On γ-Induced Fuzzy Supra Topological Spaces and Fuzzy Supra γ-S-closed Spaces

Baby Bhattacharya Assistant Professor Department of Mathematics NIT Agartala

ABSTRACT

The aim of this paper is to study some properties of γ -induced fuzzy supra topological spaces by utilizing γ -lower semicontinuous functions. Next the connection between properties of a topological space (X,T) and γ -induced fuzzy supra topological space (X,S $_{\gamma}(\tau)$) are studied. Finally the concept of fuzzy supra γ -sclosed space with the notion of fuzzy supra γ -semi open set are introduced.

General Terms

Fuzzy Topological Spaces

Keywords

Topology, Induced fuzzy topology, γ -induced fuzzy supra topological space, fuzzy supra γ -semi open set, fuzzy supra γ -S-closed space.

1. INTRODUCTION

In 1975, Weiss introduced the concept of induced fuzzy topological space with the notions of a lower semi-continuous function. The concept of induced fuzzy supra topological space introduced by Bhaumik and Mukherjee [7], was defined with the notion of s-lower semi continuous functions. The class of b-open sets in the sense of Andrijevic [2] was discussed by El-Atik [10] under the name of γ -open sets. The family of all γ -open sets of X will denoted by $\gamma O(X)$.

The aim of this paper is to introduce a new fuzzy supra topological space (γ -IFST space) which is defined with the generalized concept of γ -continuous functions. The relation between the IFTS (X, $\omega(T)$) and the γ -IFST space

 $(X, S_{\gamma}(T))$ are also studied. In this paper 1_A denotes the

characteristic function of an ordinary subset A. The following definitions and results are studied for ready refferences :

(a) A subset A of a topological space X is said to be γ -open [8] if $A \subset Cl(IntA) \cup Int(ClA)$.

(b) A function $f:(X,T) \rightarrow (Y,G)$ from a topological space (X,T) to another topological space (Y,G) is said to be

 γ -continuous [10] if the preimage of every open subset of Y is γ -open in X.

(c) A function $f: (X,T_1) \rightarrow (Y,T_2)$ is called γ -irresolute [6] iff the inverse image $f^{-1}(A)$ is γ -open in (X,T_1) for every γ -open in A in Y.

(d) A function $f:(X,T) \rightarrow (R,u)$ is said to be lower semi continuous [25] at a point x_0 of X iff for each $\varepsilon > 0$, there exists an open neighbourhood $N(x_0)$ such that for every

 $x \in N(x_0)$ implies $f(x) > f(x_0) - \varepsilon$

Sunny Biswas Research Scholar Department of Mathematics NIT Agartala

(e) Let (X,T) be a topological space. The collection $\omega(T)$ of all lower semi continuous functions $f:(X,T) \rightarrow I$ forms a fuzzy topology on X. Then $(X, \omega(T))$ is known as induced fuzzy topological space (IFTS)[11].

(f) If $A \in T$ then $1_A \in \omega(T)$ [25].

(g) $\lambda \in \omega(T)$ iff for each $r \in I$ the strong r-cut $\sigma_r(\lambda) \in T$ [25]

where $\sigma_r(\lambda) = \{x : \lambda(x) > r\}$.

In [12] Mukherjee and Ghosh defined a fuzzy topological space X to be fuzzy S-closed iff every cover of X by fuzzy semiopen sets admits a finite subfamily whose fuzzy closures cover the space.

(h) A topological space (X,T) is S-closed [24] iff every semiopen cover of X has a finite subcover.

(i) A collection U of fuzzy sets in a fuzzy topological space (X,τ) is said to be a fuzzy cover [4] of X iff $\lor U = 1_X$.

(j) A fuzzy topological space (X,τ) is said to be a fuzzy Sclosed [12] iff every cover of X by fuzzy semi open [3] sets admits a finite subfamily whose fuzzy closures covers the space.

(**k**) Let (X,τ) be a topological space. The family of all s-lower semi continuous functions from this topological space (X,τ) to the closed unit interval I form a fuzzy supra topology on X [7].

(1) The fuzzy supra topology obtained in above is called induced fuzzy supra topology [7] and the space (X,S (τ)) is called the induced fuzzy supra topological space. The members of S (τ) are called fuzzy supra open subsets.

(m) Let α belongs to the induced fuzzy supra topological space (X,S (τ)) i.e $\alpha \in (X,S(\tau))$. Then α is called fuzzy supra semi-open [21] iff there exists a fuzzy supra open subset β of (X, S (τ)) such that $\beta \subset \alpha \subset cl \beta$.

If A is semi-open in (X, τ) then 1_A is fuzzy supra semi-open in $(X, S(\tau))$ [7].

2. γ-INDUCED FUZZY SUPRA TOPOLOGICAL SPACES

In this section a new concept of fuzzy supra topological space (γ -IFST space) is introduced by utilizing γ -lower semi continuous (γ -LSC) functions. In ordinary topological space (X,T) Bhattacharya and Biswas [6] defined γ -open neighbourhood as follows :

Let p be a point in (X,T). A subset N of X is a γ -open neighbourhood of p iff N is a superset of a γ -open set S containing $p: p \in S \subset N$, where S is a γ -open set in (X,T).

2.1 Definition

A function $f: X \rightarrow R$ from a topological space to the real number space is said to be γ -lower semi continuous (γ -LSC) [

 γ -upper semi continuous (γ -USC)] at a point x_0 of X iff for each $\varepsilon > 0$, there exists an γ -open neighbourhood $N(x_0)$ such

that $x \in N(x_0)$ implies $f(x) > f(x_0) - \varepsilon$ [resp. $f(x) < f(x_0) + \varepsilon$].

2.2 Result

(i) The necessary and sufficient condition for a real valued function f to be γ -LSC is that for all $r \in R$, the set $\{x \in X : f(x) > r\}$ is γ -open.

Proof

Let f be γ -lower semi continuous and $x_0 \in X$. $N(x_0)$ be a γ -

open neighbourhood of $x_0 \in X$. Then $f(x_0)$ is a real number and so that $f(x_0) - \varepsilon$ is a fixed real number in R for a point $x_0 \in X$. By definition $f(x) > f(x_0) - \varepsilon = r$ (say) for all $x \in N(x_0)$.

Now the set of all points x for which f(x) > r is γ -open. Consequently $\{x \in X : f(x) > r\}$ is γ -open.

Conversely, let $\{x \in X : f(x) > r\}$ is γ -open. Let x_0 be any point

in X. Let us choose a real number ε such that $f(x_0) - \varepsilon = r \in \mathbb{R}$.

From the given condition $\{x \in X : f(x) > f(x_0) - \varepsilon\}$ is γ -open which implies that if $\{x \in A \subseteq X\}$ is γ -open, the condition $f(x) > f(x_0) - \varepsilon$ is true which shows that f is γ -lower semi continuous.

(ii) The necessary and sufficient condition for a real valued function f to be γ -LSC is that for all $r \in R$, the set $\{x \in X : f(x) \le r\}$ is γ -closed, being the complement of γ -open.

(iii) The function f from a space (X,T) to a space (R,σ') where $\sigma' = (r,\infty): r \in R$ is γ -LSC iff the inverse image of

every open subset of (R, σ') is γ -open in (X,T).

(iv) The characteristic function of a γ -open set is γ -LSC.

Proof

Let A be a γ -open set. The characteristic function I_A of A is defined as $1 < \infty \leq 1$, if $x \in A$

defined as $1_A(x) = \begin{cases} 1, & \text{if } x \in A \\ 0, & \text{if } x \in X - A \end{cases}$

We have to show that I_A is γ -lower semi continuous that is $\{x:I_A(x) = r\}$ is γ -closed for each r in R.

For r < 0 the set $\{x: I_A(x) = r\} = \varphi$ which is closed and hence γ -closed.

For 0 = r < 1 the set $\{x: I_A(x) = r\} = X$ -A which is γ -closed being the complement of a γ -open set A.

For r = 1, $\{x: I_A(x) = r\} = X$ which is closed and hence γ -closed.

Hence the theorem.

(v) If f is an arbitrary family of γ -LSC functions then the function g, defined $g(x) = \sup_i f_i(x)$ is γ -LSC.

Proof

Let x_0 be any point of X. Since each f_i is γ -LSC for any $\varepsilon > 0$ there exists a γ -open neighbourhood $N_i(x_0)$ such that $x \in N_i(x_0) \Rightarrow f_i(x) > f_i(x_0) - \varepsilon$. Since the arbitrary union of γ -open sets is γ -open. We have, $\bigcup_{i=1}^n N_i(x_0)$ is γ -open neighbourhood of x_0 .

Now, if $x \in \bigcup N_i(x_0)$ then for all i, $f_i(x) > f_i(x_0) - \varepsilon$ whence $g(x) = \sup_i f_i(x) > \sup_i f_i(x_0 - \varepsilon) = g(x_0) - \varepsilon$. This proves g is γ -LSC.

The intersection of two γ -open sets may not be γ -openas shown in the following example.

Example.

Let $X = \{a, b, c\}$ and $T = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$.

We observe that $\{b,c\}$ and $\{a,c\}$ are γ -open sets. But their intersection $\{c\}$ is not γ -open.

By the help of above example we can prove the following result.

(vi) If $f_1, f_2, ..., f_n$ are γ -lower semi continuous functions, then *h*, defined by $h(x) = \inf_i f_i(x)$, where i = 1, 2, ..., n, is not γ -lower semi-continuous.

Since every open set is γ -open thus every LSC function is γ -LSC but the converse is not true.

2.3 Example

Let $X = \{a,b,c,d\}$ and $Y = \{0,1\}$, $T = \{\phi, \{c\}, \{d\}, \{a,c\}, \{c,d\}, \{a,c,d\}, X\}$ and $T_I = \{\phi, \{1\}, Y\}$ be two topologies on *X* and *Y* respectively.

We define a function $f:(X,T) \rightarrow (Y,T_1)$ by f(a) = 0, f(b) = f(c) = f(d) = 1. Here $f^1(0) = \{a\}, f^1(1) = \{b,c,d\}, f^1(Y) = X$, we also observe that $\{c,d\} \subseteq \{b,c,d\} \subseteq Cl$ Int $\{c,d\} \cup Int$ Cl $\{c,d\} = X$.

Thus $\{b, c, d\}$ is γ -open in (X, T).

Now, we fix $r = \frac{1}{2}$ and using the result 2.2 (i)

 $f^{-1}(1) = \{b, c, d\} = \{x : f(x) > \frac{1}{2}\}$ is γ -open in (X, T) but not open in (X, T). Thus figure LSC but figure LSC

(X,T). Thus *f* is γ -LSC but *f* is not LSC.

2.4 Theorem

Let (X,T) be a topological space. The family of all γ -LSC functions from the space (X,T) to the unit closed interval I=[0,1] forms a fuzzy supra topology on X.

Proof

Let $S_{\gamma}(T)$ be the collection of all γ -LSC functions from the space (X,T) to the unit closed interval I. Now it can be prove that $S_{\gamma}(T)$ forms a fuzzy supra topology on X.

(a) Since X is open, it is γ -open and thus 1_X is γ -LSC i.e $1_X \in S_{\gamma}(T)$.

(b) ϕ is γ -open and thus 1_{ϕ} is γ -LSC i.e $1_{\phi} \in S_{\gamma}(T)$.

(c) Let $\{\lambda_i\}$ be any arbitrary family of γ -LSC functions. Thus $\sup\{\lambda_i\}$ is also γ -LSC. Hence $\bigvee \lambda_i \in S_{\gamma}(T)$.

Thus $S_{\gamma}(T)$ satisfies condition (i) – (iii) of fuzzy supra topology.

2.5 Definition

The fuzzy supra topology, obtained in above, is called γ -induced fuzzy supra-topology (γ -IFST) and the space (X, $S_{\gamma}(T)$) is called the γ -induced fuzzy supra-topological space(γ -IFST space). The members of $S_{\gamma}(T)$ are called fuzzy supra γ -open subsets.

2.6 Theorem

A fuzzy set λ in an γ -IFST space $(X, S_{\gamma}(T))$ is fuzzy supra γ open iff for each $r \in I$, the strong r-cut $\sigma_r(\lambda)$ (resp. weak rcut $w_r(\lambda)$) is γ -open in the topological space (X,T).

Proof

A fuzzy subset λ is fuzzy supra γ -open in (X, $S_{\gamma}(T)$) if $\lambda \in$

 $S_{\nu}(T)$ iff λ is γ -lower semi continuous iff for each $r \in I$,

{ $x \in X : \lambda(x) > r$ } is γ -open in (*X*,*T*) (by result 2.2(i)). That is $\sigma_r(\lambda)$ is γ -open in the topological space (X,T).

2.7 Result

If A is γ -open in (X,T) then 1_A is fuzzy γ -open in (X, $\omega(T)$) and by theorem 2.6, if A is γ -open in (X,T) then $1_A \in S_{\gamma}(T)$.

2.8 Theorem

If $\omega(T)$ is an induced fuzzy topology and $S_{\gamma}(T)$ is an γ induced fuzzy supra-topology on X then $\omega(T) \subset S_{\gamma}(T)$.

Proof

Let $\lambda \in \omega(T)$ i.e λ is a lower semi continuous function. Since every lower semi continuous function is γ -lower semi continuous function, λ is γ -lower semi continuous function i.e. $\lambda \in S_{\gamma}(T)$. Hence the theorem.

2.9 Definition

A function $f:(X,\tau) \rightarrow (Y,\tau_1)$ from an γ -induced fuzzy topological space (X,τ) to the another γ -induced fuzzy topological space (Y,τ_1) is said to be fuzzy supra γ -continuous if the inverse image of every fuzzy supra γ -open subset of Y is also fuzzy supra γ -open in X.

2.10 Theorem

A function $f:(X,S_{\gamma}(T)) \rightarrow (Y,S_{\gamma}(G))$ is fuzzy supra γ continuous iff $f:(X,T) \rightarrow (Y,G)$ is γ -irresolute[6].

Proof

Let *f* be fuzzy supra γ -continuous and A is γ -open in (Y,G) then

$$\begin{split} f^{-1}(A) &= \{ x \in X : 1_A(f(x)) = 1 \} \\ &= \{ x \in X : f^{-1}(1_A(x)) > r, 0 < r \le 1 \} \\ &= \sigma_r(f^{-1}(1_A)) \end{split}$$

Since A is γ -open in (Y,G), $1_A \in S_{\gamma}(T)$ (by result 2.7)

Thus $f^{-1}(1_A)$ is fuzzy supra γ -open in (X, $S_{\gamma}(T)$) (since f is

fuzzy supra γ -continuous). By theorem 2.6 $\sigma_r(f^{-1}(1_A))$ is γ -

open in the topological space (X,T). Thus f is γ -irresolute. On the other hand, it is consider that $f: (X,T) \rightarrow (Y,G)$ is

 γ -irresolute and β is fuzzy supra γ -open subset in $(Y, S_{\gamma}(G))$.

Then for any
$$p > 0$$
,

$$\sigma_p(f^{-1}(\beta)) = \{x \in X : f^{-1}(\beta(x)) > p\}$$

$$= \{x \in X : \beta(f(x)) > p\}$$

$$= (\beta f)^{-1}(p, \infty)$$

$$= f^{-1}(\beta^{-1}(p, \infty))$$

Now, $\beta \in S_{\gamma}(G)$. Thus β is γ -LSC. Therefore, $\beta^{-1}(p, \infty)$ is γ open. Also by hypothesis $f^{-1}(\beta^{-1}(p, \infty))$ is γ -open in (X,T) i.e. $\sigma_p(f^{-1}(\beta))$ is γ -open in (X,T) which implies $f^{-1}(\beta) \in S_{\gamma}(T)$. Hence f is fuzzy supra γ -continuous.

3. FUZZY SUPRA γ-S-CLOSED SPACES

3.1 Definition

A subset A of X is said to be γ -semiopen set if there exists a γ -open set U of X such that U \subset A \subset Cl(U). The complement of such set is called γ -semiclosed.

3.2 Definition

A topological space (X,τ) is said to be γ -S-closed iff every γ -semiopen cover of X has a finite subfamily whose closures covers X.

3.3 Definition

If α belongs to the γ -induced fuzzy supra topological space $(X, S_{\gamma}(T))$ i.e. $\alpha \in (X, S_{\gamma}(T))$. Then α is called fuzzy supra γ semi open if there exists a fuzzy supra γ -open subset β of $(X, S_{\gamma}(T))$ such that $\beta \subset \alpha \subset Cl \beta$.

3.4 Definition

A γ -induced fuzzy supra-topological space (X, $S_{\gamma}(T)$) is said to be fuzzy supra γ -S-closed iff for each fuzzy supra γ -semi open family *B* such that $\sup_{\lambda \in B} \lambda > \alpha$, $\alpha \in (0,1]$ there exists a sub

family $B_0 \subset B$ such that $\sup_{\lambda \in B_0} Cl\lambda > \alpha - \varepsilon$, where $\varepsilon \in (0, \alpha]$.

3.5 Theorem

A γ -induced fuzzy supra-topological space (X, $S_{\gamma}(T)$) is fuzzy supra γ -S-closed iff (χ, τ) is γ -S-closed.

Proof

Let $(X, S_{\gamma}(T))$ be a fuzzy supra γ -S-closed space. Let $\{A_j : j \in \Lambda\}$ be a γ -semi open cover of (X, τ) . Then the family of fuzzy supra γ -semi open subsets $\{1_{A_j}\}$ in $S_{\gamma}(T)$ satisfies sup $1_{A_j} = 1$. Now, since $(X, S_{\gamma}(T))$ is fuzzy supra γ -S-closed then for all $\varepsilon, 0 < \varepsilon \le 1$, there exists a finite family J_1, J_2, \dots, J_n , such that $\sup ClA_j > 1 - \varepsilon \cdot \operatorname{But} ClA_j = 1_{ClA_j} = 1_{\alpha_j} = 1$.

Thus $\bigcup ClA_i = X$. Then (X, τ) is γ -S-closed.

Conversely, let $\beta \in S_{\gamma}(T)$ be a collection of fuzzy supra γ semi open subsets. Now for each $t, 0 < t < \alpha, b$ is taken in such a way that t < b < a and for each $\lambda \in B$ and $\mu \in S_{\gamma}(T)$, we have, $\mu < \lambda < Cl\mu$. Then $\mu^{-1}(b,1] \subset \lambda^{-1}(b,1] \subset (Cl\mu)^{-1}(b,1] \subset Cl_{\mu^{-1}}(b,1]$. Since $\lambda^{-1}(b,1]$ is γ semi open in (X,τ) , $\{\lambda^{-1}(b,1]\}$ is γ -semi open in X and $\{\lambda^{-1}(b,1]\}$ covers X. So there exists a finite sub collection $\{\lambda_j, i = 1, 2, ..., n\}$ such that $(Cl\mu)^{-1}(b,1]$ covers X. So (X, $S_{\nu}(T)$) is fuzzy supra γ -S-closed.

4. ACKNOWLEDGMENTS

The authors would like to thank the referee for the valuable comment and suggestion.

5. CONCLUSION

Connection between properties of a topological space (X,T) and γ -induced fuzzy supra topological space (X,S $_{\gamma}(\tau)$) are established. Finally the concept of fuzzy supra γ -S-closed space with the notion of fuzzy supra γ -semi open set are introduced. There is a future scope to study γ -generalized closed set in L-fuzzy topological space.

6. **REFERENCES**

- [1] Abd El.Monsef, M.E., and Ramadan, A.E., On fuzzy supra topological spaces, *Indian J.pure appl.Math.*18 (1987) 322-329.
- [2] Andrrijevic, D., On b-open sets, Mat. Vesnik. 48(1996) 59-64.
- [3] Azad, K.K., On fuzzy semicontinuty, fuzzy almost continuity and fuzzy weakly continuity, *J.Math.Anal.Appl.*82 (1981), 14-32.
- [4] Azad, K.K., Fuzzy Hausdroff Spaces and Fuzzy Perfect Mapping, J.Math.Anal.Appl.82 (1981), 297-305.
- [5] Bhattacharya, Baby, and Mukherjee, Anjan, "On Fuzzy supra S-Closed Spaces", Proc. Nat. Sem on Fuzzy Math & its application, Nov. 25-26 ;2006; 115-122
- [6] Bhattacharya, Baby, and Biswas, Sunny, "On γ-Induced L-Fuzzy Supra Topological Spaces", 2nd International Conference on Rough Sets, Fuzzy Sets and Soft Computing, Tripura University, Dept. of Mathematics, January 17th-19th 2013.
- [7] Bhaumik R.N., and Mukherjee, A., Induced fuzzy supra topological spaces, *Fuzzy Sets and Systems* 91 (1997) 123-126.
- [8] Bhaumik, R.N., and Mukherjee, A., Completely lower semi-continuous function, Math. Education 26(1992) 66-69.
- [9] Chang, C.L., Fuzzy topological spaces, J.Math.Anal.Appl.24 (1968), 182-190.
- [10]El-Atik AA., A study on some types of mappings on topological spaces. M.Sci. thesis, Tanta Univ., Egypt, 1997.

- [11] Mashhour, A.S., Ghanim, M.H., AEL-Wakeil and N.M. Morsi, Semi-induced fuzzy topology, Fuzzy sets and Systems 31(1989) 1-18.
- [12] Mukherjee, M.N., and Ghosh, B., On fuzzy S-closed spaces and FSC seli. Bull.Malaysian. Math.Soc(2nd series) 12(1989) 1-40.
- [13] Hanafy, I.M., Fuzzy g-open sets and fuzzy g-continuity, J. Fuzzy Math. 7 (1999), 419-430.
- [14] Mukherjee, A., and Halder, S., δ-induced fuzzy topological spaces, Proc.Nat.Sem. On recent trends in Maths and its application. April 28-29,2003,177-182.
- [15] Hussain, S., and Ahmad, B., On γ-s-closed spaces, Scientia Magna, Vol. 3(2007), No. 4, 87-93.
- [16] Levin, N., Semi-open sets and semi continuity in topological spaces, Amer.Math. Monthly 70(1963) 36-41.
- [17] Maheshwari, S.N., and Thakur, S.S., On α-irresolute mappings, Tankang J. Math. 11(1980) 209-214.
- [18] Mirmiran, Majid, Weak Insertion of a g-continuous Function, *Applied Mathematics*, 2011; 1(1)1-3.
- [19] Mukherjee, A., Some more results on induced fuzzy topological spaces, Fuzzy sets and systems 96(1998)255-258.
- [20] Noiri, T., On α-continuous function, Cosopis Fest. Mat. 109(1984) 118-126.
- [21] Wang. Ge-Ping and Fang Hu-Lang, On Induced fuzzy topological spaces, J.Math.Anal.Appl. 108(1985) 495-506.
- [22] Prasad, R., Thakur, S.S., and Saraf, R.K., Fuzzy αirresolute mappings, J. Fuzzy Math. 2(1984) 335-339.
- [23] Singal, M.K., and Rajvanshi, N., Fuzzy α-sets and αcontinuous maps, Fuzzy Sets and Systems 48(1992) 383-390.
- [24] Thompson, T., S-closed spaces, Proc.Amer.Math.Soc. 60(1975) 115-118.
- [25] Weiss, M.D., Fixed points, separations and induced topologies for fuzzy sets, J.Math.Anal.Appl. 50(1975) 140-150.