
International Journal of Computer Applications (0975 – 8887)

Volume 70– No.14, May 2013

24

Hybrid Cache Coherence Protocol for Multi-Core

Processor Architecture

Muthukumar.S
Associate Professor, Department of C.S.E
Sri Venkateswara College of Engineering,

Tamil Nadu, India

Dhinakaran.K
PG Scholar, Department of C.S.E

Sri Venkateswara College of Engineering,
Tamil Nadu, India

ABSTRACT

The advances in circuit technology with constraints in power

dissipation and clocking have led to integrating more processing

cores onto a single chip, making it as the dominant processor

architecture. This design of multi-core architectures also referred

to as Chip Multiprocessors (CMPs) are gaining popularity

because they have the potential to drive the future performance

gains without any problems of power dissipation and

complexity. Nevertheless, in order to run several independent

programs in different processing cores requires them to

cooperate for a single computation. Thus the communication

architecture is the primary focus of research in achieving the

scalability of this architecture. Coherence protocols and

interconnection networks have resolved some communication

gaps, but memory communication through cache has been the

focus of attention in CMP. This problem has been addressed

with many hardware and software solutions like Directory-

based, Snoopy-based, Snarfing, etc., but the performance of the

system is still not up to the level of expectation. The proposed

model is to develop a hybrid cache coherence protocol referred

as MESCIF (Modified Exclusive Shared Clean Invalid

Forward), which combines the advantages of both directory-

based and broadcasting protocols. This can be achieved by

introducing a small directory based cache (DB-CACHE) and

cache-coherence bus (CC-BUS) into the existing CMP

architecture which overcomes the problems of existing methods.

The architecture is simulated using a modular discrete event

driven computer system simulator platform called gem5

simulation tool.

Keywords

Cache Coherence; Directory Based Cache; Chip Multiprocessor;

gem5 simulator.

1. INTRODUCTION

Multi-processor systems use two or more central processing

units that communicate with each other through a bus or general

interconnection network. From early days the semiconductor

industries that manufacture multiprocessors in the market have

adhered to Moore’s Law in order to gain high performance by

increasing the number of transistors and clock frequencies.

Various design constraints such as high power consumption,

heat dissipation, etc., restricts the designers from increasing

frequency of the clock beyond certain limit. So the performance

of those multiprocessors cannot be scaled up to the

expectation. This limitation led to the development of

embedding multiple processing cores onto a single chip.

Such multiprocessors are called as Chip Multi-Processors

(CMPs). CMPs increase throughput and efficiency of the system

by utilizing multiple simple cores to perform parallel processing

on a larger task with less power and heat dissipation.
In CMP each processor core has its own cache memory that is not
shared with any other processor cores. This cache memory
available with each core enables fast data access by reducing disk
access latency in case of a cache hit. The efficiency of the CMPs
depends on type of cache mechanism employed, in particular
write back caches are more efficient terms of reducing disk
access latencies because in this mechanism the changes in the
data cached in the cache memory is updated to the disk only
when a replacement of the cache block is required. The major
issue with such cache mechanisms is that data inconsistency due
to concurrent access of same data block in cache memories of
different cores. This problem is called a cache coherency
problem. Many software and hardware solutions have been
developed to address this problem. These solutions are called
cache coherency protocols.

The main purpose of these cache coherency protocols is to

ensure that the data read by a processor is consistent. They also

provide set of rules to keep the data in the cache of a processor

consistent. Cache coherency protocols are widely classified into

two categories, namely, a directory-based coherency protocol

and broadcast-based coherency protocols [1]. Directory-based

cache coherency protocol [2] is a coherence mechanism which

contains a small directory that maintains coherence between

caches. This directory holds information about all the data

blocks cached by processor cores. Each processor must check

the validity of a data block before copying it to their cache.

Whenever any data block is modified the directory either

updates or invalidates all the copies cached by other processors.

On other hand a broadcast-based coherency protocol does not

use any directory to hold the status of cached data blocks.

Instead, in broadcast-based coherency protocol, each processor

broadcast data request into the system bus. All the processors

continuously monitors request messages in the system bus and

responds to it whenever the copy of the requested data is stored

in their caches.

Although both the directory-based coherency protocol and
Snoopy protocols have its advantages, there are some
disadvantages in both of them. To overcome those defects, in the
proposed work a hybrid cache coherence mechanism that
combines advantages of both the protocols to increase the
performance of the CMP by reducing the traffic in the system bus
is introduced. In this hybrid mechanism a small directory cache
(DB-CACHE) is introduced into the chip in order to hold all the
all the references to the data blocks cached by the processors. A
separate cache coherence bus (CC-BUS) is introduced for
handling data request.

2. RELATED WORK

The cache coherence protocols are broadly classified based on

the method by which they ensure data consistency across

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.14, May 2013

25

multiple cache levels in a multi-core processing system. They

are snoopy protocols and directory-based protocols. The

following two sub sections discusses about the pros and cons of

the two protocols and also a brief outline about the dragon

protocol which forms the basis of the proposed hybrid cache

coherence protocol MESCIF that combines the merits of both

directory-based and broadcasting protocols.

2.1 Snoopy protocol.

Snoopy protocol otherwise called as broadcast based

protocol achieves services through broadcasting of both request

and response into the system bus, And hence it ensures all the

request from a processor were sent to other processor cores in a

serial manner. Snoopy protocol is generally implemented in ring

structure or inter-connection bus of a multi-processor system [3].

Due to its simple structure, snoopy protocol is considered more

advantageous than other protocols. Since system bus is an

exclusive resource, when the number of processor cores inter-

connected with the system bus is large, the efficiency of the

protocol drops dramatically [4]. In snoopy protocol all requests

are broadcasted in a undifferentiated manner into the system bus

and so all the processors connected with the system bus must

read the request and it has to check whether its cache contains

the requested data block’s copy. This leads to unnecessary

consumption of system resources incase when a processor cache

does not contain the requested data block’s copy [5]. Similarly,

when multiple processors, contains the requested data block’s

copy, multiple processors broadcast the response message into

the system bus, which arises a need for arbitration function. This

leads to an additional cost of arbitration. Snoopy protocols have

a single cache write strategy [6]. (i.e.) either to invalidate or

update, and a wide variety of snoopy protocol are based on

invalidate write strategy.

2.2 Directory protocol

A directory protocol uses a special memory called directory

to store all the information related to a data block’s copy that is

cached by any processor in a multi-processor system [7].

Whenever any processor needs a data block copy it checks the

directory for its current location information. Then, with the

obtained information the requestor processor initiates the point

to point communication with the designated processor that

contains the requested data block’s copy. This makes the

directory protocol to overcome the defect of snoopy protocol

which sends request and response messages in an

undifferentiated manner. Directory protocol ensures that all data

requests are serviced in a serial manner. It also creates a

possibility to expand cache coherence protocol to a large scale

multi-processor system without any broadcasting mechanism.

2.3 Dragon protocol

The dragon protocol is a write-back policy based protocol [8].

In this protocol the following states are specified to each block

in a processor (Invalid state, modified state, exclusive state,

shared clean and shared modified).The dragon protocol is

intended to minimize the amount of store operation that the main

memory has to do. It is divided into two shared states, one is the

shared clean and another one is shared modified state. The

shared clean state denotes that there are sharers and in this state

the processor is not the owner of the cache line. The shared

modified state denotes that the main memory is not updated yet

and in this state the processor is the owner of the cache line.

3. BACKGROUND UNDERSTANDING

The following sub sections provide a brief overview of cache
coherence problem that occurs in multilevel cache in a multi-core
architecture.

3.1 Multi-level cache

The fundamental issue with the cache memory of any

processor is the tradeoff between hit rate and cache latency.

When the size of the cache becomes larger, the hit rate

increases in the mean time cache latency becomes very longer.

In order to reduce the cache latency smaller caches are needed

similarly to increase the hit rate a larger cache is needed. To

address this problem, the manufactures introduced the

multilevel cache concept. Here the cache memory is divided

into various levels. The level 1 cache (L1-Cache) which is

present inside each cores of a multi-core system was the

smallest cache memory that holds the most recently accessed

data. Each and every core can have an independent access to its

L1-Cache. The next level of caches are larger in size and are

shared among multiple processing units (i.e.,) Cores. In a

multilevel cache, if a data block is needed, the processor first

checks the smallest L1-Cache; if it is a hit then the processor

operates at a higher speed; if there is a miss then the processor

proceeds to check the next level of cache L2-Cache and so on,

before checking the main memory. Fig 1 and Fig 2 shows the

presence of L1-Cache and L2-Cache in a multi-core system.

3.2 Multi-Core Processor

 In a multi-core processor a single processor chip holds

multiple independent CPUs called as cores [9]. Figure 1 depicts

the architecture of Multi-Core System architecture. Each core

can execute different instructions simultaneously which in turn

increases the overall execution speed of programs equivalent to

that of parallel computing. A multi-core processor allows

multiprocessing using a single physical package. The cores in a

multi-core processor may be tightly or loosely coupled. A multi-

core system which contains identical cores is called

homogeneous multi-core systems. Multi-core processors are

mostly used across many real time applications including

general-purpose, network, embedded, graphics and digital signal

processing (DSP). The performance improvement obtained by

using a multi-core processor highly depends on the software

algorithms used and their method of implementation.

4. PROPOSED SYSTEM ARCHITECTURE

The proposed system is focused at overcoming the deficiency

of undifferentiated broadcasting in the existing coherence

protocols. So, in order to improve the performance of multi-core

processor, we propose an enhancement to the existing approach

by making an hybrid cache coherence model with an addition of

directory based cache and system bus. The following paragraph

describes the proposed system architecture.

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.14, May 2013

26

Figure 1 Multi-core architecture

4.1 Directory Based Cache

 A small volume of memory, DB-Cache, serves as a

Directory, has been introduced into the existing architecture in

order to eliminate the drawback of undifferentiated broadcasting

in snoopy protocol. Similarly an additional bus called Cache

Coherence bus (CC-BUS) is also introduced to reduce the

interconnect bus traffic that arises due to Directory request and

response message. The DB-Cache interconnects all the L1

private caches with the help of system bus, holds the valuable

information about the data blocks captured in all private L1

caches. Figure 2 shows the proposed architecture with a DB-

Cache.

It stores each and every data block cached in private

cache of any of the processor along with its address and id of the

processor that currently holds the data block. The format of DB-

Cache directory items is as follows

 Address: Address of the cached Data block’s copy.

 Condition: Current state information of the data

block’s copy.

 Processor-Number: Processor ID in which the data

block’s copy resides.

Hence whenever a processor needs any data block, instead of

broadcasting the request message into the system bus, it checks

the DB-Cache to find the location of the data block using the

CC-Bus. After obtaining the location information from DB-

Cache, the requesting processor can communicate to any

designated processor using point-to-point communication

directly.

Figure 2 System architecture with directory based cache.

4.2 Overview of operations performed by the

proposed protocol on a data request

The proposed MESCIF protocol handles any data request using

the following sequence of operations: Whenever a data block is

needed by the processor,

1. The cache Controller of the requesting processor send a

directory request message requesting the required data

block’s location, to the DB-Cache through the CC-bus;

2. The DB-Cache controller will respond with a Failure

message if searching directory is not hit, otherwise, returns

the processor number that holds the required data block’s

copy to the requesting processor;

3. After obtaining the processor number the local cache

controller sends a data request message to the remote cache;

Remote cache responded to the request by filling the

message with data block copy, then sent the request back to

the system bus;

4. The local cache controller after receiving the response

message from the remote cache, extracts the data block

copy.

5. DESIGN OF MESCIF PROTOCOL

The MESCIF protocol is designed based on traditional

invalidate protocol with the following seven states: Modified,

Exclusive, Shared, Invalidate and Forward. In addition to the

existing states the proposed system introduces two new states

MC and SC which leads to hybrid write strategy that overcomes

the traditional single write strategy(i.e.) whenever a data block

copy is located in two processors an update write strategy is

used. When more than two processor contains a data block’s

copy an invalidate write strategy is used

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.14, May 2013

27

5.1 Data block states

M: modified, there exists only one copy of the data

block in processor cache but the value of the data block in the

cache is different from that of in main memory.

E: exclusive, there exists only one copy of the data block

in the processor cache but the value of the data block in the

cache is same as that of in main memory.

S: Shared, there exists more than two copies of the data

block in the processor’s cache but the value of the data block in

the cache is same as that of in main memory.

MC: Master Clean, another copy of the data block

existed, and this copy is the leader of two.

 SC: Slave Clean, another copy of the data block existed,

and this copy is the follower of two.

I: Invalid, there exists a copy of data block which

contains an invalid copy. The valid copy may exist either in

main memory or remote processor’s cache.

F: Forward, a specialized form of shared state which

indicates that it should be the responder for any request for the

data block that arises from any remote processor.

Figure 3 shows the state transition diagram for the MESCIF

protocol, which contains the above mentioned states and their

respective transitions on the following operations.

 The operations are:

 LW: Local Write, which means that a write operation

is performed by same processor on local cache;

 LR: Local Read, which means that a read operation is

performed by same processor on local cache;

Figure 3 State transition diagram

 RR: Remote Read, which means that a read operation

is performed by the remote processor;

 RW: Remote Write, which means that a write

operation is performed by the remote processor;

Before requesting the data from the remote processor, the

cache controller of the requesting processor must send a

directory request message to the DB-Cache using the CC-Bus in

order to get the location information of the required data block.

The directory request message format is as follows:

 Stage: type of message, takes value either 0 or 1.where

0 indicates it is a request message sent to DB-Cache

and a value of 1 indicates it is a conformation message

which originates from DB-Cache.

 Cate: Type of request, takes value of either 0 or 1

where 0 indicates a read request and 1 indicates a write

request.

 Source: The processor number from which the

directory request message has been sent.

 Address: The address of the requested data block.

 State: Current state of the requested data block’s copy.

 Whenever a processor needs a data block’s copy it has

to fill the source processor number and set the stage value as

zero in the directory request message and this request is placed

in the CC-Bus. All processors connected to the CC-Bus and the

DB-Cache controller continuously monitors the CC-Bus. On

reading this message all other processors discard the message

directly after seeing the stage value as 0. Similarly on seeing the

value of 0 in the stage field the DB-Cache controller search the

directory for the requested data block and place a confirmation

message on the CC-Bus which is of the following format:

Here the stage value is set as 1, indicating that it is a

confirmation message that is sent from the DB-Cache. The

source value is the processor number from the directory request

has been generated. The ACK field holds the value of either 0 or

1, representing directory hit or directory miss respectively. Now

all the processors monitoring the CC-Bus read the confirmation

message checks for the source value whether it is their own

processor number, if not the message is discarded directly.

Otherwise it checks for the ACK value if it is 0 (i.e.,) directory

hit then the source processor sends the data request message

(read/write) into the system bus in order to fetch the data block

from the remote processor. If the ACK value returned is 1 (i.e.,)

Directory miss then source processor sends the data request

message to L2 cache.

5.2 Read operation

When a processor requires a data block it tries to check local

private cache, if it is a hit the state of the data block was not

modified. If it is a miss or the state of the data block’s copy is I

then a directory request message is send to the DB-Cache via

CC-bus. If the directory request returns a failure message then

the data request is send to the shared L2 cache. On searching the

directory, if it returns a hit the DB-cache controller generate a

read request message into the system bus on behalf of the

requesting processor in the following format.

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.14, May 2013

28

Source, cate and address in the above format serves the same

purpose as mentioned above in the directory request message

format.

 Stage: Message type, value of 0 represents a data

request message originated from DB-Cache and a

value of 1 represents it is a response message

generated by the remote processor.

 Dest: destination represents a processor number where

a valid copy of the required data block is present.

 Data: memory data, it is an area where the remote

processor loads the required data block’s copy.

 When a read request message is placed into the system

bus all the processors which are monitoring the system bus reads

the request message and the following actions are taken:

1) At first the value in the stage field is analyzed, if it is 1

then move to step 3 otherwise checks for the value in the

source field whether its processor number is equal to it. If

it is not equal then the message is simply discarded

otherwise proceed to step 2.

2) Now the value in the dest field is checked, if it is not equal

to their own then simply discard the message otherwise

read the address field, load the corresponding data block’s

copy into the data field and set the stage value as 1.

3) Check for the value in the source field; if it is equal to its

own processor number then read the data available in the

data field otherwise simply discard the message.

5.3 Write Operation

 During write operation when the data resides in the

local private cache and the state of the data block copy was not

MC or SC, there is no need of sending data request .The state of

the data block is modified both in DB-Cache and local private

cache, if it is necessary. When the data to be written is in the

processor’s local private cache, and the state of data block copy

is either MC or SC, another copy of the data block which resides

in the remote processor’s has to updated . When the data block

does not reside in the local private cache or the state of the data

block is I, then the processing rule are similar to that of read

request message. After receiving the data block from the remote

processor and completing the write operation need an additional

operation of write invalid or write update that has to be

performed based on the following rules:

1) If the data blocks copy received is in state E or M then do

an update operation by sending a update message through

the system bus with cate value has 1 and fill the data with

updated value to the remote processor.

2) The state is not E or M do an invalidate operation by

sending an invalid return request into the system bus.

6. IMPLEMENTATION

Gem5 [10], a modular discrete event driven computer system

simulator is used for simulating the proposed multi-core

architecture. We have modified the existing cache coherence

protocol MESI of an Alpha processor by adding three states MC,

SC and F.The state transitions have been modified in the

following files: directory.slicc, directory-dir.sm, directory-

dma.sm, directory-L1cache.sm, directory-L2cache.sm and

directory-msg.sm. Gem5 can be used to simulate either a

complete system with all devices and the entire operating system

in a full system mode or user space only programs where the

system services are provided directly by the simulation

environment in a system call emulation mode. We have used the

system call emulation mode in gem5 in order to test the

developed MESCIF protocol. Table 1 shows the system

parameters of the simulated system.

Table 1. System parameters

Parameter Value

CPU cores 4

L1D Cache 64 KB

L1I Cache 32 KB

SharedL2 Cache 2MB

DB- Cache 512 KB

7. CONCLUSION

In this paper the cache coherence protocol MESCIF with DB-

cache is developed which combines the merits of directory

protocol and broadcasting protocol. In this proposed protocol,

the processor cache controller’s workload is effectively reduced.

The protocol also increases the effective usage of the bus. By

extending the data block’s states, the request and response

phenomenon is effectively reduced. After the simulation it has

been observed that the program execution time was reduced and

L1 cache miss ratio was decreased which in turn improved

overall system performance.

8. REFERENCES
[1] Mengxiao Liul,Weixing Jil, Xing Pul and Jiaxin Lil. A

Parallel Memory System Model for Multi-core Processor.
IEEE International Conference on Networking,

Architecture, and Storage,2009.

[2] Jason F. Cantin, Mikko H. Lipasti, and James E. Smith.

Improving Multiprocessor Performance with Coarse-Grain

Coherence Tracking. Proceedings of the 32nd Annual

International Symposium on Computer Architecture table

of contents. pp.246 - 257, 2005.

[3] Y. Chang and L. Bhuyan. An efficient tree Cache

coherence protocol for distributed shared memory

multiprocessors. IEEE Trans.on Computers, 48(3): pp.352–

360, 1999.

[4] C. Zhang, “Reducing Cache Misses Through

Programmable Decoders”, ACM Transactions on

Architecture and Code Optimization, Vol. 4, No. 4, Article

24, January 2008

[5] M. E. Acacio, J. Gonzalez, J. M. Garcia, and J. Duato. A

new scalable directory architecture for large-scale

multiprocessors. In IEEE HPCA,2001.

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.14, May 2013

29

[6] W. Hu, et al. JIAJIA: An SVM System Based on A New

Cache Coherence Protocol. In Proc. of High Performance

Computing and Networking, 1999.

[7] Christian Fensch, Marcelo Cintra: An OS-Based

Alternative to Full Hardware Coherence on Tiled CMPs. In

14thInternationalSymposium on High Performance

Computer Architecture, pp. 355-366. IEEE Press, New

York (2008).

[8] Christof Possienke: Cache Coherency Protocols:

Proceedings of the Seminar Advanced Computer

Architecture, University of Paderborn,2012.

[9] Felipe L. Madruga1, Henrique C. Freitas, and Philippe O.

A. Navaux: Parallel Shared-Memory Workloads

Performance on Asymmetric Multi-core Architectures, 18th

Euro micro Conference on Parallel, Distributed and

Network-based Processing, 2010.

[10] Gem5 simulator: http://www.m5sim.org.

