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ABSTRACT 

The aim of this paper is to study some properties of -induced 

fuzzy supra topological spaces by utilizing -lower semi-

continuous functions. Next the connection between properties 

of a topological space (X,T) and -induced fuzzy supra 

topological space (X,S()) are studied. Finally the concept of 

fuzzy supra -S-closed space with the notion of fuzzy supra -

semi open set are introduced. 
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1. INTRODUCTION 
In 1975, Weiss introduced the concept of induced fuzzy 

topological space with the notions of a lower semi-continuous 

function. The concept of induced fuzzy supra topological 

space introduced by Bhaumik and Mukherjee [7], was defined 

with the notion of s-lower semi continuous functions. The 

class of b-open sets in the sense of Andrijevic [2] was 

discussed by El-Atik [10] under the name of -open sets. The 

family of all -open sets of X will denoted by O (X). 

                  The aim of this paper is to introduce a new fuzzy 

supra topological space (-IFST space) which is defined with 

the generalized concept of -continuous functions. The 

relation between the IFTS (X, )(T ) and the -IFST space 

))(,( TSX 
are also studied. In this paper 

A1  denotes the 

characteristic function of an ordinary subset A. The following 

definitions and results are studied for ready refferences : 

(a) A subset A of a topological space X is said to be -open [8] 

if )()( ClAIntIntAClA  . 

(b) A function ),(),(: GYTXf  from a topological space 

(X,T) to another topological space ),( GY  is said to be              

-continuous [10] if the preimage of every open subset of Y is 

-open in X. 

(c) A function ),(),(: 21 TYTXf  is called -irresolute [6] iff 

the inverse image )(1 Af   is -open in (X,T1) for every -open in 

A in Y. 

(d) A function ),(),(: uRTXf  is said to be lower semi 

continuous [25] at a point x0 of X iff for each  > 0, there 

exists an open neighbourhood )( 0xN such that for every 

)( 0xNx  implies  )()( 0xfxf
 

(e) Let (X,T) be a topological space. The collection )(T of 

all lower semi continuous functions ITXf ),(:  forms a fuzzy 

topology on X. Then (X, )(T ) is known as induced fuzzy 

topological space (IFTS)[11]. 

(f) If TA then )(1 TA  [25]. 

(g) )(T iff for each Ir the strong r-cut Tr )( [25] 

where })(:{)( rxxr   . 

            In [12] Mukherjee and Ghosh defined a fuzzy 

topological space X to be fuzzy S-closed iff every cover of X 

by fuzzy semiopen sets admits a finite subfamily whose fuzzy 

closures cover the space. 

(h) A topological space (X,T) is S-closed [24] iff every semi-

open cover of X has a finite subcover. 

(i) A collection U of fuzzy sets in a fuzzy topological space 

(X,) is said to be a fuzzy cover [4] of X iff   U  = 1X. 

(j) A fuzzy topological space (X,) is said to be a fuzzy S-

closed [12] iff every cover of X by fuzzy semi open [3] sets 

admits a finite subfamily whose fuzzy closures covers the 

space. 

(k) Let (X,) be a topological space. The family of all s-lower 

semi continuous functions from this topological space (X,) to 

the closed unit interval I form a fuzzy supra topology on X 

[7]. 

(l) The fuzzy supra topology obtained in above is called 

induced fuzzy supra topology [7] and the space (X,S ()) is 

called the induced fuzzy supra topological space. The 

members of S  () are called fuzzy supra open subsets. 

(m) Let  belongs to the induced fuzzy supra topological 

space (X,S ()) i.e (X,S ()). Then  is called fuzzy supra 

semi-open [21] iff there exists a fuzzy supra open subset  of         

(X, S ()) such that        cl . 

 If A is semi-open in (X,) then 1A is fuzzy supra semi-open in 

(X, S ()) [7]. 

 

2. -INDUCED FUZZY SUPRA 

TOPOLOGICAL SPACES 
In this section a new concept of fuzzy supra topological space 

(-IFST space) is introduced by utilizing -lower semi 

continuous (-LSC) functions. In ordinary topological space 

(X,T) Bhattacharya and Biswas [6] defined -open 

neighbourhood as follows : 

Let p be a point in (X,T). A subset N of X is a -open 

neighbourhood of p iff N is a superset of a -open set S 

containing p : p  S  N, where S is a -open set in (X,T). 

 

2.1 Definition 
A function RXf :  from a topological space to the real 

number space is said to be -lower semi continuous (-LSC) [ 
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-upper semi continuous (-USC)] at a point x0 of X iff for 

each  > 0, there exists an -open neighbourhood )( 0xN such 

that )( 0xNx  implies  )()( 0xfxf  [resp.  )()( 0xfxf ]. 

 

2.2 Result 
(i) The necessary and sufficient condition for a real valued 

function f to be -LSC is that for all Rr , the set 

})(:{ rxfXx  is -open. 

Proof 
 Let f  be -lower semi continuous and x0X. )( 0xN  be a -

open neighbourhood of x0X. Then f (x0) is a real number and 

so that f (x0) -  is a fixed real number in R for a point x0X. 

By definition rxfxf  )()( 0
 (say) for all )( 0xNx . 

Now the set of all points x for which f (x) > r is -open. 

Consequently })(:{ rxfXx  is -open. 

Conversely, let })(:{ rxfXx  is -open. Let x0 be any point 

in X. Let us choose a real number  such that Rrxf )( 0
. 

From the given condition })()(:{ 0  xfxfXx  is -open 

which implies that if {xAX } is -open, the condition 

 )()( 0xfxf  is true which shows that f is -lower semi 

continuous.  

 

(ii) The necessary and sufficient condition for a real valued 

function f to be -LSC is that for all Rr , the set 

})(:{ rxfXx  is -closed, being the complement of -open. 

(iii) The function f from a space (X,T) to a space ),(  R

where Rrr  :),(  is -LSC iff the inverse image of 

every open subset of ),(  R is -open in (X,T). 

(iv) The characteristic function of a -open set is -LSC. 

 

Proof 
 Let A be a -open set. The characteristic function 1A of A is 

defined as 










AXxif

Axif
xA

,0

,1
)(1  

We have to show that 1A is -lower semi continuous that is 

{x:1A(x) = r} is -closed for each r in R. 

For r<0 the set {x:1A(x) = r}= which is closed and hence -

closed. 

For 0= r < 1 the set {x:1A(x) = r}= X-A which is -closed 

being the complement of a -open set A. 

For r =1, {x:1A(x) = r} = X which is closed and hence -

closed. 

Hence the theorem. 

 

(v) If f is an arbitrary family of -LSC functions then the 

function g, defined )(sup)( xfxg ii is -LSC. 

Proof 
 Let x0 be any point of X. Since each fi is -LSC for any    > 0 

there exists a -open neighbourhood Ni(x0) such that       x 

Ni(x0)  fi(x)> fi(x0)- . Since the arbitrary union of -open 

sets is -open.  We have, 
n

i

i xN
1

0)(


 is -open neighbourhood 

of x0. 

Now, if xNi(x0) then for all i, fi(x)>fi(x0)- whence 

  )()(sup)(sup)( 00 xgxfxfxg iiii
. This proves 

g is -LSC. 

The intersection of two -open sets may not be -openas 

shown in the following example. 

Example. 
Let X={a,b,c} and T ={, {a}, {b}, {a,b}, X}. 

We observe that {b,c} and {a,c} are -open sets. But their 

intersection {c} is not -open. 

By the help of above example we can prove the following 

result. 

(vi) If 
nfff ,.....,, 21
 are -lower semi continuous functions, 

then h, defined by )(inf)( xfxh ii , where i = 1,2,….,n, is not 

-lower semi-continuous. 

Since every open set is -open thus every LSC function is -

LSC but the converse is not true. 

 

2.3 Example 
Let X = {a,b,c,d} and Y = {0,1}, T = {, {c}, {d}, 

{a,c},{c,d},{a,c,d},X} and T1 = {,{1},Y} be two topologies 

on X and Y respectively. 

We define a function ),(),(: 1TYTXf   by f(a) = 0, f(b) = f(c) 

= f(d) = 1.  Here f-1(0) = {a},  f-1(1) = {b,c,d}, f-1(Y) = X, we 

also observe that {c,d}  {b,c,d}  Cl Int{c,d}  Int Cl{c,d} 

= X. 

Thus {b,c,d} is -open in (X,T). 

Now, we fix 
2

1
r

and using the result 2.2 (i) 

}
2

1
)(:{},,{)1(1  xfxdcbf  is -open in (X,T) but not open in 

(X,T). Thus f is -LSC but f is not LSC. 

 

2.4 Theorem 
Let (X,T) be a topological space. The family of all -LSC 

functions from the space (X,T) to the unit closed interval 

I=[0,1] forms a fuzzy supra topology on X. 

Proof 
 Let )(TS

 be the collection of all -LSC functions from the 

space (X,T) to the unit closed interval I. Now it can be prove 

that )(TS
 forms a fuzzy supra topology on X. 

(a) Since X is open, it is -open and thus 1X is -LSC i.e 

)(1 TSX  . 

(b)  is  -open and thus 1 is -LSC i.e )(1 TS  . 

(c) Let {i} be any arbitrary family of -LSC functions. Thus 

sup{i} is also -LSC. Hence )(TSj   . 

Thus )(TS
satisfies condition (i) – (iii) of fuzzy supra 

topology. 

 

2.5 Definition 
The fuzzy supra topology, obtained in above, is called -

induced fuzzy supra-topology (-IFST) and the space (X,

)(TS
) is called the -induced fuzzy supra-topological 

space(-IFST space). The members of )(TS
 are called fuzzy 

supra -open subsets. 

 

2.6 Theorem 
A fuzzy set  in an -IFST space (X, )(TS

) is fuzzy supra -

open iff for each Ir , the strong r-cut )( r
 (resp. weak r-

cut )(rw ) is -open in the topological space (X,T). 
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Proof 

A fuzzy subset  is fuzzy supra -open in (X, )(TS ) if 

)(TS  iff  is -lower semi continuous iff for each r I, 

{x X : (x) > r} is -open in (X,T) (by result 2.2(i)). That is 

)( r
is -open in the topological space (X,T). 

 

2.7 Result 

If A is -open in (X,T) then 
A1  is fuzzy -open in (X, )(T ) 

and by theorem 2.6, if A is -open in (X,T) then )(1 TSA  . 

 

2.8 Theorem 
If )(T  is an induced fuzzy topology and )(TS

is an -

induced fuzzy supra-topology on X then )()( TST   . 

Proof 
 Let   )(T i.e  is a lower semi continuous function. 

Since every lower semi continuous function is -lower semi 

continuous function,  is -lower semi continuous function i.e. 

 )(TS
. Hence the theorem. 

 

2.9 Definition 
A function ),(),(: 1 YXf  from an -induced fuzzy 

topological space ),( X  to the another -induced fuzzy 

topological space ),( 1Y  is said to be fuzzy supra -continuous 

if the inverse image of every fuzzy supra -open subset of Y is 

also fuzzy supra -open in X. 

 

2.10 Theorem 
A function ))(,())(,(: GSYTSXf    is fuzzy supra -

continuous iff ),(),(: GYTXf   is -irresolute[6]. 

Proof  
Let f be fuzzy supra -continuous and A is -open in (Y,G) 

then 

}1))((1:{)(1  xfXxAf A
 

            }10,))(1(:{ 1   rrxfXx A
 

            = ))1(( 1

Ar f   

Since A is -open in (Y,G), )(1 TSA  (by result 2.7) 

Thus )1(1

Af  is fuzzy supra -open in (X, )(TS
) (since f is 

fuzzy supra -continuous). By theorem 2.6 ))1(( 1

Ar f  is -

open in the topological space (X,T). Thus f is -irresolute. 

      On the other hand, it is consider that ),(),(: GYTXf   is 

-irresolute and  is fuzzy supra -open subset in ))(,( GSY 
. 

Then for any p > 0,  

}))((:{))(( 11 pxfXxfp     

                    }))((:{ pxfXx    

                    ),()( 1   pf  

                    )),(( 11   pf   

Now, )(GS  . Thus  is -LSC. Therefore, ),(1  p is -

open. Also by hypothesis )),(( 11  pf   is -open in (X,T) i.e. 

))(( 1  fp
 is -open in (X,T) which implies )()(1 TSf   . 

Hence f  is fuzzy supra -continuous. 

3. FUZZY SUPRA -S-CLOSED SPACES 
 

3.1 Definition 
 A subset A of  X is said to be -semiopen set if there exists a 

-open set U of X such that U A  Cl(U). The complement 

of such set is called -semiclosed. 

 

3.2 Definition 
A topological space ),( X is said to be -S-closed iff every       

-semiopen cover of X has a finite subfamily whose closures 

covers X. 

 

3.3 Definition 
If  belongs to the -induced fuzzy supra topological space 

(X, )(TS
) i.e. (X, )(TS

). Then  is called fuzzy supra -

semi open if there exists a fuzzy supra -open subset  of (X,

)(TS
) such that    Cl . 

 

3.4 Definition 
A -induced fuzzy supra-topological space (X, )(TS

) is said to 

be fuzzy supra -S-closed iff for each fuzzy supra -semi open 

family B such that 





sup
B

, (0,1] there exists a sub 

family B0  B such that 





Cl
B

sup
0

, where (0,]. 

3.5 Theorem 

A -induced fuzzy supra-topological space (X, )(TS ) is 

fuzzy supra -S-closed iff ),( X  is -S-closed. 

Proof  
Let (X, )(TS

) be a fuzzy supra -S-closed space. Let 

}:{ jAj
 be a -semi open cover of  ),( X . Then the family 

of fuzzy supra -semi open subsets }1{
jA  in )(TS

 satisfies 

sup 
jA1 =1. Now, since (X, )(TS

) is fuzzy supra -S-closed 

then for all ,01, there exists a finite family J1,J2,…..,Jn, 

such that  1sup jClA . But 1111 
jjj AClAACl . 

Thus .XClA j   Then ),( X is -S-closed. 

     Conversely, let )(TS  be a collection of fuzzy supra -

semi open subsets. Now for each t, 0 < t < , b is taken in 

such a way that t < b < a and for each  B and )(TS  , 

we have,  Cl .Then 

]1,(]1,()(]1,(]1,( 1

111 bClbClbb  


 . Since ]1,(1 b  is -

semi open in ),( X , { ]1,(1 b } is -semi open in X and {

]1,(1 b } covers X. So there exists a finite sub collection 

},....,2,1,{ nij   such that ]1,()( 1 bCl   covers X. So (X,

)(TS
) is fuzzy supra -S-closed. 
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5. CONCLUSION 
Connection between properties of a topological space (X,T) 

and -induced fuzzy supra topological space (X,S()) are 

established. Finally the concept of fuzzy supra -S-closed 

space with the notion of fuzzy supra -semi open set are 

introduced. There is a future scope to study -generalized 

closed set in L-fuzzy topological space. 
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