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ABSTRACT 

The level set method was devised by Osher and Sethian [2] in 

as a simple and versatile method for computing and analyzing 

the motion of an interface Γ in two or three dimensions. Γ 

bounds a region Ω. The goal is to compute and analyze the 

subsequent motion of Γ under a velocity field v [1]. This 

velocity can depend on position, time, the geometry of the 

interface and the external physics. The interface is captured 

for later time as the zero level set of a smooth function ϕ(x, t), 

i.e., Γ (t) = {x|ϕ(x, t) = 0}. ϕ is positive inside Ω, negative 

outside Ω and is zero on Γ (t) [1]. This paper presents a 

reaction-diffusion method used to describe a physico-

chemical phenomenon that comprises two elements, namely 

chemical reactions and diffusion for implicit active 

contours[21][37][39][40], which is completely free of the 

costly re-initialization procedure in level set evolution (LSE). 

A diffusion term is introduced into LSE, resulting in a 

diffusion-augmented level set method with efficient two step 

implementation. First we iteratively solve the diffusion term 

and then iteratively solve the level set equation. By solving 

equation in two steps we can stabilize the level set function 

without re-initialization. This is also called two step splitting 

method for image segmentation. 

General Terms 

Image segmentation, two step splitting method, partial 

differential equation, active contour 

Keywords 

Level set method, image segmentation, diffusion; level set 

evolution, re-initialization, signed distance function  

1. INTRODUCTION 

Level set methods have seen tremendously applications in 

many areas over the past decade [13]. This has been made 

possible by the exibility of the level set formulation in dealing 

with dynamic evolutions and topological changes of curves 

and surfaces, and by the mathematical theory and numerical 

tools developed in studying these methods[15][18][23]. The 

level set methods (LSM) can be categorized into partial 

differential equation (PDE) based ones and variational ones. 

Level set method was first introduced by Osher and Sethian, 

and has become a more and more popular theoretical and 

numerical framework within image processing, fluid 

mechanics, graphics, computer vision, etc.[2] The level set 

method is basically used for tracking moving fronts [1-2] by 

considering the front as the zero level set of an embedded 

function, called the level set function. In image processing, it 

is used for propagating curves in 2D or surfaces in 3D. The 

applications of the level set method cover most fields in image 

processing, such as noise removal, image inpainting, image 

segmentation and reconstruction [13]. In image segmentation, 

the level set method has some advantages compared to the 

active contour model. The level set method conquers the 

difficulties of topological transformations. The level set 

approach is able to handle complex topological changes 

automatically [2].To stop evolution of level set function 

traditionally we are usually find gradient of given image [26], 

which is less efficient. Later in advancement of level set 

method, we used different approach to stop evolution of level 

set function. Chan and Vese , the authors propose a different 

active contour model that based on the Mumford-Shah 

functional for segmentation [14], which does not use gradient 

to stop the evolution. In addition, by using this model and its 

level set formulation, interior contours are automatically 

detected, and the initial curve can be anywhere in the image. 

The liberty of formulation of these level set methods gives us 

countless possibilities.In recent years, some variational level 

set [6] formulations have been proposed to regularize the LSF 

during evolution, and hence the re-initialization procedure can 

be eliminated. These variational LSMs without re-

initialization have many advantages over the traditional 

methods, including higher efficiency and easier 

implementation. Chunming Lia proposed new variational 

formulation for geometric active contours that forces the level 

set function to be close to a signed distance function [8], and 

therefore completely eliminates the need of the costly re-

initialization procedure. Other problems of Intensity 

inhomogeneities occur in real-world images and may cause 

considerable difficulties in image segmentation. Chunming Li 

a new variational level set formulation in which the regularity 

of the level set function such that the derived level set 

evolution has a unique forward-and-backward (FAB) 

diffusion effect, which is able to maintain a desired shape of 

the level set function, particularly a signed distance profile 

near the zero level set. This yields a new type of level set 

evolution called distance regularized level set evolution 

(DRLSE) [41].This paper presents a reaction-diffusion 

method used to describe a physico-chemical phenomenon that 

comprises two elements, namely chemical reactions and 

diffusion for implicit active contours, which is completely 

free of the costly re-initialization procedure in level set 

evolution (LSE). A diffusion term is introduced into LSE, 

resulting in a diffusion-augmented level set method with 

efficient two step implementation, thus re-initialization 

procedure is completely eliminated from LSE. The rest of the 

paper is organized as follows. Section 2 introduces the 

background and related works. Section 3 presents the 

Reaction-diffusion systems on moving surfaces. Section 4 

implements Diffusion based LSM, and analyzes the 

consistency between theory and implementation. Section 5 

presents experimental results and Section 6 concludes the 

paper. 
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2. BACKGROUND AND RELATED 

WORKS 

The original idea behind the level set method was a simple 

one. Given an interface Γ in Rn of codimension one, bounding 

a open region Ω [1], we wish to analyze and compute its 

subsequent motion under a velocity field 𝑣 . This velocity can 

depend on position, time, the geometry of the interface e.g. its 

normal or its mean curvature and the external physics. The 

idea, as devised in 1987 by S. Osher and J.A. Sethian [2]  is 

merely to define a smooth function ϕ(x, t), that represents the 

interface as the set where ϕ(x, t) = 0. Here x = x (x1. . . xn) 𝜖 

Rn. The level set function ϕ has the following properties 

                          ϕ(x, t) > 0 for x  𝜖 Ω 

                          ϕ(x, t) < 0 for x  ∉ 𝛺  

                          ϕ(x, t) = 0 for x  𝜖 ∂Ω= Γ(t)         (1) 

 

 

 

 

 

 

 

Fig 1: implicit and explicit regions 

Hence we can identify the interface by locating the set for 

which Γ(t) for which ϕ vanishes. These phenomena can be 

useful for numerical computation, primarily for topological 

changes such as breaking and merging [1][2][3]. The motion 

is analyzed by convecting the ϕ values (levels) with the 

velocity field𝑣 . This elementary equation is  

                            
dφ

dt
 + 𝑣 . 𝛻𝜑 = 0.                       (2) 

Here 𝑣  is the desired velocity on the interface, and is arbitrary 

elsewhere. Actually, only the normal component of v is 

needed: VN = 𝑣  ·𝛻𝜑 , so (1) becomes 

                                    
dφ

dt
 + VN. 𝛻𝜑 = 0.                       (3) 

Since F is defined as the speed in the outward normal 

direction, then 𝑥 · n = F, where n =
Δ𝜑

 Δ𝜑 
. This yields an 

evolution equation for 𝜑:  

                                      
dφ

dt
 + F.  𝛻𝜑 = 0.                            (4) 

This equation is defined by the authors “osher and sethian”[2]. 

Using this equation we can find the topological changes using 

iteration methods. One disadvantage of this level set method 

is that level set function (LSF) becomes to flat or too steep 

near the zero level set, causing numerical errors [15][23]. This 

problem can be solved by re-initializing the level set function 

and repeat the same procesedure until find the desired level 

set. 

2.1 Re-initialization: 

Using re-initialization method we can find topological 

changes in the image like merging and splitting. a procedure 

called re-initialization is periodically employed to reshape it 

to be an SDF [2][8][41]. This method is used extensively with 

level set method for stable numerical solution. The standard 

re-initialization method is to solve the following re-

initialization equation, 

                       φt + Sign(φ0 )(1-|∇φ|) = 0                      (5) 

Where φ0 is the function to be re-initialized, and sign(φ) is the 

sign function. If φ0 is not smooth or is too steeper at one side 

of the interface than the other, the resulting zero level set 

function may be incorrect from that of the original function. If 

signed distance function is far away from the level set 

function then it becomes difficult to re-initialize the level set 

function to be signed distance function [9]. In practice, the 

evolving level set function can deviate greatly from its value 

as signed distance in a small number of iteration steps, 

especially when the time step is not chosen small enough. Re-

initialization has been extensively used as a numerical remedy 

for maintaining stable curve evolution and having desirable 

results. The re-initialization process can be quite complicated, 

expensive and have subtle side effects. Most of the level set 

methods are fight with their own problems, such as when and 

how to re-initialize the level set function to a signed distance 

function.    

2.2 Signed distance function: 

As to get stable and accurate evolution of topological changes 

we are initializing the level set function as signed distance 

function. Osher and Sethian proposed to initialize the LSF as 

φ(x) =1±dist2(x), where dist(⋅) is a distance function and “±” 

denotes the signs inside and outside the contour [9]. Later, 

Mulder et al.initialized the LSF as φ(x)=±dist(x), which is an 

SDF that can result in accurate numerical solutions.re-

initialization methods do not directly compute the SDF since 

the solution of |∇φ|=1 is itself an SDF [28]. In, the following 

re-initialization equation was proposed 

                         φt + S(φ0 )(|∇φ| −1) = 0                         (6) 

Where S(φ0 )≜ 
φ

 φ2+ ∇φ 2.(∆x)2
 , φ0 is the initial LSF and Δx is 

the spatial step. Unfortunately, if the initial LSF φ0 deviates 

much from an SDF, Eq. will fail to yield a desirable final 

SDF.  

As re-initialization has many drawbacks such as the expensive 

computational cost, blocking the emerging of new contours, 

failures when the LSF deviates much from an SDF, and 

inconsistency between theory and implementation. Solution to 

this problem is proposed to regularize the variational LSF to 

eliminate the re-initialization procedure. Li proposed the 

distance regularized level set evolution (DRLSE) method for 

accurate evolution of LSF [41]. Li et al. proposed a signed 

distance penalizing energy functional: 

                   P(φ) =  (|∇φ|  − 1)
Ω

2 𝑑𝑥                     (7) 

This equation measures the closeness between an LSF φ and 

an SDF in the domain Ω⊂Rn .Although DRLSE methods have 

many advantages over re-initialization methods, such as 

higher efficiency and easier implementation, they still have  

Table 1: Comparison of different level set method 

the following drawbacks as limited application to PDE-based 

LSMs, limited anti-leakage capability for weak boundaries, 

and sensitivity to noise. By adding the diffusion term into 

level set method equation and evaluate it in two steps we can 

get better accuracy and stability in image segmentation and it 

becomes free from costly re-initialization procedure. 

ℜn 

Φ<0 
   Φ>0 

Φ>0 
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3. REACTION-DIFFUSION SYSTEM ON 

MOVING SURFACES 

The term reaction-diffusion system is basically related to 

physico-chemical phenomenon that comprises two elements, 

namely chemical reactions and diffusion [16][21]. A chemical 

reaction system consists of N species (x1. . . xn) (e.g. 

molecules) together with M reaction channels, (r1. . . rm). Each 

reaction channel defines the stoichiometry of a reaction  

                 rm : ∝𝑖 im Xi  

𝑘𝑚
    𝛽𝑗 jm Xj                                (8) 

This describes the idea that whenever the species i come 

together with molar concentrations ∝i, they are interconverted 

to the species j with molar concentrations 𝛽j with a specific 

reaction rate km. Using the law of mass action , one can derive 

a system    

                              
𝑑𝑐

𝑑𝑡
  =    k𝑀

1 m  (𝛽im - ∝im )                   (9) 

or in matrix notation 

                                   
𝑑𝑐

𝑑𝑡
 =  MS . r(t)                               (10) 

Where MS is the stoichiometric matrix and r the rate vector 

describing the speed of each reaction. 

The second phenomenon, diffusion, refers to the process of 

thermal motion of molecules [38][39][40]. It is the process by 

which for example warm and cold water intermingles until the 

water has a uniform temperature (at thermal equilibrium) or 

by which a fragrant smell spreads in a room. The general 

macroscopic diffusion equation for species i = 1, 2,….N is 

                                      
𝑑𝑐

𝑑𝑡
= ∇.(Di∇ci )                             (11) 

where Di denotes the diffusion tensor of species i, a matrix 

that defines how well the molecule i diffuses into the different 

spatial directions.  

Combining equations and , we get the so called reaction-

diffusion equation. The equations for a reaction-diffusion 

system on a surface Γ⊂ Ω ⊆ R3 are then 

                         
 𝑑𝑐

𝑑𝑡
= Ri(C) + Di∆Γci                   i = 1,2……N; 

Since the zero level is used to represent the object contour, we 

only need to consider the zero level set of the LSF. We can 

use a function with different phase fields as the LSF. 

Motivated by the phase transition theory, by adding a 

diffusion term into the conventional LSE equation. Such an 

introduction of diffusion to LSE will make LSE stable without 

re-initialization. By adding a diffusion term “εΔφ” into the 

LSE equation, we have the following RD equation for LSM: 

             φt = εΔφ - 
1

ε
 L(φ), x ∈ Ω ⊂ Rn 

4. TWO STEP DIFFUSION BASED LSM 

A Two step algorithm to implement Diffusion has been 

proposed in to generate the curvature-dependent motion. In 

the reaction function is first forced to generate a binary 

function with values 0 and 1, and then the diffusion function 

is applied to the binary function to generate curvature- 

dependent motion. Different from, where the diffusion 

function is used to generate curvature-dependent motion, in 

our proposed LSM, the LSE is driven by the reaction function, 

i.e., the LSE equation. Therefore, we propose to use the 

diffusion function to regularize the LSF generated by the 

reaction function. To this end, we propose the following two 

step method to solve the equation. 

Step 1: Solve the reaction term till some time Tr to obtain the 

intermediate solution, denoted by φn+1/2 =φn; 

Step 2: Solve the diffusion term φt =εΔφ, φ(x,t=0) = φn+1/2 

till some time Td , and then the final level set is φn+1 

=φ(x,Td). 

 

4.1 PROPOSED ALGORITHM: 

1. Read image 

2. Apply Gaussian kernel for smoothing  

Comparison of different level set  method 

SR 

NO

. 

TITTLE Proposed Method 

1 An Efficient Algorithm for 

Level Set Method 

Preserving Distance 

Function  

 

Fast algorithm to preserve 

distance functions in level 

set methods. algorithm is 

inspired by recent 

efficient ℓ1optimization 

techniques  

2 Re-initialization Free Level 

Set Evolution via Reaction 

Diffusion 

 

This paper presents a novel 

reaction diffusion (RD) 

method for implicit active 

contours, which is 

completely free of the 

costly re-initialization 

procedure in level set 

evolution (LSE). A 

diffusion term is 

introduced into LSE, 

resulting in a RD-LSE 

equation. 

3 Distance Regularized Level 

Set Evolution and Its 

Application to Image 

Segmentation 

The DRLSE defined with a 

potential function such that 

the derived LSE has a 

unique forward-and-

backward (FAB) diffusion 

effect, which is able to 

maintain a desired shape of 

the LSF, particularly a 

signed distance profile 

near the zero level set.  

4 A Level Set Method for 

Image Segmentation in the 

Presence of Intensity 

Inhomogeneities With 

Application to MRI 

 

 

 

 

This paper proposes a 

novel region-based method 

for image segmentation, 

which is able to deal with 

intensity in homogeneities 

in the segmentation. 

5 Modified Gradient Search 

for Level Set Based Image 

Segmentation 

 

Active contours, gradient 

methods: (1) resilient 

propagation (Rprop)  (2) 

using a momentum term  

image segmentation, level 

set method, machine 

learning, optimization, 

variational problems. 
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This paper proposes a 

novel region-based method 

for image segmentation, 

which is able to deal with 

intensity in homogeneities 

in the segmentation. 

5 Modified Gradient Search 

for Level Set Based Image 

Segmentation 

 

Active contours, gradient 

methods: (1) resilient 

propagation (Rprop)  (2) 

using a momentum term  

image segmentation, level 

set method, machine 

learning, optimization, 

variational problems. 
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3. Implementation of Dirac function δ(x) 

4. Selection of Time Step value 

5. Implementation of penalizing energy term P(\phi) For 

implementation of penalizing) energy term P(\phi) Set 

following parameter 

 u0: level set function to be updated 

 g: edge indicator function 

 lambda: coefficient of the weighted length term L(\phi) 

 mu: coefficient of the internal (penalizing) energy term 

P(\phi) 

 alf: coefficient of the weighted area term A(\phi), choose 

smaller alf  

 epsilon: the papramater in the definition of smooth Dirac 

function, default value 1.5 

 delt: time step of iteration, see the paper for the selection of 

time step and mu  

 numIter: number of iterations.  

6. Define initial level set function  

The initial LSF 

               Φ0(x1,x2) =   x1 − 50 2 + (𝑥2 − 50)2 - 30     

7. Start level set evolution 

8. Optimization of results (final contour detection.) 

5. EXPERIMENTAL RESULTS 

 

Fig 2: (a) Testing image. red circle represents the initial 

contour and Middle slices of level set function during LSE. 

(b) The final LSFs .The initial LSF is Φ0(x1, x2) = 

  𝐱𝟏 − 𝟓𝟎 𝟐 + (𝒙𝟐 − 𝟓𝟎)𝟐 - 30. Δt1=Δt2=0.1, Δx1=Δx2=1. 

The number of iterations is 100.

 

Fig 3: (a) Testing image. (b) The final LSFs. image size = 

225 x 225 , type: bmp ,Time step(∆𝑻)= 1, Mu (𝝁) =0.2/∆𝑻 , 

Lambda (𝜸)= 5, Alpha (∝)= -0.3, Epsilon (∈)=1.5, Sigma 

(𝝈)= 0.8, iteration = 1500, segment time= 2.03.04 second  

 

Fig 4: (a) Testing image. (b) The final LSFs. Image size = 

127 x 96, type: bmp, Time step (∆𝑻) = 1, Mu (𝝁) =0.2/∆𝑻 , 

Lamda (𝜸)= 5, Alpha (∝)= -0.3, Epsilon (∈)=1.5, Sigma 

(𝝈)= 0.8, iteration = 1500, segment time= 1.36.08 second 
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Fig 5: Two step diffusion based LSM method (a) middle 

slices of the LSFs in iterations (b) the final LSFs. We set 

Δt1=Δt2=0.1.

 

 

Fig 6: DRLSE method (a) middle slices of the LSFs in 

iterations (b) the final LSFs. We set Δt1=Δt2=0.1.  

 

Table 2: Comparison of experimental results of Diffusion 

based LSM and DRLSE method. 

6. CONCLUSION 

The Two step diffusion based LSM is general, which can be 

applied to the PDE-based level set methods and variational 

ones. Second, method has much better performance on weak 

boundary anti-leakage. Third, the implementation of the 

method is very simple and it does not need the upwind 

scheme at all. Fourth, this method is robust to noise. The 

experiments on synthetic and real images demonstrated the 

promising performance of our approach. 
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