordered by the

subset relation between their set of objects or the superset

relation between their set of attributes. This is called the

subconcept-superconcept relation, which is displayed as a

hierarchy concept.

Belen et al. [21] proposed a preliminary method that combines

CBR and FCA. They apply the ability of the FCA technique

in the task of discovering knowledge embedded in the cases.

In this research, each object is represented as a case and

represents an attribute as an index. The notation specified in

[21] is studied and the concept lattice of FCA is applied as an

organization of the design pattern case base. From the FCA

definition, the model can retrieve all cases that share indexes

similar to the user’s problem. Moreover, the system provides

a more complete problem description by using the index

dependency of FCA.

http://en.wikipedia.org/wiki/Partially_ordered_set

International Journal of Computer Applications (0975 – 8887)

Volume 70 No.26, May 2013

18

4. CBR FOR DESIGN PATTERN

SEARCHING SYSTEMS
The CBR model in Figure 1 consists of two main sections.

One is case base provision, which involves case

representation, case indexing and case organization. Another

is CBR engine, which includes four steps as follows.

1. Retrieve: A new problem from the user is given and a

similarity function is used to retrieve a relevant case from the

case base to solve the user’s problem. Normally, a case in a

problem-solving system consists of problem description and

its solution. Hence, the retrieved results use a similar problem

description and relevant solution.

2. Reuse: The retrieved solutions are proposed to the user

and reused to solve the problem.

3. Revision: The precision of retrieved solution is improved

by using a refinement technique to make a more complete

problem description.

4. Retention: The new experience is stored as a new case in

the case base after an analysis of the conditions of the learning

process.

Before starting the model, case representation needs to be

defined, which appropriates to represent experience in design

pattern searching models.

4.1 Case Representation and Indexing

4.1.1 Case Representation
Case representation [22] is the most elementary issue in a case

based reasoning model. For the problem-solving system, a

case consists of a problem description and its solution.

1. Problem Description: In the CBR model, the relevant past

cases are found by comparing the index of an input problem

to cases in the case base. The information used to search the

case base for matching cases is a concrete software design

problem or a situation or problem that the user is

experiencing.

2. Solution: In the CBR system, it is necessary to present a

solution to a problem in order to reuse it. In this paper, a

solution is a specific design pattern that should be applied to a

problem.

CBR starts with a set of cases or case base training. To obtain

a reliable case base, training cases are acquired from

reasonable sources as discussed in section 6.2. Table 1 shows

some cases in case base training of design pattern searching

systems Table 2 shows examples of concrete software design

problems and solutions.

In the next section, an approach is proposed for case indexing

which index cases in order to be matched with similar cases in

the retrieval process.

4.1.2 Case Indexing
Case indexing is a critical function that assigns indexes to

cases for use in the retrieval process. In the previous section, a

case representation of a problem-solving system was

presented, which recorded in unstructured case or text forms.

The main characteristic of retrieval in the CBR system is that

it uses valuable indexes to identify successful cases which can

be used to solve a user’s problem.

In this section the methodology for converting text format into

case structure for deployment of the indexing is presented.

Firstly, the stop word technique of the information retrieval

model is used to formalize the indexing of unstructured cases.

Stop words [23] are words that are proven to hinder indexer

effectiveness (such as “is”, “a”, “an” and “the”).

Secondly, an increase in the semantics of the case indexing is

targeted. The feature extraction is applied to represent the

characteristics of indexes that are used to identify problem

descriptions.

Table 1. Design Pattern Description Cases

Table 2. Concrete Software Design Problem Cases

From careful analysis, seven typical features of software

design problems are used for a case base. The seven features

are (1) main name, (2) alias name, (3) category, (4) category

function, (5) function, (6) entity and (7) keyword. Each

feature is explained as follows:

International Journal of Computer Applications (0975 – 8887)

Volume 70 No.26, May 2013

19

1. Main name (MA): represents an index that represents a

specific design pattern name, such as abstract, factory,

factory, method, adapter, or composite.

2. Alias name (AL): represents an index that refers to other

names for the particular design pattern, such as kit, wrapper,

public, or subscribe.

3. Category (CA): represents an index that represents a

category of a design pattern, such as creational, structural, or

behavioral.

4. Category function (CAF): represents an index that refers

to major function of a design pattern category such as create,

compose, or communicate.

5. Function (FUC): represents an index that refers to major

functions or actions stated of a design pattern description,

such as convert, represent, or build.

6. Entity (EN): represents an index that points to

characteristics of object-oriented entities (object, class and

interface), such as related object, singleton object, or abstract

class.

7. Keyword (KW): represents an index that cannot be

classified into previous features but has the ability to indicate

a particular characteristic of a design pattern, such as different

ways or various representations.

Table 3 shows an example of a feature extraction of a

problem description. Currently, the constructing feature needs

to be done manually since it requires the understanding of the

semantics of each index. These features can possibly be used

as a novel method to represent semantic information, in order

to improve relevant case retrieval in the case based reasoning

system.

Table 3. Features of Problem Description

Table 4. Formal Context

Fig 1: Architecture of CBR Model for Design Patterns Searching System

International Journal of Computer Applications (0975 – 8887)

Volume 70 No.26, May 2013

20

4.2 Case Based Organization
In this paper, FCA is used to generate a concept lattice that

elicits knowledge between cases and indexes from the case

base. To demonstrate FCA implementation, a formal context

of a problem description, described in the form of binary

terms [0, 1], is used. Table 4 is an example of binary values

between cases (objects) and indexes (attributes) of the design

pattern case base. An index represented by “1” means it is

indicative of a case, and “0” means it cannot point to any case.

The binary values are transformed into a formal concept

which is defined by a pair of a case set (extension) and an

index set (intension). Extension of a concept means a case set

which is shared by similar indexes and an intension is an

index set that indicates the related cases. The final result of

FCA implementation is a lattice structure that is generated

from a formal concept. Figure 2 demonstrates an example of a

concept lattice structure based on the design pattern case base.

The FCA concept lattice helps to acquire knowledge indexing

that is available in a case base. In this paper, knowledge

indexing is suggested to refine the problem description for

retrieval of a better solution. Moreover, the concept lattice

relation overcomes certain index dependencies that prevent

discovery of related cases. In the next section, the similarity

technique, which corresponds to the concept lattice structure

for retrieving and ranking the solution based on software

design problem context, is presented.

4.3 Case Retrieval
In this section, a retrieval method that retrieves and ranks

solutions to the user's problem is presented. According to the

case base concept lattice in the previous section, the intension

and extension properties of FCA are used as a critical

argument in the similarity method. The intension of a concept

represents an index set that indicates a problem description of

a case. The extension represents a case set that is described by

the intension. For example, the intension of concept A is

{creational, instantiate, create} and the extension of this

concept is {C1, C2, C3, C4}. In this paper, the retrieval

process begins when a user enters a new problem into the

system. A new problem is a problem description that the user

requires a solution to. For finding the right solution, the index

of a new problem matches with the case indexing of the case

base. The system uses similarity function to rank the results.

Equation (1) shows a similarity function that measures the

similarity value between a new problem and a concept in a

case base. Given two concepts P and C, P is a user problem

concept, C is a case concept, and I is an intension which

contains an index set of concepts in the case base. The value

of each index in P and C is represented by “0” or “1”.

Following equation (1), the similarity assessment is a value

between 0 and 1 where 0 is 0% similar, and the 1 means 100%

similar.

n

i

n

i

icip

n

i

icip

II

II

CPSim

1 1

2

,

2

,

1

,,

)()(

),(
 (1)

Where n is the number of indexes, Ip,i is the ith index of user

problem concept and Ic,i is the ith index of concepts in the

case base. The retrieved results are concepts which contain

cases that related to the user’s problem and the concept results

are ranked according to the similarity value. In particular, a

maximum value of similarity which shows at the first rank

that could be obtained provides the relevant solution to the

new problem. An example: given that a user problem is a free-

text “interface create dependence object”, the ranking of

retrieved results are concepts {A, F} respectively by following

its similarity values 0.8166, 0.2132. The real outcome of the

retrieval process is the solution of cases in concept results

which are presented to the user through a similarity ranking

values. Observably, each retrieved concept involves several

cases, but this does not mean there are several solutions

Fig 2 : An Example of Concept Lattice Case Base on Design Pattern Domains

International Journal of Computer Applications (0975 – 8887)

Volume 70 No.26, May 2013

21

because many cases can hold a similar solution. In the next

phase, the CBR model proposed an idea to adapt the precision

of the retrieved results by using a revision process.

4.4 Case Revision
In this paper, the aim of the revising process is to increase the

precision of the retrieval process. The retrieved results might

be not satisfactory for the user because of the poor quality of

an index of the user’s problem description. To solve the

aforementioned problem, this revising process offers related

problem descriptions as an alternative way to narrow the

scope of the user’s problem and suggests an index that, when

associated with the user’s problem refinement technique,

makes a more complete problem description. To create a

successful revising process, two properties of FCA are applied

as follows;

First, an FCA concept lattice classifies cases that shares

indexes together. Using this property, the related cases that

conform to indexes of the user’s problem are clustered. In this

paper, a concept node that is retrieved at the first rank (called

the current concept) is used to lead to related cases. The

related cases are found from extension of the current concept.

Moreover, by definition, the extension of the superconcept

contains a superset of cases in the current concept. Because all

concepts of current concept and superconcept correspond with

sharing indexes, hence, the system presents related cases that

are achieved from extension of both concept types to the user.

For example: Figure 2 concept E is proposed as {C5, C6}, the

superconcept that is nearest to the current concept E is

concept B which leads to {C8}.

Second, FCA method provides an index suggestion as a

guideline to make a more complete problem description. The

system starts from the current concept node that represents the

best result of the retrieval process. In this section, subconcept

nodes of the current concept are considered. Typically, a

current concept contains matching and non-matching indexes.

Although some indexes in the current concept do not match

the user’s problem, it still contains the closest words that are

applied to refine the original problem of the user. Moreover,

by definition, the intension of the subconcept is a superset of

the current concept intension. Hence, the system suggests the

intension of the current and subconcept to user. In this paper,

a subconcept is used as the nearest to the current concept

because it contains the maximum associated indexes that

related to all cases of the current concept.

For example: Figure 2, a subconcept that is nearest to the

current concept A, consists of three concepts, concept D, H

and I. {creational, create, instantiate} is the intension of the

current concept that points to concept D, H and I. Hence, in

particular terms of each concept that should be suggested to

the user, concept D suggests {factory}, concept H {one,

singleton, control, global} and concept I {copy, clone}.

4.5 Case Retention
The aim of the retention process is to learn, through an

experience, new knowledge instrumental into solving similar

problems in the future. Normally, a new case comprises a new

problem and its final solution. In this study, a new case from

the retrieval and revising processes is retained as follows.

Retaining - Case Retrieval
First, for a proposed case retention from the retrieval process,

a new case is generated when retrieval in the CBR operation

is terminated. A new case represents concrete software design

as a problem description and a retrieved solution that occurs at

the first rank. This is the primary way that the user ends the

operation after achieving the retrieved results.

Retaining - Case Revising

Second, the CBR system retains a refined problem description

and its solution as a new case. The new case is created when

the user refines the original problem by placing the index

suggestion into the operation when finished.

Beside the two aforementioned approaches, the system needs

design pattern experts to resolve a problem that cannot be

solved by system operation alone.

5. AN ILLUSTRATIVE PROTOTYPE OF

THE SEARCHING MODEL
The program prototype is developed for preliminary testing of

the model. The program is as shown in figure 3. The search

process is initiated when a user enters the description of a new

software design problem. The results are retrieved and ranked

based on the technique discussed in section 4. Moreover, the

system returns related problems stored in the case base (as

shown in the lower part of Figure 3) that are associated with

the retrieved solution. These problems provide alternative

ways to help users to gain more precise results.

Fig 3: Design Pattern Retrieval Screen

Upon deciding whether the index should be used to refine the

original problem, the system proposes a feature representative

to assist in the index selection of the user. Note that the user in

this step should be an expert who has strong knowledge in

design patterns. The associated indexes are presented with

their features. These features help users to select appropriate

indexes to make a more complete problem description. In the

implementation of the index suggestion, there are two forms

to display as follows:

1. Index-Feature: This shows pairing between an index and

its feature. This pairing assists a user to understand the

importance of a suggested index. Figure 4 shows an Index-

Feature suggestion screen that uses check boxes to receive

and facilitate multiple selections by the user.

International Journal of Computer Applications (0975 – 8887)

Volume 70 No.26, May 2013

22

Fig 4: Index-Feature Suggestion Screen

2. Case Form: The Case Form presents indexes in form

groups that correspond to related cases. This form makes it

more convenient to choose indexes for problem refinement.

Figure 5 shows a Case Form suggestion screen that uses a

radio button to receive only one specified case.

Fig 5: Case Form Suggestion Screen

6. EVALUATION AND EXPERIMENT
In order to prove the usability and efficiency of the approach

used, a small experiment on the effectiveness of the model

was performed.

6.1 Evaluation
The efficiency of results in the design pattern searching model

are explained through mean average precision (MAP)

calculation [10]. The average precision was computed by

taking the average of the individual precision of the problem.

MAP measures the quality of the retrieval system by

averaging average precision from multiple problems. The

mean average precision is defined as shown in equation (2).

jQ

i

ji

N

j j

Cecision
QN

MAP
1

,

1

)(Pr
11 (2)

where N is the number of problems, Qj is the number of

relevant cases for problem j and Precision(Ci,j)is the precision

value at th relevant case.

6.2 Training and Test Cases
For testing, two data case sets are provided. First, available

training cases are used for preliminary knowledge. Second, a

set of test cases to test retrieval performance of the model are

built.

Training Case Set involves 72 cases achieved from two data

sources. First, design pattern description from the most

famous design pattern book GOF [2]. There are 23 design

patterns described in GOF and they are utilized as preliminary

data in the model. The remaining 49 cases come from

concrete software design problems that were solved by design

pattern techniques discussed in GOF. They are used as

problem descriptions for data training purpose. In summary,

entire training set of cases were provided by design pattern

experts that analyzed the quality of the problem description

and its solution before retention in the training case base.

Test Case Set is a data set achieved from 21 design pattern

beginners who volunteer to test the model. The test case is

divided into two sets. Test case A involves 30 cases and Test

case B consists of 33 cases. Both Test case sets were used to

test the retrieval, performance, revision and retention

processes.

6.3 Experiment and Result Discussion
The following two experiments demonstrate the retrieval

performance of the design pattern searching model.

Experiment 1 – Problem Refinement

This experiment evaluates the retrieval performance in the

revision process that enables comparison of the precision

between the results of the original problem and the refined

problem which is adapted by the index suggestion. The testing

process used 30 cases in Test Case A to view the advantage of

suggested indexes. Table 5 presents the retrieval performance

before and after the revision process in the model. The MAP

percentage increases in the refined problem means a

significant advantage in the index suggestion.

Table 5. Problem Refinement Performance

Experiment 2 – Case Base Learning

In the CBR model, the retention process provides the ability

to learn from useful cases and use this information to solve

new problems. In this section, Test Case A is used as the

useful cases that are added into the case base. Test Case B is

used to test the performance of the retrieval process before

and after the Test Case A is added. The results in table 6

shows that the MAP percentage of the retrieved results for the

case base after adding the test case A (Case Base Learning) is

better than the original case base (Case Base Training).

Table 6. Case Base Learning Performance

7. CONCLUSIONS
In this paper a novel design pattern searching model is

presented. The proposed model integrates Case Based

Reasoning and Formal Concept Analysis to solve the indexing

problem persists in the existing researches. The refinement

technique is developed to help organizing the indexes to gain

more complete problem description that leads to more precise

results. The model also provides a learning method to retain

new experiences in order to solve similar problems that might

be entered into the system in the future. A simple program

prototype is developed to evaluate the model. The efficiency

of the model is measured by mean average precision. The

results are shown that the performance of the proposed model

is better than the normal case base reasoning model.

International Journal of Computer Applications (0975 – 8887)

Volume 70 No.26, May 2013

23

8. REFERENCES
[1] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann,

Pattern-Oriented Software Architecture: Patterns for

Concurrent and Networked Objects. John Wiley & Sons,

2000, vol. 2.

[2] E. Gamma., H. Richard., R. Johnson and J. Vlissides,

Design Pattern: Elements of Reusable Object Oriented

Software, Addison-Wesley, 1995.

[3] F. Buschmann, K. Henney, and D. C. Schmidt, Pattern-

Oriented Software Architecture: On Patterns and Pattern

Languages. John Wiley & Sons, 2007, vol. 5.

[4] G.Andreas,andE. Mattias. “Formalizing the Intent of

Design Patterns”, An Approach Towards a Solution to

the Indexing Problem Technical report 1999-006,

Uppsala University. 1999.

[5] P. Daniel, and C. Gyorgy. “Design Pattern Matching”,

Periodica Polytechnica Ser. el. Eng. Vol. 47. No. 3-4.

2003. pp. 205-212.

[6] P. Gomes, F.C. Pereira, P. Paiva, N. Seco, P. Carreiro,

J.L. Ferreira, C. Bento., “Combining case-based

reasoning and analogical reasoning in software design”,

In: Proceedings of the13th Irish Conference on Artificial

Intelligence and Cognitive Science (AICS'02), Limerick,

Ireland, Springer-Verlag 2002.

[7] P. Gomes, F.C. Pereira, P. Paiva, N. Seco, P. Carreiro,

J.L. Ferreira, C. Bento., “Case retrieval of software

designs using wordnet”, In Harmelen, F.v., ed.: European

Conference on Artificial Intelligence (ECAI'02), Lyon,

France, IOS Press, Amsterdam, 2002.

[8] B. Aliaksandr., B. Enrico., G. Paolo. “Choosing the right

design pattern: the implicit culture approach”, In: Proc.

of the Workshop on Multi-Agent Systems and

Simulation at the Industrial Simulation Conference 2006

(ISC-2006), 2006.

[9] M. Gary, S. Abhijit, F. Daniel J. “An expert system for

the selection of software design patterns”, Expert system

Journal Volume 23, Issue 1, February 2006, pp. 39-52.

[10] B. Yates R., and R. Berthier., Modern Information

Retrieval, Addison Wesley, 1999.

[11] W. Muangon. and S. Intakosum. “Retrieving model for

design patterns”, ECTI Transactions on computer and

information technology, Vol. 3, No. 1, May 2007, pp.51-

55.

[12] W. Muangon. and S. Intakosum. “Case-Based Support

Retrieval for Design Patterns”, JCSSE International joint

conference on computer science and software

engineering, Vol. 1, May 2008, pp. 419-423.

[13] W. Muangon. and S. Intakosum. “Retrieving Design

Patterns by Case-Based Reasoning and Formal Concept

Analysis”, ICCSIT International Conference on

Computer Science and Information Technology, Vol. 4,

August 2009, pp. 424-428.

[14] W. Muangon. and S. Intakosum. “Adaptation of Design

Pattern Retrieval Using CBR and FCA”, ICCIT

International Conference on Computer Science and

Convergence Information Technology, November 2009,

pp. 1196-1200.

[15] H. Kampffmeyer and S. Zschaler, “Finding the pattern

you need: The design pattern intent ontology”, in

MoDELS, ser.Lecture Notes in Computer Science, G.

Engels et al., Eds.,vol. 4735. Springer, 2007, pp. 211-

225.

[16] A. Aamodt. and E. Plaza. “Case-Based Reasoning:

Foundational Issues, Methodological Variations, and

System Approaches”, Published in: AI Communications,

Vol. 7 Nr. 1, March 1994, pp 39-59.

[17] R.L. De Mantaras et al., “Retrieval, reuse, revision, and

retention in case based reasoning”, Knowledge

Engineering Review, vol. 20, pp. 215-240, 2005.

[18] R. Wille, “Formal concept analysis as mathematical

theory of concepts and concept hierarchies”, Formal

Concept Analysis: Foundations and Applications, LNAI

3626, Berlin: Springer, 2005, pp. 1-33.

[19] S.O. Kuznetsov, S.A. Obiedkov, “Algorithm for the

construction of concept lattices and their diagram

graphs”, In Proc. of the 5th Principles of Data Mining

and Knowledge Discovery: European Conference,

Freiburg, Germany, September 3-5, LNCS 2168, Berlin:

Springer, 2001, pp. 289-300.

[20] U. Priss, “Formal concept analysis in information

science”, Annual Review of Information Science and

Technology, vol. 40, pp. 521-543, 2006.

[21] D. Belen, M.G. Antonio, P.G. Pablo and A. Pedro,

“Formal concept analysis for knowledge refinement in

case base reasoning”, In Proc. of the 25th International

Conference on Innovative Techniques and Applications

of Artificial Intelligence, 2005, pp. 233-245.

[22] B. Ralph, J. Kolodner and E. Plaza, “Representation in

case-based reasoning”, Knowledge Engineering Review,

vol. 20, pp. 209-213, 2005.

[23] T. Rachel, H. Ben, O. Iadh. “Automatically building a

stopword list for an information retrieval system”, J

Digital Informat Manage, 2005, pp. 3-8.

