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ABSTRACT 
In order to improve the spectrum utilization, cognitive networks 

have been proposed. A cognitive network can reuses the 

spectrum of licensed user in a way such that the services of the 

licensed users are not disrupted harmfully. This paper presents 

the optimization of interference generated by a secondary 

network to a primary network for a cognitive radio (CR) 

networks using genetic algorithm (GA). The interference model 

used for optimization, in cognitive radio networks, is presented 

employing power control. A power control scheme is studied to 

govern the transmission power of a CR node. The probability 

density functions (PDFs) of the interference received at a 

primary receiver from a CR network are first studied 

numerically and then under the control scheme the interference 

distributions are fitted by log-normal distributions with reduced 

complexity. In GA optimization, the chromosome’s genes 

correspond to the adjustable parameters in a given radio, and   

the chromosomes are genetically manipulated so that GA can 

find a set of parameters that optimize the radio according to the 

user’s current needs. 
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1. INTRODUCTION  

With the increasing demand and growth in wireless services 

over the past few years, the spectrum is becoming more and 

more congested especially in the bands below 3GHz. With the 

requirement to improve spectrum utilization, the newly 

emerging cognitive radio (CR) technology has attracted 

increasing attention [1-3]. A CR network is envisioned to be 

capable of reusing the unused or underutilized spectra of current 

systems by sensing its surrounding environment and adapting its 

operational parameters autonomously. Cognitive radio tries to 

take advantage of the unused spectrum of the licensed (primary) 

users [4, 5]. In addition to spectrum sensing algorithms, sharing 

protocols, policies, among other things, the interference 

management has become important in cognitive radio, in order 

to manage and fulfill the regulatory constraints. To treat and 

quantify interference produced by the unlicensed users at the 

licensed receivers, management of interference is required [6, 

7]. In order to manage this interference, the cognitive 

(secondary) users must be able to adjust their parameters to 

fulfill these constraints. 

 In the paper, an interference model for cognitive radio (CR) 

networks employing power control scheme is studied to 

illustrate the effect that the different parameters produce on 

the interference in the licensed bands. The distribution of the 

interference power at a primary receiver is studied when the 

interfering secondary terminals are distributed in a Poisson 

field. A power control scheme is studied to govern the 

transmission power of a CR node. Further, for power control 

scheme, their interference distributions are fitted by log-

normal distributions, which reduce computational complexity 

compared to a numerical approach to obtain PDFs [8-10]. 

Here, Genetic Algorithm using MATLAB is used as the 

optimization tool. Some parameters are optimized in order to 

mitigate interference in a cognitive radio network. The 

impacts of ε (minimum distance between the static receiver 

and an interferer), shadowing, and small scale fading on the 

probability density function (PDF) of the interference power 

is investigated. Moreover, the effect of imperfect static 

system knowledge & hidden node on the interference 

experienced at the receiver is also investigated. 

2. INTERFERENCE CONTROLLING 

BEHAVIOR AND SYSTEM MODEL 

Interference in the context of CR networks can be classified into 

two types: intra-network interference and inter-network 

interference [6].Intra-network interference, also known as self-

interference, refers to the interference caused within one 

network. Some examples of intra-network interference include 

inter-symbol interference in frequency-selective channels and 

multi-access interference (MAI) in multiuser networks. It exists 

to some extent in every wireless communication system, and 

there are a number of techniques to mitigate them efficiently. On 

the other hand, inter-network interference refers to the mutual 

interference between the primary and CR networks (interference 

from CR to primary networks and vice versa). 

Cognitive behaviour may be divided into three categories: 

Interference avoiding behaviour, interference controlling 

behaviour and   interference mitigating behaviour [11-15]. 

2.1 System Model 

A static receiver is assumed to be at the center of a circular 

region with radius extending to infinity as shown in Fig. 1. 

Secondary networks are uniformly distributed in this region and 

the mean number of radios per unit area is assumed to be λ. The 

number of radios in an area A follows a Poisson process with 

parameter λA [8, 16]. The probability that there are k radios in 

this area is then given by  
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P (k) =exp (-λA)(λA)k/k!                                                                   

(1) 

 

Interference is caused to the static or primary receiver by 

secondary networks that transmit in the same frequency band as 

the static radio. Interference between static radios is not taken 

into consideration. The interference power at the static receiver 

is modeled as a random variable [16, 17]. The path loss function 

is 

 

g (rj)=rj
-α                                                                                            

(2) 

 

where, rj  is the distance between the jth (j = 1, 2…) active CR 

transmitter and the primary receiver and α is the pathloss 

exponent. If α is not greater than 2, the sum interference power 

at a receiver would be a function of the network size and would 

be infinite for an infinite sized network.  

For secondary networks without any interference region, we 

have ε  = 0 and consequently g(R)→∞. With a typical value of 

the pathloss exponent β = 4, following similar steps in we can 

obtain the closed-form expression of the PDF of Y as [8, 17]  

 

fy (y)=(π/2)λy-3/2e- π³λ²/4y                                                                    

(3) 

 

The above PDF falls into the category of Levy distribution 

S1/2(σ, 1, μ) with the scale parameter σ = π3λ2/2 and the shift 

parameter μ = 0. 

 
Fig 1: A primary receiver having a region of interference of 

radius ϵ surrounded by secondary transmitters. 

 

2.2 Modeling the Interference Statistic at the 

Static Receiver 

The static receiver is at the center of a circular region with radius 

a (that extends to infinity). Interfering radios are uniformly 

distributed in this region with intensity n per unit. The minimum 

distance between the static receiver and an interferer is assumed 

to be greater than some positive value  ε  > 0. Hence the region 

has an inner-radius  ε. The normalized interference power at the 

static receiver from this annular region is then, 

 

X (n, ε,α)=∑J(n, ε,α) g(r)                                                                      

(4) 

                                                                                                                     

Here, J (n,  ε, α) is the set of interfering radios with density n in 

the annular region with radius r such that ε ≤ r ≤ a. The sum of 

random variables is asymptotically log-normal under certain 

conditions. These conditions shown to be satisfied for the sum of 

received powers from interferers uniformly distributed in a 

circular region with a non-zero inner-radius. In addition, 

simulation results show that the distribution of the interference 

statistic X (n, ε, α) is heavy-tailed. The log-normal distribution is 

heavy tailed, positively skewed and is suitable to model random 

variables that are constrained by zero but have a few very large 

values. Measurements and experimental results have also shown 

that out-of-cell interference can be well-approximated by a log-

normal distribution [16]. Taking into account these observations 

and the fact that fit tests support it, X (n, ε, α ) is modeled as a 

log-normal random variable.  A cumulant-matching approach is 

used for the modeling. 

The probability density function of a log-normal variable is 

 

p(x)=(1/xσ√2π)exp(-(ln(x/m))2/2σ2)                                                 

(5) 

 

Parameters m and σ are given by m1 = m exp (0.5 σ2)  and m2 = 

m2 exp (σ2) (exp (σ2) - 1). Here, mk  is the k th cumulant of X (n, 

ε, α) and is calculated.The moment generating function (MGF) 

of X (n,  ε, α) is first derived to calculate the first two cumulants. 

The derivation is based on the method used in to calculate the 

characteristic function of X (n, 0, α).  

When characteristics of the interference statistics are 

investigated to derive desirable features for SS schemes the kth 

cumulant of the interference statistic at the static receiver when 

interfering radios are distributed in an annular region with ε < r 

< ∞ is [17] 

 

mk=(2nπ/(kα-2)) Px
 k 1/ ε kα-2                                                                                        

(6) 
                                                                                        

Here, n is the density and Px  is a scaling factor for the transmit 

power of interfering spectrum sharing radios. The kth cumulant 

decreases linearly with a reduction in n, exponentially with a 

reduction in Px and exponentially (as a factor α) with an increase 

in ε. A reduction in the variance narrows the density distribution 

and translates to faster decay of outage probabilities with 

increasing tolerable interference powers.  

2.3 Impact of Shadowing 

The effect of small-scale fading in addition to log-normal 

shadowing was also investigated via simulations and analysis. 

However, it was found that the interference is dominated by log-

normal shadowing and the inclusion of small-scale fading does 

not significantly alter the results. 

The kth cumulant of Xshad (n, ε, ∞) is therefore given by [17] 

 

 Mk (Xshad(n, ε,∞))=2nπeσl²c²k²/2/(kα-2)( ε kα-2)                                   

(7) 

                                                        

 

Again the distribution of Xshad (n, ε, ∞)  is fitted to a lognormal 

distribution. This is similar to the use of a log-normal to model 

the sum of randomly-weighted log-normal variables. 

 

2.4 Hidden Node Problem 
In hidden node problem with perfect sensing situation, 

interference is caused at the static receiver by transmissions 

from SS radios which are hidden from the static radio 

transmitter. Hence, unlike the perfect system knowledge 

scenario, an outage can be caused at the static receiver by an 

individual SS radio interferer in addition to an outage caused by 

the sum of received powers from SS radio interferers.  
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Let ras be the range from the static transmitter within which the 

SS radio can identify static radio transmissions and let θ be the 

angle of the line joining the SS radio transmitter and the static 

receiver w.r.t. the line joining the static transmitter and receiver. 

These variables are illustrated in Figure 2. Consider a disc of 

radius a. Then the area outside the sensing region is given by 

π(a2-ras
2). rmin (θ) is the minimum distance of the agile 

transmitter from the static receiver such that the static 

transmitter is hidden from it. It is a function of θ and is given by 

 

rmin(θ)=rscosθ + rassin(cos-1(rssinθ/ras))                                            

(8) 

 

 

  
Fig 2: CR transmitters distributed in the shaded region 

which is the hidden node region around a static transmitter 

 

Let ε (θ)=max {rmin(θ),rphy}. The interference statistic at the 

static receiver for a spectrum sharing scheme employing 

interference avoidance in the absence of perfect system 

knowledge is given by 

                                                                     
(9) 

 

In case of imperfect sensing SS radios attempt to locate static 

radio receivers and static radio transmissions by either sensing 

signals from the static receivers or by sensing transmissions 

from static transmitters. 

 

In either scenario, sensing errors might occur and interference 

could be caused at the static receiver by an individual SS radio 

transmission. Hence, unlike the perfect system knowledge 

scenario, an outage can be caused at the static receiver by an 

individual SS radio interferer in addition to an outage caused by 

the sum of received powers from SS radio interferers. The 

probability of sensing error (pse), increases as the distance 

between the radio transmitting the signal and the SS radio 

increases and can be modeled as 

 

Pse(r) =Crq;  rphy≤ r ≤ rse                                                                  

(10) 

             1;      r > rse 

 

Here, C is some weighting constant such that at distance rse 

between the SS radio and the radio transmitting the signal to be 

sensed, Pse (rse) = 1 (C =1/rse
q).  q is a factor which can be used 

to shape the distribution of pse. It is assumed that sensing error is 

directly proportional to the path-loss, i.e., q = α. 

The static receiver is assumed to transmit a signal indicating a 

static radio transmission in a particular frequency band. The 

probability of a SS radio, making an error while sensing this 

signal, is assumed to be given by pse (r), where r is the distance 

between the SS radio and the static receiver. Thus in addition to 

the interference caused by radios outside the circular region with 

radius rmin, interference is caused at the static receiver by radios 

inside the circular region that make an error in sensing the signal 

from the static receiver. 

The interference statistic can now be re-written as 

 

                                    
(11) 

A radio in the annular region with inner-radius rphy and outer-

radius a (the number of radios is Poisson distributed with 

intensity measure n) interferes with the static radio with a 

probability of pres (r). This new distribution of interfering radios 

can be modeled by a thinning operation on the original Poisson 

distribution where a point of the original Poisson process is 

retained with probability pres (r) that depends upon the distance r 

from the centre of the circular region. The kth cumulant mk of 

 is therefore given by 

 

                         
(12) 

 

3.    APPLICATION OF GENETIC 

ALGORITHM TO INTERFERENCE 

MITIGATION 

Using Genetic Algorithm MATLAB different parameters are 

taken and optimized. Taking equation (3) as the cost function the 

PDF of Y is evaluated numerically. The instantaneous 

interference (Y) is varied for the values 1 to 100 and the density 

parameter (λ=L) is varied for the values shown below. Fig. 3 

shows the Levy distribution based on equation (3) with different 

values of λ (L) at interference region being zero i.e.  ε = 0.  

 

 
Fig 3: Instantaneous interference power PDFs without 

interference region  
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As discussed previously, it represents the interference power 

distribution of a secondary network without any interference 

region. The Levy distributions are featured by their heavy-tailed 

PDFs. 

Fig. 4 is obtained by numerically evaluating the kth cumulant of 

the interference statistic using equation (6) & then taking 

equation (5) as the cost function for different values of ε (radius 

of the interference region),  λ = 1 and varying α from 4 to 8. For 

the values of 1.2, 1 and 0.6, ε is varied and the interference 

power is varied for the values from 1 to 30.  

 

 
Fig 4: Instantaneous interference power PDFs with an 

interference region 

 

It represents the interference power distributions of a cognitive 

network with an interference region, where the interference 

power is averaged over power control and channel fading states. 

A larger value of ε means a wider area of interference region so 

that the primary receiver is better protected. The case of  ε = 0 

leads to a heavy-tailed Levy distribution shown previously in 

Fig. 3. With non-zero values of ε, the tails are shortened and the 

distribution of the interference power tends to be more confined.  

In Fig. 5, we assume ε = 1 m and show the impacts of the 

terminal density λ and average transmit power Ω on the 

interference power distribution. Moreover, with the increasing λ, 

the mean of the interference power scales linearly with λ, 

whereas the variance increases slower than a linear scale. The 

average transmit power Ω has a scaling effect on the interference 

Y. When Y follows a Gaussian distribution, both the mean and 

variance would be scaled by Ω to the same degree. The 

difference of the scaling effects of λ and Ω can be seen by 

comparing the two distributions obtained with (λ = 2, Ω = 1) and 

(λ = 1, Ω = 2), both scaled from that with (λ = 1, Ω = 1). The two 

distribution curves have roughly the same mean but a smaller 

variance is observed for the former case. 

 
Fig 5 (a):  Instantaneous interference power PDFs with an 

interference region (ε = 1 m) 

 

 
 Fig  5(b): Mean interference power PDFs with λ = 1, Ω = 2 

 

Fig. 6 is obtained by evaluating  the kth cumulant of the 

interference statistic using equation (6) & then taking equation 

(5) as cost function for different values of ε and λ=1. We assume 

that the secondary terminals transmit with constant powers and 

the channels are subject to log-normal shadowing and Nakagami 

fading. 
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Fig 6:  Instantaneous interference power PDFs with an 

interference region (λ = 1) 

 

It is seen that the PDFs in Fig. 6 has slightly heavier tails 

than that in Fig. 4. This is because that when the effects of 

fading and shadowing are taken into account, there is a higher 

probability that a strong and dominant interference would occur. 

 

  

Fig 7:  Instantaneous interference power PDFs with different 

power control exponents α with an interference region under 

different fading scenarios (ε = 1.4 m, λ = 3) 

 

It can be seen from Fig. 7 that (i) both the mean and variance of 

the accumulated interference are significantly reduced when 

adopting the power control scheme; (ii) introducing interference 

region also reduces the interference experienced at the primary 

receiver; (iii) increasing the power control exponent α leads to 

the decrease of interference. 

          Fig 8(a): Aggregated interference power PDFs with 

perfect system knowledge 
 

Fig. 8(a) shows aggregated interference power for Log-normal 

approximation for interference distribution with perfect system 

knowledge taking α=4, λ=3 and for a hidden primary receiver 

under power control. 

 

  

Fig 8(b):  Aggregated interference power PDFs with hidden 

primary receiver 

 

Fig. 9 shows the Log-normal approximation for interference 

distribution with imperfect sensing, rse=6m, λ=3, α=4 and 

aggregated interference power PDFs for perfect primary receiver 

knowledge. The first plot is obtained by varying rphy , rmin and 

evaluating eq. (12) and then taking eq.(1) as the cost function. 

The second plot is obtained for rphy=.2 and rmin=1 and by 

evaluating eq. (12) and then taking eq. (1) as the cost function. It 

can be seen from the figure that the imperfect sensing problem 

boosts the interference in terms of increased interference mean 

and variance. 
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Fig 9: Aggregated interference power PDFs for perfect 

primary receiver knowledge and for Log-normal 

approximation for interference distribution with a hidden 

primary receiver under power control  

 

Fig. 10 shows the aggregate interference power for a perfect 

primary system knowledge using GA and without using GA. 

Fig. 11 shows the aggregate interference power for an imperfect 

primary system knowledge using GA and without using GA. 

 

 

 
Fig 10: Aggregated interference power for perfect system 

knowledge 

 

In Fig. 10 & fig. 11 it is observed that with GA, the tails are 

shortened and the distribution of the interference power tends to 

be more confined. It is seen that the increase in interference 

caused at the static receiver without GA tends to be greater as 

compared to the plot with GA. 

  

Fig 11: Aggregated interference power for an imperfect 

system knowledge 

 

4. CONCLUSION  

The distribution of the interference generated by a secondary 

network to a primary network has been optimized here using 

MATLAB genetic algorithm. Secondary terminals are 

assumed to be cognitive so that they can cease the 

transmission if any primary receiver within a distance of ε is 

detected. The characteristic function of the random 

interference is studied taking into account the cognitive 

ability, power control, and channel fading. Interference 

modeling from CR transmitters to a primary receiver when 

the knowledge of the primary receiver is imperfect, i.e., the 

hidden primary receiver problem is also done. Using GA, 

when more than one parameter is optimized it is found that 

the mean and the variance of the probability distribution 

function are reduced. 
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