
International Journal of Computer Applications (0975 – 8887)

Volume 70– No.14, May 2013

30

Dynamic Web Cache Management and

Browsing Performance

Sujit Kumar Badodia

Patel College of Science and
Technology,

Indore, Madhya Pradesh, India

Sachin Patel
Patel College of Science and

Technology,
Indore, Madhya Pradesh, India

Rakesh Pandit
Patel College of Science and

Technology,
Indore, Madhya Pradesh, India

ABSTRACT

In the daily practice we can see that the desktop applications

are becomes web based. Thus the requirement for improving

the web application performance is quite necessary in this

day. In this paper we propose design and implement a

timeline based web cache management scheme by which we

improve the web applications performances. In this paper we

include different aspects, problem and propose solution for

the cache management strategy, additionally here we explain

the working of the system at the application level.

Additionally here we provide the performance evaluation of

the designed system using different performance

General Terms

Cache management Algorithm.

Keywords

Web application, performance, and web cache

1. INTRODUCTION
The technology is rapidly changed and enhanced day by day,

in place of the traditional computation most of the

applications are becomes online or web based, to access these

application at the user end various efforts and techniques are

developed for increasing the performance of the system.

A web application is working with the below given scheme

given in the below fig 1.

Fig 1 Simple web application working

for accessing an application from web client send a request to

the server where server detect the request made by end client

and search over the web server if requested page are found in

the server then server respond using the requested pages. But

if the application is written in any scripting language then the

system required an additional application server where the

requested page is executed first and then generated HTML is

send to client as response. But due to large data requirement

not all pages are in statically executed here required some

additional database for manage the data over server for that

purpose the below given system is used for application

management. Suppose an application is written using (asp,

aspx, php or jsp). Then there is required to execute first using

an application server. And the required data is fetched from

database server and serve using web pages in client machine

Fig 2 Database driven (Dynamic web application)

As we discussed above the application is divided in two

group’s first static and second dynamic. Static applications

contains the static objects and dynamic pages are contains

changeable objects, to manage these contains and speedup the

applications client machine store frequently used data in the

local system by which there are not required to fetch the data

from server again in each time when requires is send to the

server, it is locally provided to the browser in next time. This

storage is known as the cache, which store frequently used

objects from the web pages.

In this paper first analysis the different caching schemes and

then proposes a most promising method for managing these

objects

2. BACKGROUND
In this section we provide the different web caching schemes

that are used and proposed in previous days. Additionally here

we provide the desired properties by any caching scheme.

2.1 Harvest cache: Harvest cache servers [4] are

organized in a hierarchy with parents and siblings and they

co-operate using a cache resolution protocol called Internet

Cache Protocol (ICP). When a cache server receives a request

for an object that misses, it sends a request to all its siblings

and parents via remote procedure call. The object will be

retrieved from the site with lowest latency.

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.14, May 2013

31

2.2 Summary cache: Summary cache [5] is a scalable

wide area cache sharing protocol. Each proxy improves cache

sharing by keeping a compact summary of the cache directory

of every participating proxy. When a client request misses in

the local cache, the proxy checks these summaries for

potential hits. If a hit occurs, the proxy sends request to the

relevant proxies to fetch the Web page. Otherwise, the proxy

sends request directly to the Web server.

2.3 Adaptive Web caching: Adaptive Web caching

[6] is an adaptive, scalable, and robust caching system. Cache

servers are self-organized and form into a tight mesh of

overlapping multicast groups and adapt as necessary to

changing conditions. This mesh of overlapping groups forms

a scalable, implicit hierarchy that is used to efficiently diffuse

popular Web content to wards the demand. Adaptive Web

caches exchange their entire content state with other members

of their cache groups to eliminate the delay and unnecessary

use of resources of explicit cache probing.

2.4 Access driven cache: Access driven Web

caching [6] is a scheme using proxy profiles and information

groups which are based on Web page access patterns to

reduce the average number of messages among proxies for

updating the cache status (comparing to Summary cache)

while maintaining a high cache hit ratio. Association rule

discovery is used to find and summarize the most prevalent

access patterns to Web pages from trace data. Such

information is then used to partition the Web pages into

clusters. All proxies who frequently access some page in the

same Web page cluster form an information group. When a

host wants to access a Web page, it sends a request to the

local proxy. If the page is not cached in the local proxy, a

request is sent to the interesting site (either a proxy in the

same information group or the Web server) to fetch the page,

When proxy cache content changes, only proxies in the same

information group are notified.

Web caching system, we would like a Web caching system to

have a number of properties. They are fast access, robustness,

transparency, scalability, efficiency, adaptively, stability, load

balancing, ability to deal with heterogeneity,[7][2][3][4] and

simplicity. We discuss them in turn.

2.11 Fast access: A desirable caching system should aim

at reducing Web access latency. In particular, it should

provide user a lower latency on average than that without

employing a caching system.

2.12 Robustness: Robustness means availability, which is

another important measurement of quality of service. Users

desire to have service available whenever they want.

2.13 Transparency: A Web caching system should be

transparent for the user; the only results user should notice are

faster response and high availability.

2.14 Scalability: A caching scheme to scale well along

the increasing size and density of network. This requires all

protocols employed in the caching system to be as lightweight

as possible.

2.15 Efficiency: how much overhead does the Web

caching system impose on network? We would like a caching

system to impose a minimal additional burden upon the

network. The caching system shouldn't adopt any scheme

which leads to under-utilization of critical resources in

network.

2.16 Adaptivity: It's desirable [4] to make the caching

system adapt to the dynamic changing of the user demand and

the network environment.

2.17 Stability: The schemes [2] used in Web caching

system shouldn't introduce instabilities into the network.

2.18 Load balancing: It's desirable that the caching

scheme distributes the load evenly through the entire network.

2.19 Ability to deal with heterogeneity: As

networks increase in scale and coverage, they span a range of

hardware and software architectures. The Web caching

scheme need adapt to a range of network architectures.

2.20 Simplicity: Simplicity is always an asset. [2]

Simpler schemes are easier to implement and likely to be

accepted as international standards. We would like an ideal

Web caching mechanism to be simple to deploy.

3. PROPOSED WORK
In the previous sections we can see the expected parameters

and desired properties that lead to implement a new technique

for cache management.

The new system is having some key challenges that are first

need of dynamic web caching for web pages but dynamic

pages are just contains page layout and data base driven data

which is call using the query stream or others method.

Secondly the cached object management which is stored in

local disk and required to clear them time to time when

required. For that purpose required a new framework for

managing the cache.

The proposed work is divided into three main modules:

3.1 Web page analysis: This analysis is derived for

finding the URLs and static and dynamic data which data is

changed due to time and which data is statically served each

time. as given in the diagram (Fig 3) the web page is when

opened in web browser is read by the system and the classify

the data according to their source and their type in two

different categories static objects and dynamic objects. In the

next phase data is used to store.

3.2 Analysis of APIs: Some time web pages contain

the third part open source APIs that objects are directly

synchronized by our system. for example if we find that our

requested page contains a stock market chart which is

provided by the any web site then when a request found by the

system it is perfected for use.

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.14, May 2013

32

 Fig 3 web page serving systems

3.2 Cache storage management: Here we adopt

the below given steps for managing the storage of the cached

objects.

Fig 4 Shows System Proposed

as the above diagram (Fig 4) we can see that the system is

working with session wise web access and their probability to

manage them, for that purpose system get the URL address,

Time and the frequency of opening the URLs in each session

and store them over database.

Fig 5 Shows System Architecture

The database is analyzed using the HMM model for finding

the most visited URL address these URLs are not required to

clear the less visited web URLs are added to the next list the

list working with the time if time is expires the URL and its

cached objects are cleared from the database. the complete

architecture of the system is given in Fig 5.

The database is analyzed using the HMM model for finding

the most visited URL address these URLs are not required to

clear the less visited web URLs are added to the next list the

list working with the time if time is expires the URL and its

cached objects are cleared from the database. The complete

architecture of the system is given in Fig 5.

4. ALGORITHMS USED

Here provides the method used to find the probability of

frequently used websites and rarely used websites and the

threshold to manage the desire dynamic nature of system for

that purpose. Here provided the hidden markov model and

Proposed cache management algorithm

4.1 Hidden Markov Model: for predicting the direction of

search after personation to use as predictive model. Hidden

Markov models are widely used in science, engineering and

many other areas (speech recognition, optical character

recognition, machine translation, bioinformatics, computer

vision, finance and economics, and in social science).[5]

The Hidden Markov Model (HMM) is a variant of a finite

state machine having a set of hidden states, Q, an output

alphabet (observations), O, transition probabilities, A, output

(emission) probabilities, B, and initial state probabilities, Π.

The current state is not observable. Instead, each state

produces an output with a certain probability (B). Usually the

states, Q, and outputs, O, are understood, so an HMM is said

to be a triple, (A, B, Π).

 Hidden states Q = { qi }, i = 1, . . . , N .

 Transition probabilities A = {aij = P(qj at t +1 | qi at t)},

where P(a | b) is the conditional probability of a given b, t =

1, . . . , T is time, and qi in Q. Informally, A is the probability

that the next state is qj given that the current state is qi.

Observations (symbols) O = { ok }, k = 1, . . . , M .

Emission probabilities B = { bik = bi(ok) = P(ok | qi) },

where ok in O. Informally, B is the probability that the output

is ok given that the current state is qi.

Initial state probabilities Π = {pi = P(qi at t = 1)}.

The model is characterized by the complete set of

parameters: Λ = {A, B, Π }.

Let αt(i) be the probability of the partial observation

sequence Ot = {o(1), o(2), ... , o(t)} to be produced by all

possible state sequences that end at the i-th state.

αt(i) = P(o(1), o(2), ... , o(t) | q(t) = qi).

Then the unconditional probability of the partial

observation sequence is the sum of αt(i) over all N states.

The Forward Algorithm is a recursive algorithm for

calculating αt(i) for the observation sequence of increasing

length t .First, the probabilities for the single-symbol sequence

are calculated as a product of initial i-th state probability and

emission probability of the given symbol o(1) in the i-th state.

Then the recursive formula is applied. Assume we have

calculated αt(i) for some t. To calculate αt+1(j), we multiply

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.14, May 2013

33

every αt(i) by the corresponding transition probability from

the i-th state to the j-th state, sum the products over all states,

and then multiply the result by the emission probability of the

symbol o(t+1). Iterating the process, we can eventually

calculate αT(i), and then summing them over all states, we can

obtain the required probability

4.2 Proposed Cache management

algorithm: In this subsection we provide the cache

management algorithm which combination of HMM and our

proposed time slice based approach for managing the cache

data

1. Create cache data according to page

2. Generate last sequence of web page access

3. Calculate the probability of web page access using

above HMM

4. if probability <= threshold then

5. Put into watch list

6. else

7. Put into main list

8. If watch list. date difference >=5 then

9. Clear all

10. else

11. Do nothing

Threshold values calculation: threshold values of the

algorithm are defined by user access pages. Suppose a user

access about 100 pages then each page are having .01

probabilities. And between only 5 pages are accessed

frequently then the upper values of threshold is calculated by

1/5 = .2 thus here for experimentation we take input by user

number of pages to access.

5. IMPLEMENTATION

In this section owe provide the implementation of the

system .The implementation of the system is performed using

visual studio dot net framework, which is combination of rich

class library and an advance IDE. This IDE supports various

tools that provide the programmer friendly environment for

application development and deployment.

 Fig 6 shows the web URL collection

The above given Fig 6 shows the collection of web URL

according to the session.

6. RESULTS

The evaluated results for the different kind of utility in the

application are here found using the different performance

parameters. The search results accuracy is defined using the

user relevance feedback.

6.1 Hit ratio: The hit ratio of the system is defined as the

total number of objects is stored and utilizes the objects in the

data base. The given fig 7 shows the performance of LRU and

our implemented methods comparative study over different

websites

0

0.2

0.4

0.6

0.8

Exp

1

Exp

3

Exp

5

Exp

7

Proposed Algo

LRU

 Fig 7 Shows Hit Ratio

6.2 Memory uses: This parameter is indicates the

amount of memory uses for successfully execution of the

system. Here the memory requirement is given in term of

KB.The given Fig 8 shows the memory used by system.

0

5000

10000

15000

20000

25000

30000

35000

Exp

1

Exp

3

Exp

5

Exp

7

Proposed algo

LRU

Fig 8 Shows Memory Uses

6.3 Response time: The time required to find the

requested page from the system is given as response

time. The response time is measured in term of seconds.

0

0.5

1

1.5

2

2.5

3

Exp

1

Exp

3

Exp

5

Exp

7

Proposed Algo

LRU

 Fig 9 Shows Response time

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.14, May 2013

34

6.4 % uses of cache: The total % of cache used during

different experiments. That is evaluated using the following

formula.

% uses = (number of used objects/total number of object

cached)*100

Fig 10 shows the % of cache used by system.

0

20

40

60

80

100

Exp

1

Exp

3

Exp

5

Exp

7

Proposed Algo

LRU

 Fig 10 Shows % uses

7. CONCLUSION AND FUTURE WORK

In the proposed work we are building an intelligence model

for web cache management. Which is designed using the

HMM and time line based method. The proposed method is

much effective for static web pages and we found that the

performance of system is much higher for static contents but

less effective for dynamic data contents. In future we work

more about the proposed model and improve the performance

for the dynamic web pages and their contents. The main issue

is security to synchronize the database from the remote

8. REFERENCES
[1] An Overview Of Web Caching Replacement Algorithms,

IEEE Communications Surveys & Tutorials • Second

Quarter 2004

[2] Modified Pseudo LRU Replacement Algorithm,

Proceedings of the 13th Annual IEEE International

Symposium and Workshop on Engineering of Computer

Based Systems (ECBS’06), 0-7695-2546-6/06 $20.00 ©

2006 IEEE

[3] Study of Cache Management Algorithms, 1Supriya

Kamoji, 2Dipali Koshti, International Journal Of

Computer Science & Technology, Ijcst Vol. 2, Issue 4,

Oct. - Dec. 2011

[4] A Hierarchical Internet Object Cache, Anawat

Chankhunthod, Peter B. Danzig, Chuck Neerdaels,

Computer Science Department, University of Southern

California

[5] Summary Cache: A Scalable Wide-Area Web Cache

Sharing Protocol, IEEE/ACM Transactions On

Networking, Vol. 8, No. 3, June 2000

[6] URL Forwarding and Compression in Adaptive Web

Caching, 0-7803-5880-5/00/$10.00 (c) 2000 IEEE

[7] Outperforming LRU with an Adaptive Replacement

Cache Algorithm, 0018-9162/04/$20.00 © 2004 IEEE 4

Computer Research Feature Published by the IEEE

Computer Society

[8] An Adaptive Dynamic Replacement Approach for a

Multicast based Popularity Aware Prefix Cache Memory

System, InterJRI Computer Science and Networking,

Vol. 1, Issue 1, December 2009

[9] An Enhance Approach for Dynamic Web Caching, Sujit

K Badodia,Sachin Patel, International Journal of

Computer Applications (0975 – 8887) Volume 61–

No.18, January 2013, ISBN : 973-93-80872-37-5

[10] Web Caching Resources www.web-cache.com

[11] Squid cache http://www.squid-cache.org/

[12] Web Prefetching: Costs, Benefits and Performance,

Yingyin, Jiang, Min-You Wu, and Wei Shu,Department

of Electrical and Computer Engineering, The University

of New Mexico, Albuquerque, NM 87131, USA

[13] Improving Web Server Performance by Caching

Dynamic Data, Arun Iyengar and Jim Challenger IBM

Research Division, T. J. Watson Research Canter

[14] A Study of Bare PC Web Server Performance for

Workloads with Dynamic and Static Content, Arun

Iyengar and Jim Challenger IBM Research Division, T.

J. Watson Research Center

[15] Web Log Mining for Improvement of Caching

Performance, Rudeekorn Soonthornsutee1, Pramote

Luenam Techniques For Efficiently Serving Data And

Dynamic Data At Webservers Using Internet And

Intranet Technology

[16] Http Cache Management To Improve Web Application

Performance, Sujit Kumar Badodia, Sachin Patel and

Rakesh Pandit,VSRD International Journal of Computer

Science & Information Technology, Vol. 3 No. 4 April

2013,e-ISSN : 2231-2471, p-ISSN : 2319-2224 ©

VSRD International Journals : www.vsrdjournals.com

