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ABSTRACT 
Hall effects on an unsteady MHD free convective flow of a 

viscous incompressible electrically conducting fluid past a 

uniformly accelerated vertical plate in the presence of a uniform 

transverse applied magnetic field have been investigated on 

taking viscous and Joule dissipations into account. The 

governing partial differential equations have been solved 

numerically by applying a Crank - Nicolson's type of implicit 

finite difference method with a tri-diagonal matrix manipulation 

and an iterative procedure. The variations of the fluid velocity 

components and temperature distribution are presented 

graphically. It is found that the fluid velocity components are 

significantly affected by Hall parameter. An increase in Eckert 

number leads to rise in the fluid velocity components and 

temperature distribution. Further, it is found that the magnitude 

of the shear stress components at the plate increase with an 

increase in either Hall parameter or Eckert number or Prandtl 

number. The rate of heat transfer at the plate decreases with an 

increase in either Eckert number or Prandtl number or time. 

 

Key words:  Hall currents, MHD free convective flow,  

Prandtl number, Grashof number, Eckert number and viscous 

and Joule dissipations.  

 

1. INTRODUCTION 
Magnetohydrodynamics is currently undergoing a period of 

great enlargement and differentiation of subject matter. It is 

important in the design of MHD generators and accelerators in 

geophysics, underground water storage system, soil sciences, 

astrophysics, nuclear power reactor, solar structures and so on. 

The mechanism of conduction in ionized gases in the presence 

of strong magnetic field is different from that in metallic 

substance. The electric current in ionized gases is generally 

carried by electrons, which undergo successive collisions with 

other charged or neutral particles. In the ionized gases the 

current is not proportional to the applied potential except when 

the field is very weak in an ionized gas where the density is low 

and the magnetic field is very strong, the conductivity normal to 

the magnetic field is reduced due to the free spiraling of 

electrons and ions about the magnetic lines of force before 

suffering collisions and a current is induced in a direction 

normal to both electric and magnetic fields. This phenomenon 

is called the Hall effect. The study of Hall effects on MHD free 

convective flows has important engineering applications in 

problems of magnetohydrodynamic generators and Hall 

accelerators as well as in flight magnetohydrodynamics. It is 

also important in the solar physics involved in the sunspot 

development, the solar cycle and the structure of magnetic stars. 

The effect of Hall currents on hydromagnetic flow near a 

porous plate has been studied by Pop[1, 2]. Gupta [3] has 

examined the effect of Hall currents on the steady 

magnetohydrodynamic flow of an electrically conducting fluid 

past an infinite porous flat plate. Oscillatory 

magnetohydrodynamic flow past a flat plate with Hall effects 

has been investigated by Datta and Jana [4]. The effect of Hall 

currents on hydromagnetic free convective flow near an 

accelerated porous plate has been studied by Hossain and 

Mohammad [5]. Pop and Watanabe [6] have described the Hall 

effects on magnetohydrodynamic free convection about a semi-

infinite vertical flat plate. Effect of chemical and thermal 

diffusion with the Hall current on an unsteady hydromagnetic 

flow past an infinitely long vertical porous plate has been 

discussed by Acharya et al. [7]. Aboeldahab and Elbarbary [8] 

have analyzed the effect of Hall current on the 

magnetohydrodynamics free convective flow past a semi-

infinite vertical plate with mass transfer. Takhar et al.[9] have 

investigated the unsteady free convective flow past an infinitely 

long vertical porous plate due to the combined effects of 

thermal and mass diffusion, magnetic field and Hall currents. 

Kinyanjui et al.[10] have studied the heat and mass transfer in 

unsteady free convective flow past an impulsively started 

infinite vertical porous plate with Hall current and radiation 

absorption. Hall effects on an MHD flow past a moving plate in 

a fluid have been studied by Takhar et al.[11]. Convective heat 

transfer from different geometries has received considerable 

attention in recent years owing to its importance in various 

technological applications such as fibre and granular insulation, 

electronic system cooling, cool combustors, oil extraction, 

thermal energy storage and flow through filtering devices, 

porous material regenerative heat exchangers. The book written 

by Bejan and Kraus [12] excellently describes the extent of the 

research information in this area. The viscous dissipation effects 

are important in geophysical flows and also in certain industrial 

operations and are usually characterized by the Eckert number. 

In the literature, extensive research work is available to 

examine the effect of natural convection on flow past a plate. 

Callahan and Manner [13] have first considered the transient 

free convective flow past a semi-infinite plate by explicit finite 

difference method. However, this analysis is not applicable for 

other fluids whose Prandtl number is different from unity. 

Soundalgekar and Ganesan [14] have analyzed transient free 

convective flow past a semi-infinite vertical flat plate, on taking 

into account mass transfer by an implicit finite difference 

method of Crank-Nicolson type. Das and Jana [15] have 

examined the heat and mass transfer effects on an unsteady 

MHD free convective flow past a moving vertical plate in a 

porous medium. In most of the studies mentioned above, 

viscous dissipation is neglected. Gebhart [16] has shown the 

importance of viscous dissipative heat in free convective flow 

in the case of isothermal and constant heat flux at the plate. 

Gebhart and Mollendorf [17] have considered the effects of 

viscous dissipation for external natural convective flow over a 

surface. Israel Cookey et al. [18] have investigated the influence 

of viscous dissipation and radiation on an unsteady MHD free 

convective flow past an infinitely long heated vertical plate in a 
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porous medium with time dependent suction. Srihari et al. [19] 

have studied an MHD free convective flow of an 

incompressible viscous dissipative fluid in an infinitely long 

vertical oscillating plate with constant heat flux. Suneetha et al. 

[20] have analyzed the effects of viscous dissipation and 

thermal radiation on hydromagnetic free convective flow past 

an impulsively started vertical plate. Babu et al. [21] have 

studied the radiation and chemical reaction effects on an 

unsteady MHD convective flow past a vertical moving porous 

plate embedded in a porous medium with viscous dissipation. 

Kishore et al. [22] have analyzed the effects of thermal 

radiation and viscous dissipation on MHD heat and mass 

diffusion flow past an oscillating vertical plate embedded in a 

porous medium with variable surface conditions. Hall effects on 

an unsteady MHD free convective flow past an impulsively 

started porous plate with viscous and Joule's dissipation have 

been studied by Anjali Devi et al. [23]. 

     In the present paper, we have studied the Hall effects on an 

unsteady MHD free convective flow of a viscous 

incompressible electrically conducting fluid past an accelerated 

moving vertical plate on taking viscous and Joule dissipations 

into account. The governing equations have been solved 

numerically using Crank-Nicolson's method. It is found that the 

primary velocity u  and the magnitude of the secondary 

velocity v  increase with an increase in either Hall parameter 

m  or Eckert number Ec  or Grashof number Gr . It is also 

found that the fluid temperature   increases with an increase in 

either Hall parameter m  or Eckert number Ec  or Grashof 

number Gr  or Prandtl number Pr . Further, it is found that the 

absolute values of the shear stresses 
x  and y  at the plate 

0   increase with an increase in either m  or Ec . The rate of 

heat transfer 

0






 
 

 
 at the plate 0   decreases with an 

increase in either Eckert number Ec  or Prandtl number Pr  or 

time  . 
 

2. FORMULATION OF THE PROBLEM 

AND ITS SOLUTIONS   
Consider the unsteady hydrodynamic flow of a viscous 

incompressible electrically conducting fluid past a uniformly 

accelerated vertical plate on taking viscous and Joule 

dissipations into account. Choose a Cartesian co-ordinates 

system such that the x -axis is taken along the vertical plate in 

an upward direction, z -axis is perpendicular to the plate and 

y -axis is taken normal to the zx -plane. At time 0t  , both 

the fluid and the plate are at rest with constant temperature T
. 

At time > 0t , the plate at 0z   starts to move in its own plane 

with a uniform velocity c t , (> 0)c  being a constant and 
wT  is 

the plate temperature. A uniform transverse magnetic field of 

strength 0H  is applied perpendicular to the plate [see Fig.1]. 

As the plate is infinitely long, the fluid velocity components and 

temperature distribution are functions of z  and t  only. 

  

  
 

   Figure 1. Geometry of the problem  
 

    The initial and boundary conditions of the problem are  

     0, at 0 for all ,u v T T t z
      

     , 0, at 0 for all > 0,wu ct v T T z t               (1) 

     0, 0, as for all > 0,u v T T z t
      

where u  and v  are the fluid velocity components in the x  

and y -directions respectively and T  the fluid temperature. 

     The generalized Ohm's law, on taking Hall currents into 

account and neglecting ion-slip and thermo-electric effect, is 

(see Cowling [24])  

              
0

,e e
eJ J H E q H

H


     

    
                    (2) 

where J


 is the current density vector, H


 the magnetic field 

vector, E


 the electric field vector, 
e  the cyclotron frequency, 

e  the electron collision time,   the electrical conductivity of 

the fluid, 
e  the magnetic permeability and q


 the fluid 

velocity vector. 

     We shall assume that the magnetic Reynolds number for the 

flow is small so that the induced magnetic field can be 

neglected. This assumption is justified since the magnetic 

Reynolds number is generally very small for partially ionized 

gases. The solenoidal relation 0H 


 for the magnetic field 

gives 
0zH H   constant everywhere in the fluid where 

(0,0, )zH H


. Further, if ( , , )x y zJ J J  be the components of 

the current density J


, then the equation of the conservation of 

the charge 0J 


 gives constantzJ  . This constant is zero 

since 0zJ   at the plate which is electrically non-conducting. 

Thus 0zJ   everywhere in the flow. Since the induced 

magnetic field is neglected, Maxwell's equation 

e

H
E

t



  






 becomes 0E 


 which gives 0xE

z





 

and 0
yE

z





. This implies that constantxE   and yE   

constant everywhere in the flow. 

In view of the above assumption, the equation (2) gives  

0( ),x y x eJ mJ E v H                               (3) 

0( ),y x y eJ mJ E u H                              (4) 

where e em   is the Hall parameter. 

    At infinity, the magnetic field is uniform so that there is no 

current and hence, we have  

0, 0 as .x yJ J z                                  (5) 

   On the use of (1) and (5), equations (3) and (4) yield  
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0, 0x yE E                                                   (6) 

 everywhere in the flow. 

    Substituting the values of 
xE  and yE  given by (6) in 

equations (3) and (4) and solving for 
xJ  and yJ , we get  

0

2
( ),

1

e
x

H
J v mu

m


  


                                      (7) 

0

2
( ).

1

e
y

H
J u mv

m


   


                                   (8) 

    On the use of (7) and (8) and on using the usual Boussinesq 

approximation, the Navier-Stokes equations and energy 

equation can be written as  

      
 

2 2 2

0

2 2
( ) ( ),

1

eu u H
g T T u mv

t z m


 




  
     

  
      (9) 

      
 

2 2 2

0

2 2
( ),

1

ev v H
v mu

t z m






  
   

  
                           (10) 

      

2 22

2p

T T u v
c k

t z z z
 

        
      

        

 

                 2 2 2 2

0 ,e H u v                                      (11) 

where g  is the acceleration due to gravity,   the coefficient 

of thermal expansion,   the coefficient of viscosity,   the 

kinematic viscosity,   the fluid density, k  the thermal 

conductivity and pc  the specific heat at constant pressure. 

    Introducing the non-dimensional variables  

      

 

1

3

1 1 2

3 3

, , ,

( )

u v c
u v z

c c


 

   
    

 
 

     

1
2 3

, ,
w

c T T
t

T T
 






  
  

 
                                       (12) 

 equations (9), (10) and (11) become  

    

2 2

2 2
( ),

(1 )

u u M
Gr u mv

m


 

 
   

  
                        (13) 

    

2 2

2 2
( ),

(1 )

v v M
v mu

m 

 
  

  
                                  (14) 

2 22

2

u v
Pr Pr Ec

 

   

        
      

         

 

         2 2 2M u v  


                                                    (15) 

 where 

1
2 2

3
2 0

2

e H
M

c

 



 
  

 
 is the magnetic parameter, 

pc
Pr

k


  the Prandtl number, 

)( wg T T
Gr

c

 
  the 

Grashof number and 

2

3( )

( )p w

c
Ec

c T T








 the Eckert number. 

The corresponding initial and boundary conditions for ( , )u   , 

( , )v    and ( , )    are  

0, 0, 0 for 0 and 0,u v         

, 0, 1 at 0 for > 0,u v                  (16) 

0, 0, 0 as for > 0.u v        

 

3.  NUMERICAL SOLUTION 
Equations (13) - (15) are coupled, non-linear partial differential 

equations and these equations can not be solved exactly. 

However, these equations can be solved numerically. One of the 

most commonly used numerical methods is the finite difference 

technique which has better stability characteristics and is 

relatively simple, accurate and efficient. Another essential 

feature of this technique is that it is based on an iterative 

procedure and a tri-diagonal matrix manipulation. This method 

provides satisfactory results but it may fail when applied to 

problems in which the differential equations are very sensitive 

to the choice of initial conditions. In all numerical solutions the 

continuous partial differential equation is replaced with a 

discrete approximation. In this context the word  discrete means 

that the numerical solution is known only at a finite number of 

points in the physical domain. The number of those points can 

be selected by the user of the numerical method. In general, 

increasing the number of points not only increases the 

resolution but also the accuracy of the numerical solution. The 

discrete approximation results are a set of algebraic equations 

that are evaluated (or solved) for the values of the discrete 

unknowns. The mesh is the set of locations where the discrete 

solution is computed. These points are called nodes and if one 

were to draw lines between adjacent nodes in the domain the 

resulting image would resemble a net or mesh. 

      When time dependent solutions are important, the Crank-

Nicolson scheme has significant advantages. The Crank-

Nicolson scheme is not significantly more difficult to 

implement and it has a temporal truncation error that is 
2( )O   as explained by Recktenwald [25]. The Crank-

Nicolson scheme is implicit, it is also unconditionally stable 

[26, 27, 28]. In order to solve equations (13), (14) and (15) 

under the initial and boundary conditions (16), an implicit finite 

difference scheme of Crank-Nicolson's type has been employed. 

The right hand side of equations (13), (14) and (15) is 

approximated with the average of the central difference scheme 

evaluated at the current and the previous time step. The finite 

difference equations corresponding to equations (13), (14) and 

(15) are as follows  

   
, 1 ,

1, , 1,2

1
2

2( )

i j i j

i j i j i j

u u
u u u

 



 


   

 

                   1, 1 , 1 1, 12i j i j i ju u u    
     

        
2

, 1 , , 1 ,22 (1 )
i j i j i j i j
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           2 2 2

, , .i j i jM u v  


                                  (19) 

The initial and boundary conditions (16) become  

,0 ,0 ,00, 0, 0 for all 0,i i iu v i     

0, 0, 0,, 0, 1,j j ju j v                                (20) 

, , ,0, 0, 0,N j N j N ju v     

where N  corresponds to  . Here the suffix i  corresponds to 

  and j  corresponds to  . Also 1j j      and 

1i i     . Knowing the values of  , u  and v  at a time 

  we can evaluate the values at a time    as follows. We 

substitute 1,2,..., 1i N   in the equation (19) which constitute 

a tri-diagonal system of equations, the system can be solved by 

Thomas algorithm as discussed by Carnahan et al.[29]. Thus   

is known for all values of   at time  . Then knowing the 

values of   and applying the same procedure with the 

boundary conditions, we calculate u  and v  from equations 

(17) and (18). This procedure is continued to obtain the solution 

till desired time  . The Crank-Nicolson scheme has a 

truncation error of    2 2O O    , i.e. the temporal 

truncation error is significantly small. 

  

   
 

    Figure 2. Finite difference grids   
    

The implicit method gives stable solutions and requires matrix 

inversions which we have done at step forward in time because 

this problem is an initial-boundary value problem with a finite 

number of spatial grid points, though the corresponding 

difference equations do not automatically guarantee the 

convergence of the mesh 0  . To achieve maximum 

numerical efficiency, we have used the tri-diagonal procedure 

to solve the two-point conditions governing the main coupled 

governing equations of momentum and energy. The 

convergence (consistency) of the process is quite satisfactory 

and the numerical stability of the method is guaranteed by the 

implicit nature of the numerical scheme. Hence, the scheme is 

consistent. The stability and consistency ensure convergence. 

 

4. RESULTS AND DISCUSSION 
We have presented the non-dimensional fluid velocity 

components u , v  and the fluid temperature distribution   for 

several values of the magnetic parameter 2M , Hall parameter 

m , Prandtl number Pr , Grashof number Gr , Eckert number 

Ec  and time   against   in Figs.3-19. It is seen from Figs.3 

and 4 that the primary velocity u  decreases and the magnitude 

of the secondary velocity v  increases with an increase in 

magnetic parameter 2M . This indicates that the applied 

magnetic field is effectively moving with the fluid motion. The 

application of the transverse magnetic field plays the role of a 

resistive type force (Lorentz force) on the primary flow similar 

to a drag force (that acts in the opposite direction of the fluid 

motion), which tends to resist the flow thereby reducing the 

primary velocity. On the other hand, the resulting Lorentzian 

body force will not act as a drag force but act as an aiding body 

force on the secondary flow. This will serve to accelerate the 

secondary velocity. It is observed from Figs.5 and 6 that the 

primary velocity u  and the magnitude of the secondary 

velocity v  increase with an increase in Hall parameter m . This 

is because, in general, the Hall currents reduce the resistance 

offered by the Lorentz force. This means that Hall currents have 

a tendency to increase the fluid velocity components. Figs.7 and 

8 show that the primary velocity u  and the magnitude of the 

secondary velocity v  increase with an increase in Grashof 

number Gr . Grashof number Gr  signifies the relative effect 

of the thermal buoyancy force to the viscous hydrodynamic 

force. As expected, it is observed that there is a rise in the fluid 

velocity due to the enhancement of thermal buoyancy force. It 

is due to the fact that an increase of Grashof number has a 

tendency to increase the thermal effect. It is observed from 

Figs.9 and 10 that the primary velocity u  and the magnitude of 

the secondary velocity v  decrease with an increase in Prandtl 

number Pr . Physically this is due to the fact that fluids with 

high Prandtl number have greater viscosity, which makes the 

fluid thick and hence move slowly. Figs.11 and 12 show that 

the primary velocity u  and the magnitude of the secondary 

velocity v  increase with an increase in Eckert number Ec . 

Figs.13 and 14 display that the primary velocity u  and the 

magnitude of the secondary velocity v  increase with an 

increase in time  . Figs.15-19 show that the fluid temperature 

  increases with an increase in either magnetic parameter 2M  

or Hall parameter m  or Grashof number Gr  or Prandtl 

number Pr  or Eckert number Ec . Eckert number is the ratio 

of the kinetic energy of the flow to the boundary layer enthalpy 

difference. The effect of viscous dissipation on the flow field is 

to increase the energy, yielding a greater fluid temperature and 

as a consequence greater buoyancy force. The increase in the 

buoyancy force due to an increase in the dissipation parameter 

enhances the temperature ditribution. It is seen from Figs.15-19 

that the maximum temperature occur in the vicinity of the plate 

and asymptotically approaches to zero in the free stream region. 

This is because the effect of the magnetic parameter and Hall 

parameter can be felt only in the Hartmann layer and the 

thermal boundary layer respectively. It can be concluded that 

the fluid velocity and temperature raise due to viscous and Joule 

dissipations. 
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Figure 3. Primary velocity for 2M  when 0.5m , 

5Gr  , 0.5Ec , 0.25Pr   and 0.2    

Figure 4. Secondary velocity for 
2M  when 0.5m , 

5Gr  , 0.5Ec , 0.25Pr   and 0.2   

   

 

Figure 5. Primary velocity for m  when 2 2M  , 5Gr  , 

0.5Ec , 0.25Pr   and 0.2    

Figure 6. Secondary velocity for m  when 2 2M  , 

5Gr  , 0.5Ec , 0.25Pr   and 0.2   

 

Figure 7. Primary velocity for Gr  when 2 2M  , 

0.5m , 0.5Ec , 0.25Pr   and 0.2   

 

Figure 8. Secondary velocity for Gr  when 2 2M  , 

0.5m , 0.5Ec , 0.25Pr   and 0.2   

 Figure 9. Primary velocity for Pr  when 2 2M  , 

0.5m , 0.5Ec , 5Gr   and 0.2   
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Figure 10. Secondary velocity for Pr  when 2 2M  , 

0.5m , 0.5Ec , 5Gr   and 0.2   

 Figure 11. Primary velocity for Ec  when 2 2M  , 

0.5m , 0.25Pr  , 5Gr   and 0.2   

 Figure 12. Secondary velocity for Ec  when 2 2M  , 

0.5m , 0.25Pr  , 5Gr   and 0.2   

  Figure 13. Primary velocity for   when 2 2M  , 

0.5m , 0.25Pr  , 5Gr   and 0.5Ec  

 Figure 14. Secondary velocity for   when 2 2M  , 

0.5m , 0.25Pr  , 5Gr   and 0.5Ec  

  

Figure 15. Temperature for 2M  when 0.25Pr  , 

0.5m , 5G , = 0.5Ec  and = 0.2  
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Figure 16. Temperature for m  when 0.25Pr  , 2 2M  , 

5G , 0.5Ec  and 0.2   

  
Figure 17. Temperature for Gr  when 0.25Pr  , 

0.5m , 2 2M  , 0.5Ec  and 0.2   

 
Figure 18. Temperature for Pr  when 5Gr  , 0.5m , 

2 2M  , 0.5Ec  and 0.2   

  
Figure 19. Temperature for Ec  when 0.25Pr  , 

0.5m , 2 2M  , 5Gr   and 0.2   

 

Numerical values of the rate of heat transfer 

0






 
 

 
 at the 

plate 0   are presented in Table 1 for several values of 

Eckert number Ec , Prandtl number Pr  and time  . It is seen 

from Table 1 that the rate of heat transfer 

0






 
 

 
 at the 

plate 0   decreases with an increase in either Prandtl number 

Pr  or time   or Eckert number Ec . The negative values of 

the rate of heat transfer show that the heat is transferred from 

the plate to fluid.

                   

 

 

 

 

 

 

 

 

 

 

 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 70– No.24, May 2013 

26 

Table 1. Rate of heat transfer 

0






 
 

 
 at the plate 0   

 Pr    

Ec  0.25 0.5 0.71 0.85 0.2 0.4 0.6 0.8 

0.1 

0.2 

0.3 

0.4 

0.76623 

0.65748 

0.58738 

0.53618 

0.51754 

0.49519 

0.46857 

0.43675 

0.43898 

0.42438 

0.39607 

0.35442 

0.28913 

0.27528 

0.23467 

0.16665 

0.76623 

0.65748 

0.58738 

0.53618 

0.66217 

0.56210 

0.50352 

0.45019 

0.57816 

0.43391 

0.47549 

0.34108 

0.56610 

0.35619 

0.32894 

0.20002 

 
      

    The non-dimensional shear stresses 
x  and y  at the plate 

0   due to the primary and secondary flows are respectively 

given by  

0 0

and .x y

u v

 

 
 

 

    
    

    
                  (21) 

     Numerical values of the non-dimensional shear stresses 
x  

and y  at the plate 0   are presented in Figs.20-24 against 

magnetic parameter 2M  for several values of Hall parameter 

m , Grashof number Gr , Prandtl number Pr , Eckert number 

Ec  and time  . Figs.20-23 show that the shear stress 
x  and 

the absolute value of the shear stress y  at the plate 0   

increase with an increase in either Hall parameter m  or 

Grashof number Gr  or Prandtl number Pr  or Eckert number 

Ec . Fig.24 shows that the shear stress 
x  at the plate 0   

increases while the absolute value of the shear stress y  at the 

plate 0   decreases with an increase in time  . On the other 

hand, it is observed from Figs.20-24 that the shear stress 
x  

and the absolute value of the shear stress y  at the plate 0   

at first increase, reach a maximum and then decrease with an 

increase in magnetic parameter 2M . 

 Figure 20. Shear stress x  and y  for m  when 

0.25Pr  , 5Gr  , 0.5Ec  and 0.2   

 Figure 21. Shear stress 
x  and y  for Gr  when 

0.25Pr  , 0.5m , 0.5Ec  and 0.2   

 Figure 22. Shear stress 
x  and y  for Pr  when 0.5m , 

5Gr  , 0.5Ec  and 0.2   
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 Figure 23. Shear stress 
x  and y  for Ec  when 

0.25Pr  , 5Gr  , 0.5m  and 0.2   

 Figure 24. Shear stress 
x  and y  for time   when 

0.25Pr  , 5Gr  , 0.5Ec  and 0.5m  

 
5. CONCLUSION  
Hall effects on an unsteady MHD free convective flow of a 

viscous incompressible electrically conducting fluid past an 

accelerated vertical flat plate have been studied on taking 

viscous and Joule dissipations into account. It is observed that 

the Hall currents accelerate the fluid velocity components. The 

fluid velocity and temperature raise due to viscous and Joule 

dissipations. Further, it is found that the shear stress 
x  and the 

absolute value of the shear stress y  at the plate increase with 

an increase in either Hall parameter or Prandlt number or 

Eckert number. The rate of heat transfer at the plate decreases 

with an increase in either Prandtl number or Eckert number or 

time. 
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