
International Journal of Computer Applications (0975 – 8887)

Volume 70– No.24, May 2013

1

JNT - Java Native Thread for Win32 Platform

Bala Dhandayuthapani Veerasamy
Research Scholar in Information Technology

Manonmaniam Sundaranar University
Tirunelveli, Tamilnadu, India

 G. M. Nasira, PhD
Assistant Professor/Computer Science

Chikkanna Govt Arts College
Tirupur, Tamilnadu, India

ABSTRACT

Threading is a facility to allow multiple activities to coexist

within a single process. Most modern operating systems

support threads and the concept of threads has been around in

various forms for many years. Java is the first mainstream

programming language to explicitly include threading within

the language itself, rather than treating threading as a facility

of the underlying operating system. This research finding

focuses on how Java can facilitate Win32 platform threads

through JNI, which enables Java threads and native threads to

schedule and execute in hybrid mode.

Keywords

Java Thread, JNA, JNI, JVM, Native Thread, Win32 Kernel

1. INTRODUCTION

The technological advancement with processor designs

focuses on the maximum clock speeds [1] of processors.

Thus, chip manufacturers are always increasing performance

of the chips in every different version. To increasing the

performance, chip manufactures are increasing the number of

processor cores on each chip. Through increasing the number

of cores, a single chip could execute more instructions per

second without increasing the CPU speed. The only problem

was how to use the advantages of the extra processor cores. In

order to use the advantages of multiple cores, any computer

needs software that can do multiple things simultaneously.

Multiprocessing operating systems [2] enable numerous

programs to carry out simultaneously. The operating system is

accountable for allocating the computer’s resources among

processes. These resources can be memory, peripheral devices

such as printers, and the CPU(s). The goal of a

multiprocessing operating system is to carry out processes at

all times in order to increase CPU utilization.

A thread is an execution of program within a process [3].

When a thread runs, it accomplishes a function in the

program. The process associated with a running program

starts with one running thread, called the main thread, which

perform the “main” function of the program. In a

multithreaded program, the main thread creates all other

threads, which execute all other functions. These other threads

can create even any more threads, and so on.

Threads can be created using programming language or the

functions provided by an application programming interface

(API). Every thread has stack of activation records and its

copy of the CPU registers [3]. It includes stack pointer and the

program counter that together describes the state of the

thread’s execution. Though, the threads in a multithreaded

process shares the data, code, resources and address space of

their process. The per-process state information showed in the

above is shared by the threads in the program. It reduces the

overhead involved in creating and managing threads. In

Win32 a program can produce multiple processes or multiple

threads. Since thread creation in Win32 has lower overhead, it

focuses on single-process multithreaded Win32 programs.

Java program has main() method that creates the main thread.

Additional threads are created through the Thread constructor

by instantiation classes that extend the Thread class. During

execution of Java programs, the JVM creates some additional

threads that are mostly invisible to us, for example, threads

associated with garbage collection, object finalization, and

other JVM housekeeping tasks. The Java virtual machine can

carry out many threads of execution at once. These threads

independently execute code [4] that works on values and

objects exist in a shared main memory. Threads can

accomplish by core processors, by time-slicing a single

processor, or by time slicing core processors. Threads are

scheduled on a particular virtual machine. There are two basic

variations of thread available; they are listed [3] here:

1.1 The Green Thread Model

The green threads are scheduled by the virtual machine itself.

This is the original model for Java Virtual Machine mostly

follows the idealized priority based scheduling. This kind of

thread never uses operating system threads library.

1.2 The Native Thread Model

The native threads are scheduled by the operating system that

is hosting the virtual machine. The operating system threads

are logically divided into two pieces [3]: user level threads

and system level threads. The operating system itself that is

the kernel of the operating system lies at system level threads.

The kernel is accountable for managing system calls on behalf

of programs that run at user level threads. Any program

running under user level needs create and manage threads

usually by the operating system kernel. One of the advantages

of separating the user or system level native thread is, if a

program performs an illegal function, it can be ended without

affecting other programs or kernel. The differences between

native and green threads are shown in Table 1.

Table 1. Differences between native and green threads

Native threads Green threads

It swaps between threads

preempting, switching

control from a running

thread to a non-running

thread at any time.

It swaps, when control is

explicitly declared by a

thread blocking operation

(wait(),etc).

It can run on distinct CPUs. It usually runs on only one

CPU.

It is platform dependent It is platform independent

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.24, May 2013

2

2. JAVA NATIVE INTERFACE (JNI)

Java Native Interface (JNI) [5,6] is strong feature of the Java

platform. An application that uses the JNI can incorporate

native codes written in other programming languages such as

C and C++. The JNI is a strong feature [6] that permits us to

take benefits of the Java platform, but still uses code written

in other languages. As a part of the Java Virtual Machine

implementation, the JNI is a two-way interface that permits

Java applications to invoke native code and vice versa. The

JNI is designed to unite Java applications with native code. As

a two-way interface, the JNI can support two types of native

code: native libraries and native applications.

JNI allows writing native methods that allow Java

applications to call functions implemented in native libraries.

Java applications call native methods in the same way that

they call methods implemented in the Java programming

language. Behind the scenes, however, native methods are

implemented in other language and reside in native libraries.

In order to write Java Native Interface application [5,6] that

calls a C or C++ function, consists of the following steps:

1. Declaring Native Methods in Java Class

2. Compiling Java Class and Creating Native Method

Header

3. Implementing Native Method

4. Compiling the C++ Source and Creating Native

Library

5. Testing Native Program

2.1 GetJavaVM

GetJavaVM function [5,6] returns the JavaVM interface

pointer to which the current thread is attached. This function

returns zero on success otherwise it returns a negative value.

2.2 JNIEnv Interface

The JNIEnv interface [5,6] pointer is the first parameter in

native method. Native code can obtain a JNIEnv interface

pointer by calling the GetEnv function on a JavaVM interface

pointer. Even if a JNIEnv interface pointer is valid only in a

specific thread, the JavaVM interface pointer is valid for all

threads in a virtual machine instance.

2.3 Attaching/Detaching Native Threads

Attaches the current thread [5,6] to a given virtual machine

instance, permits native thread to associate with

java.lang.Thread instance. An attached native thread can issue

JNI function calls. The native thread remains attached to the

virtual machine instance until it calls DetachCurrentThread to

detach.

2.4 Local and Global References

Local and global references [5,6] have dissimilar lifetimes.

Local references are automatically unchained, whereas global

references keep on valid until unchained by the programmers.

JNI function New Object creates a new instance and returns a

local reference and they can invalidate using JNI functions

DeleteLocalRef. Global references are created by most JNI

functions; global references are created through

NewGlobalRef.

2.5 Accessing Fields

The JNI has two types of fields [5,6] that provide functions to

get and set instance fields in objects and static fields in

classes. To access an instance field, the native method follows

a two-step process. First, it calls GetFieldID function to

acquire the field ID from the class reference, field name, and

field descriptor. Second, we can pass the field ID to the

appropriate instance field access function GetObjectField.

The native method calls the JNI function GetMethodID,

achieve lookup for a method in the given class. The lookup is

based on the name and type descriptor of the method. A

method descriptor has combined with the argument types and

the return type of method. Argument types are listed in the

order in which they appear in the method declaration. For

example, "(I)V" denotes a method that takes one argument of

type int and has return type void.

3. THREADS IN WIN32

The Microsoft Windows Application Programming Interface

(API) facilitates functions used by all Windows based

applications. Most of the functions are generally supported on

32-bit and 64-bit Windows. This API [7] is designed for use

by C/C++ programmers. We can develop our application with

a graphical user interface; access system resources such as

memory and devices; display graphics and formatted text;

incorporate audio, video, networking and security.

3.1 System Services

The system services functions designed to provide

applications access to use resources of the computer and the

operating system, such as memory, file systems, devices,

processes and threads. Any application can use these

functions to manage, monitor computer resources and use

process, thread management of the operating system in order

to complete its task.

3.2 CreateThread function

A Windows Threads [7] can be created either by calling C++

runtime library function CreateThread() or by calling C

runtime function beginthreadex(). The function call to request

Windows create a child thread [7] using CreateThread()

syntax as follows.

Public Declare Function CreateThread Lib "kernel32" Alias

"CreateThread" (lpThreadAttributes As

SECURITY_ATTRIBUTES, ByVal dwStackSize As Long,

lpStartAddress As Long, lpParameter As Any, ByVal

dwCreationFlags As Long, lpThreadId As Long) As Long

The Parameter lpThreadAttributes states the security attributes

of the thread. The parameter dwStackSize states the stack size

for the thread. The parameter lpStartAddress states the

address of the function that the thread will execute. The

parameter lpParameter used to assign the parameters that are

to be passed to the thread. The parameter dwCreationFlags

states whether the thread should be created in a suspended

state. The parameter lpThreadId is a pointer to a variable

where the thread ID can be written. If the return value of

function CreateThread() is zero then the call will be

unsuccessful.

3.3 CloseHandle function

Windows API handles have really caused a resource to be

created within the kernel space. This handles are an index for

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.24, May 2013

3

the resources. When creating native Windows threads the

application has finished with the resource, the function

CloseHandle() [7] enables the kernel to free the associated

kernel space resources.

3.4 ExitThread/TerminateThread function

Threads can be terminated using the call ExitThread() [7] or

TerminateThread() [7]. Though, it is not compulsory because

thread possibly will leave our applications in an unspecified

state.

4. PROBLEM STATEMENT

Multithreaded programming is written in many programming

languages with an improvement of setting an affinity to

threads. Java support flexible and easy use of threads;

However, Java does not contain any method to set an affinity

for threads on CPU. Setting an affinity thread to

multiprocessor [8] is not new to research, since it was already

sustained by other multithreaded programming languages for

example C in UNIX platform and C# in Windows platform.

Java Native Access (JNA) provides [9] Java programs easy

access to native shared libraries without using the Java Native

Interface. JNA's design aims to provide native access in a

natural way with a minimum of effort. The JNA library uses a

small native library called foreign function interface library

(libffi) to dynamically invoke native code. The JNA library

uses native functions allowing code to load a library by name

and retrieve a pointer to a function within that library, and

uses libffi library to invoke it, all without static bindings,

header files, or any compile phase. JNA [9] is built and tested

on Mac OS X, Microsoft Windows, FreeBSD / OpenBSD,

Solaris and Linux.

However JNA does not describe yet to create native threads

for windows. In situations where Java does not provide the

necessary APIs, it is sometimes necessary to use the JNI to

make platform-specific native libraries accessible to Java

programs, associated with JNI and lets us to access C libraries

programmatically. This paper illustrates how java create

native threaded using JNI program and adapt with an affinity

thread on multiprocessor in windows platforms. Moreover this

research finding focuses on how Java threads and native

threads to schedule and execute in hybrid mode.

5. Methodologies

JNI allows us to use native code when an application cannot

be written entirely in the Java language. It want to implements

time-critical code in a lower-level, faster programming

language. It has legacy code or code libraries that we want to

access from Java programs. It needs platform dependent

features not supported in the standard Java class library. In

order to create and work with native threads using Java Native

Interface application that calls a C++ function with the

following steps:

5.1 Declare the native method in java class

We begin by writing the following program in the Java

programming language. The program 1 defined a class named

NativeThread that contains native methods. The native

keyword informs the Java compiler that a method is

implemented in native code outside of the Java class in which

it is being declared. Native methods can only be declared in

Java classes, not implemented, so native methods do not have

a body. The native methods have implemented using C++

program in the next following section.

Program 1 – Native Method Declarations

//Java Nativity Threads(JNT)

package JNT.Win32.Kernel;

public class NativeThread{

 public NativeThread(){

 createThread(); }

 public final native void createThread();

 public native void sleep(final long dwMilliseconds);

 public native int getNumberOfProcessor();

 public native int getCurrentThreadId();

 public native void setThreadAffinityMask(NativeThread

hThread,final int mask);

 public void ExecuteNative(){

 /* Parallel code */

 }

}

The NativeThread is defined in package named

JNT.Win32.Kernel. The class NativeThread declared with

native methods, which will be implemented in C++ using JNI.

Since createThread() declared as final native, can be called

without creating an object for NativeThread class. The

NativeThread empty constructor called createThread() to

create a thread, when NativeThread object will be created.

The sleep (final long dwMilliseconds) is used to give waiting

time for a thread, which is used to schedule on windows

process scheduler. The int getNumberOfProcessor() will

return number of processor available in the computer system.

The int getCurrentThreadId() will return current running

thread id, which is assigned by windows process scheduler.

The setThreadAffinityMask(NativeThread hThread,final int

mask) will help to assign affinity mask for a specific thread

and the ExecuteNative() will help to write parallel tasks.

5.2 Compiling java class and creating

native method header

We have compiled the Java code down to bytecode. One way

to do this is to use the Java compiler javac, which comes with

the SDK. The command we used to compile our Java code to

byte code is:

javac NativeThread.java

This command generated a NativeThread.class file in the

JNT.Win32.Kernal directory. The next step, we created

C/C++ header file that defines native function signatures. One

way to do this is we used the native method C stub generator

tool javah.exe, which comes with the SDK. This tool is

designed to create a header file that defines C-style functions

for each native method it found in a Java source code file. The

command we used on JNT.Win32.Kernal directory is:

javah NativeThread

The name of the header file is the class name with “.h”

appended to the end of it. The command shown above

generates a file named JNT_Win32_Kernal_NativeThread.h,

which is show bellow in program 2.

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.24, May 2013

4

Program 2 - JNT_Win32_Kernal_NativeThread.h

/* DO NOT EDIT THIS FILE - it is machine generated */

#include <jni.h>

/* Header for class JNT_Win32_Kernel_NativeThread */

#ifndef _Included_JNT_Win32_Kernel_NativeThread

#define _Included_JNT_Win32_Kernel_NativeThread

#ifdef __cplusplus

extern "C" {

#endif

/* Class: JNT_Win32_Kernel_NativeThread

 * Method: createThread

 * Signature: ()V */

JNIEXPORT void JNICALL

Java_JNT_Win32_Kernel_NativeThread_createThread

 (JNIEnv *, jobject);

/* Class: JNT_Win32_Kernel_NativeThread

 * Method: sleep

 * Signature: (J)V */

JNIEXPORT void JNICALL

Java_JNT_Win32_Kernel_NativeThread_sleep

 (JNIEnv *, jobject, jlong);

/* Class: JNT_Win32_Kernel_NativeThread

 * Method: getNumberOfProcessor

 * Signature: ()I */

JNIEXPORT jint JNICALL

Java_JNT_Win32_Kernel_NativeThread_getNumberOfProce

ssor

 (JNIEnv *, jobject);

/* Class: JNT_Win32_Kernel_NativeThread

 * Method: getCurrentThreadId

 * Signature: ()I */

JNIEXPORT jint JNICALL

Java_JNT_Win32_Kernel_NativeThread_getCurrentThreadId

 (JNIEnv *, jobject);

/* Class: JNT_Win32_Kernel_NativeThread

 * Method: setThreadAffinityMask

 * Signature: (LJNT/Win32/Kernel/NativeThread;I)V */

JNIEXPORT void JNICALL

Java_JNT_Win32_Kernel_NativeThread_setThreadAffinityM

ask

 (JNIEnv *, jobject, jobject, jint);

#ifdef __cplusplus

}

#endif

#endif

The C/C++ function signatures in

JNT_Win32_Kernal_NativeThread.h are quite different from

the Java native method declarations in NativeThread.java.

JNIEXPORT and JNICALL is compiler-dependent specifier

for export functions. The return types are C/C++ types that

map to Java types. The parameter lists of all these functions

have a pointer to a JNIEnv and a jobject, in addition to normal

parameters in the Java declaration. The pointer to JNIEnv is

infact a pointer to a table of function pointers. These functions

provide the various faculties to manipulate Java data in C and

C++. The jobject parameter refers to the current object. Thus,

if the C or C++ code needs to refer back to the Java side, this

jobject acts as a reference, or pointer, back to the calling Java

object. The function name itself is made by the "Java_" prefix,

followed by the fully qualified package name followed by an

underscore and class name, followed by an underscore and the

method name.

5.3 Implementing native methods

The JNI-style header file generated by javah helped us to

write C++ implementations for the native method. When it

comes to writing the C++ function implementation, the

important thing to keep in mind is that our signatures must be

exactly like the function declarations from

JNT_Win32_Kernal_NativeThread.h.

The function that we write must follow the prototype

specified in the generated header file. We implemented the

method in C++ file named NativeThread.cpp as shown in the

following program 3.

Program 3 - NativeThread.cpp

#include <jni.h>

#include "JNT_Win32_Kernel_NativeThread.h"

#include <windows.h>

JavaVM* javaVM = NULL;

JNIEnv* env=0;

DWORD PID,TID;

jclass aThreadCls;

jobject aThreadObj;

HANDLE hThread;

void WINAPI NativeThread(PVOID argv){

 javaVM->AttachCurrentThread((void **)&env, NULL);

 jclass cls = env-> GetObjectClass(aThreadObj);

 jmethodID method = env->GetMethodID(aThreadCls,

"ExecuteNative", "()V");

 env->CallVoidMethod(aThreadObj, method);

 CloseHandle(hThread);

 javaVM->DetachCurrentThread();

}

JNIEXPORT void JNICALL

Java_JNT_Win32_Kernel_NativeThread_createThread

 (JNIEnv *env, jobject obj){

 env->GetJavaVM(&javaVM);

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.24, May 2013

5

 jclass cls = env->GetObjectClass(obj);

 aThreadCls = (jclass) env->NewGlobalRef(cls);

 aThreadObj = env->NewGlobalRef(obj);

 hThread = CreateThread (NULL, 0,

(LPTHREAD_START_ROUTINE) NativeThread, NULL,

NULL, NULL);

}

JNIEXPORT void JNICALL

Java_JNT_Win32_Kernel_NativeThread_sleep

 (JNIEnv *env, jobject obj, jlong wtime){

 Sleep(wtime);

}

JNIEXPORT jint JNICALL

Java_JNT_Win32_Kernel_NativeThread_getNumberOfProce

ssor

 (JNIEnv *env, jobject obj){

 SYSTEM_INFO sysinfo;

 GetSystemInfo(&sysinfo);

 return sysinfo.dwNumberOfProcessors;

}

JNIEXPORT jint JNICALL

Java_JNT_Win32_Kernel_NativeThread_getCurrentThreadId

 (JNIEnv *env, jobject obj){

 TID = GetCurrentThreadId();

 return (jint)TID;

}

JNIEXPORT void JNICALL

Java_JNT_Win32_Kernel_NativeThread_setThreadAffinityM

ask

 (JNIEnv *env, jobject obj, jobject thread, jint mask){

 SetThreadAffinityMask((HANDLE)thread,

(DWORD)mask);

}

The NativeThread.cpp program 3 included with windows.h,

thus windows kernel library can be used to create

NativeThreads. A

Java_JNT_Win32_Kernel_NativeThread_createThread(JNIEn

v *env, jobject obj) method creates thread by calling

CreateThread (NULL, 0, (LPTHREAD_START_ROUTINE)

NativeThread, NULL, NULL, NULL). The parameter

(LPTHREAD_START_ROUTINE) NativeThread will call

the WINAPI NativeThread(PVOID argv) method to execute

task. In WINAPI NativeThread(PVOID argv) method the env-

>GetMethodID(aThreadCls, "ExecuteNative", "()V") is used

to call public void ExecuteNative() method (program 1)

though its signature "()V". Hence this method can have

parallel code implementation at Java application program

side, which will be called by native method and link with

windows kernel to create thread. In order to attach our native

threads with Java main thread, we should get JVM using

JNI’s env->GetJavaVM(&javaVM) method. The env pointer

will allowed to attach thread in WINAPI

NativeThread(PVOID argv) using JNI’s javaVM-

>AttachCurrentThread((void **)&env, NULL). Once thread

execution is finished, first of all thread should be closed using

windows kernel’s CloseHandle(hThread) and we should

detach thread using JNI’s javaVM->DetachCurrentThread().

The Java_JNT_Win32_Kernel_NativeThread_

getNumberOfProcessor (JNIEnv *env, jobject obj) get

number of processor in the current system using windows

kernel’s type definition SYSTEM_INFO sysinfo, which pass

as a parameter in windows kernel’s GetSystemInfo(&sysinfo

). The

Java_JNT_Win32_Kernel_NativeThread_getCurrentThreadId

(JNIEnv *env, jobject obj) calls windows kernel’s

GetCurrentThreadId() method to get current thread id. And

the

Java_JNT_Win32_Kernel_NativeThread_setThreadAffinityM

ask(JNIEnv *env, jobject obj, jobject thread, jint mask) calls

windows kernel’s SetThreadAffinityMask((HANDLE)thread,

(DWORD)mask) method to set the affinity mask for a thread.

Once NativeThread is created, it will start running public void

ExecuteNative() method immediately. While creating native

threads, we have used LPTHREAD_START_ROUTINE

parameter. We never used WaitForMultipleObjects() to wait

for multiple threads. However NativeThreads are running

well. This research finding has openings to have methods of

synchronization and resource sharing such as mutex locks,

critical sections, slim reader/writer locks, semaphores and

events.

5.4 Compiling C++ and creating native

library

We created Dynamic Link Library (DLL) is a shared library

that contains the native code. Most C and C++ compilers can

create shared library files in addition to machine code

executables. The command we used to create the shared

library file for NativeThread.dll using the Microsoft Visual

C++ compiler:

cl -I "\Java\include" -I "\Java\include\win32" -LD

NativeThread.cpp -FeNativeThread.dll

The -LD option instructs the C++ compiler to generate a DLL

instead of a regular Win32 executable.

6. TESTING NATIVE THREAD

PROGRAM

6.1 The Native Thread Model

At this point, we have the two components ready to run the

program. The class file (NativeThread.class) calls a native

method, and the native library (NativeThread.dll) implements

the native method, which is shown in the Fig 1. The following

program 4 is the testing program, NativeThreadTest class

allowed us to run the program on Win32 platform, because we

have used Win32 library through JNI. First of all the program

should be imported with JNT.Win32.Kernal.NativeThread;

this package library included a line of code that loaded a

native library into the program through System.load

("NativeThread.dll"). When program started execution the

public static void main(String[] args) is called JVM to creates

the main thread (green thread). Inside the main() method we

have created eight objects for NativeThreadTest class and of

course we can create any number of supported threads based

on the stack availability. The NativeThreadTest class is

extended with NativeThread, hence we created threads using

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.24, May 2013

6

super(), called the native method createThread() to create

Win32 native threads. Native threads are created through the

NativeThread constructor through instantiation class objects

or inheriting NativeThread class. The JVM attached native

threads with main thread, hence thread are synchronized.

Once thread is created the ExecuteNative() method overrides

automatically called through NativeThread library. The code

described in the ExecuteNative() will perform the job. The

setThreadAffinityMask(this,mask) get current thread to set the

affinity mask for native thread. The affinity mask parameter

can be filled with 0x00000001 for core processor one, like

wise by knowing the number of core processor available in

the system we can use the affinity mask parameter such as

0x00000002, 0x00000003 and etc. Hence native threads can

be scheduled by windows kernel. To know the number of core

processor available in the present system, we can call

getNumberOfProcessor() native method.

Fig 1: Native Thread using JNI

Program 4 – Testing Native Threads

import JNT.Win32.Kernel;

class NativeThreadTest extends NativeThread{

static {

 System.load("c:\\NativeThread.dll"); //loads native

windows kernel thread library

 }

 NativeThreadTest(int mask){

 super(); // creates native thread

 // sets affinity mask for native thread

 setThreadAffinityMask(this,mask); }

@Override

 public void ExecuteNative(){ // runs parallel task

 try{

 for(int i=0;i<5;i++){

 System.out.println("Native Thread-ID\t" +

 getCurrentThreadId() + "\tValue " + i);

 sleep(10);

 }

}catch(Exception e){ System.out.println("Error in

Native Thread"+e); }

 }

public static void main(String[] args) {

try{

 NativeThreadTest nativeThreadTest1 = new

NativeThreadTest(0x00000001);

 NativeThreadTest nativeThreadTest2 = new

NativeThreadTest(0x00000002);

 NativeThreadTest nativeThreadTest3 = new

NativeThreadTest(0x00000003);

 NativeThreadTest nativeThreadTest4 = new

NativeThreadTest(0x00000004);

 NativeThreadTest nativeThreadTest5 = new

NativeThreadTest(0x00000005);

 NativeThreadTest nativeThreadTest6 = new

NativeThreadTest(0x00000006);

 NativeThreadTest nativeThreadTest7 = new

NativeThreadTest(0x00000007);

 NativeThreadTest nativeThreadTest8 = new

NativeThreadTest(0x00000008);

 }catch(Exception e){ System.out.println("Error in

Main Thread"+e); }

 } }

It is important to set our native library path correctly for our

program to run. The native library path is a list of directories

that the Java virtual machine searches when loading native

libraries. If we do not have a native library path set up

correctly, then we see an error similar to the following:

java.lang.UnsatisfiedLinkError: no NativeThread in library

path

at java.lang.Runtime.loadLibrary(Runtime.java)

at java.lang.System.loadLibrary(System.java)

at Main.main(Main.java)

We should make sure that the native library resides in one of

the directories in the native library path. We can specify the

native library path on the java command line as a system

property as follows:

java -Djava.library.path=. NativeThread

The “-D” command-line option sets a Java platform system

property. Setting the java.library.path property to “.” instructs

the Java virtual machine to search for native libraries in the

current directory. The sample output of the program as

follows

Native Thread-ID 4776 Value 0

Native Thread-ID 1772 Value 0

Native Thread-ID 180 Value 0

Native Thread-ID 4156 Value 0

Native Thread-ID 2776 Value 0

Native Thread-ID 5388 Value 0

Native Thread-ID 4480 Value 0

Native Thread-ID 4584 Value 0

… ……. …

Native Thread-ID 4156 Value 4

Native Thread-ID 4776 Value 4

JVM

Java Application Main Class
JNT.Win32.NativeThread Class

public void ExecuteNative() { //parallel code }

•NativeThread.dll

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.24, May 2013

7

Native Thread-ID 1772 Value 4

Native Thread-ID 2776 Value 4

Native Thread-ID 4584 Value 4

Native Thread-ID 4480 Value 4

Native Thread-ID 180 Value 4

Native Thread-ID 5388 Value 4

This program executed and evaluated using netbeans IDE

profiler on two different multi-core environments by selecting

different affinity on CPU and adding few more threads with

different iterations. The sample thread profiles are given

bellow.

In the above all figures states performance analysis and

memory analysis of NativeThreads. The green colours lines in

performance analysis are running threads, red colour lines on

the green lines are thread monitoring. The same job has been

given to core i5 and i7 processor, in which it is clearly stating

above. In memory analysis figure, red colour is available

stack memory and the violet colour is used stack.

6.2 Hybrid Thread Model

The Java thread (green thread), which can be created through

java.lang.Thread class and the native thread (NativeThread.dll

library) can be attached with Java main thread (see Fig 6.)

Therefore in same program we have native thread as well as

green thread. This articulate more than one thread execution

method used in Java, which means public void run() and

public void ExecuteNative() method implemented in parallel.

Hence, Flynn’s Multiple Program Single Data (MPSD) [10]

and Multiple Program Multiple Data (MPMD) [11]

programming models can be utilized well though Java

programs. The program 5 describes hybrid thread by creating

thread using Thread class and NativeThread class

.

Fig. 6: Hybrid Thread using JNT in Java

Program 5 - Hybrid Thread Model

import JNT.Win32.Kernel;

class HybridThread extends NativeThread implements

Runnable {

 Thread t;

 NativeThread nt;

 static {

 System.load("c:\\NativeThread.dll"); //loads native windows

kernel thread library

 }

 HybridThread(int mask){

JVM

Java Application Main Class
JNT.Win32.NativeThread Class

public void ExecuteNative() {
//parallel code }

• NativeThread.dll

java.lang.Thread Class

public void run(){ //parallel code }

Performance Analysis

Memory Analysis

Fig. 5: Core i5 with 8 Native Threads (1000 iterations)

Performance Analysis

Memory Analysis

Fig. 4: Core i7 with 8 Native Threads (1000 iterations)

Performance Analysis

Memory Analysis

Fig. 3: Core i5 with 8 Native Threads (100 iterations)

Performance Analysis

Memory Analysis

Fig. 2: Core i7 with 8 Native Threads (100 iterations)

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.24, May 2013

8

 super(); // creates native thread

 setThreadAffinityMask(nt,mask); //sets affinity mask for

native thread

 t=new Thread(this); // creates Java thread

 setThreadAffinityMask(this,mask); // sets affinity mask for

Java thread

 t.start(); // starts Java thread

 }

@Override

 public void ExecuteNative(){ // call from NativeThread class

 try{

 for(int i=0;i<5;i++){

 System.out.println("Native Thread-ID\t" +

 getCurrentThreadId() + "\tValue " + i);

 sleep(10);

 }

}catch(Exception e){ System.out.println("Error in

Native Thread"+e); }

 }

 public void run(){ // call from Thread class

 try{

 for(int i=0;i<5;i++) {

 System.out.println("Green Thread-ID\t\t" + t.getId()

 + "\t\tValue " + i);

 sleep(10);

 }

} catch(Exception e){ System.out.println("Error in

Green Thread"+e); }

 }

 public static void main(String[] args) {

 try{

 HybridThread t1 = new HybridThread(0x00000001);

 HybridThread t2 = new HybridThread(0x00000002);

 HybridThread t3 = new HybridThread(0x00000003);

 HybridThread t4 = new HybridThread(0x00000004);

 }catch(Exception e){System.out.println("Error in Main

Thread"+e);}

 }

}

The sample output is given bellow

Native Thread-ID 712 Value 0

Green Thread-ID 9 Value 0

Native Thread-ID 5940 Value 0

Green Thread-ID 10 Value 0

Green Thread-ID 12 Value 0

Native Thread-ID 1220 Value 0

Native Thread-ID 3404 Value 0

Green Thread-ID 13 Value 0

… ……. …

Green Thread-ID 12 Value 4

Native Thread-ID 5940 Value 4

Green Thread-ID 10 Value 4

Green Thread-ID 13 Value 4

Native Thread-ID 1220 Value 4

Green Thread-ID 9 Value 4

Native Thread-ID 712 Value 4

Native Thread-ID 3404 Value 4

This program executed and evaluated using netbeans IDE

profiler on two different multi-core environments by selecting

different affinity on CPU and adding few more threads with

different iterations. The sample thread profiles are given

bellow.

Performance Analysis

Memory Analysis

Fig. 8: Core i5 with 8 Hybrid Threads (100 iterations)

Performance Analysis

Memory Analysis

Fig. 7: Core i7 with 8 Hybrid Threads (100 iterations)

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.24, May 2013

9

In the above all figures states performance analysis and

memory analysis of NativeThreads. The green colours lines in

performance analysis are running threads, red colour lines on

the green lines are thread monitoring. The same job has been

given to core i5 and i7 processor, in which it is clearly stating

above. In memory analysis figure, red colour is available

stack memory and the violet colour is used stack.

7. CONCLUSION

The basic unit of scheduling is generally the thread; if a

program has only one active thread, it can only run on one

processor at a time. If a program has multiple active threads,

then multiple threads may be scheduled at once. In a well-

designed program, using multiple threads can improve

program throughput and performance. Threading is a facility

to allow multiple activities to coexist within a single process.

This research finding focuses on how Java can facilitate

win32 kernel threads (Java Native Threads-JNT) through JNI,

which enables Java threads and native threads to schedule and

execute in hybrid mode. As a result, this research strongly

recommending for Flynn’s Multiple Program Multiple Data

(MPMD) and Multiple Program and Single Data (MPSD)

through method level concurrency.

8. REFERENCES

[1] Apple Developer, Concurrency Programming Guide,

http://developer.apple.com/library/mac/

documentation/General/Conceptual/ConcurrencyProgra

mmingGuide/ConcurrencyProgrammingGuide.pdf

[2] Richard h. Carver, Kuo-chung tai, Modern

Multithreading Implementing, Testing, and Debugging

Multithreaded Java and C++/Pthreads/Win32 Programs,

John Wiley & Sons, ISBN 13 978-0-471-72504-6, 2006

[3] Scott Oaks & Henry Wong, Java Threads, 2nd edition,

O'reilly, ISBN 1-56592-418-5, 1999

[4] James Gosling, Bill Joy, Guy Steele, Gilad Bracha and

Alex Buckley, The Java™ Language Specification: Java

SE 7 Edition, Oracle America Inc, 2011

[5] Java Native Interface,

http://java.sun.com/javase/6/docs/technotes/guides/jni/in

dex.html

[6] Sheng Liang, The Java™ Native Interface Programmer’s

Guide and Specification, Sun Microsystems Inc, ISBN 0-

201-32577-2, 1999

[7] Windows Kernel Library (Win32),

http://msdn.microsoft.com

[8] Bala Dhandayuthapani Veerasamy, Dr. G.M. Nasira,

Setting CPU Affinity in Windows Based SMP Systems

Using Java, International Journal of Scientific &

Engineering Research, USA, Volume 3, Issue 4, pp 893-

900, April 2012, ISSN 2229-5518.

[9] Get started with JNA, https://jna.dev.java.net

[10] Bala Dhandayuthapani Veerasamy, Concurrent

Approach to Flynn’s MPSD Classification through Java,

International Journal of Computer Science and Network

Security, Korea, ISSN 1738-7906, Vol. 10 No. 1 pp.

126-129,30-January-2010.

Performance Analysis

Memory Analysis

Fig. 10: Core i5 with 8 Hybrid Threads (1000

iterations)

Performance Analysis

Memory Analysis

Fig. 9: Core i7 with 8 Hybrid Threads (1000iterations)

http://developer.apple.com/library/mac/documentation/General/Conceptual/ConcurrencyProgrammingGuide/ConcurrencyProgrammingGuide.pdf
http://developer.apple.com/library/mac/documentation/General/Conceptual/ConcurrencyProgrammingGuide/ConcurrencyProgrammingGuide.pdf
http://developer.apple.com/library/mac/documentation/General/Conceptual/ConcurrencyProgrammingGuide/ConcurrencyProgrammingGuide.pdf
http://java.sun.com/javase/6/docs/technotes/guides/jni/index.html
http://java.sun.com/javase/6/docs/technotes/guides/jni/index.html
http://msdn.microsoft.com/
https://jna.dev.java.net/

