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ABSTRACT 

Even though Image Restoration being a conventional problem 

in image processing, is still a demanding area and has always 

attracted the interest of research community. Image 

restoration algorithms are important as it serves a wide range 

of real world applications such as astronomy, medical 

imaging and photo editing are just a few which demands a 

good quality image for further high level processing. Image 

restoration methods aim to reduce the degradations that have 

occurred while the digital image was being obtained. All 

natural images have gone through some sort of degradation 

when they are acquired, processed or displayed because of 

sensor noise, camera misfocus, blur caused by relative motion 

between object & camera, atmospheric turbulence and others. 

The paper deal with restoration of images degraded by linear 

space-invariant blurs. Paper presents mathematical modeling 

of linear shift-invariant image formation process, possible 

sources of degradation, and reviews some fundamental & 

specific methods of restoration. 
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1. INTRODUCTION 
Image restoration or deconvolution of a blurred natural image 

is a mature research activity with a rich set of available 

techniques and algorithms. Degradation of the image demands 

for the reconstruction of the original image [1]. Image 

restoration algorithms aim to recover the true image from 

degraded measurements. This inverse problem is typically ill-

posed, meaning that the solution does not satisfy at least one 

of the following: existence, uniqueness, or stability. 

Regularization techniques are often adopted to obtain a 

solution with desired properties, indicating knowledge of prior 

information about the true image. Important performance 

metrics to assess the efficiency of restoration methods 

include: restoration accuracy, computational complexity and 

convergence speed. The paper provides overview of image 

restoration algorithms when degradation process is considered 

to be linear shift invariant. 

The rest of the paper is arranged as follows. Image 

degradation model is discussed in Section 2. Various blur 

models are described in Section 3. Section 4 presents various 

fundamental & specific (blind & nonblind) scheme of image 

restoration. Conclusions are drawn in Section 5. 

2. IMAGE DEGRADATION MODEL 
In many imaging application ideal image is degraded version 

of original image as it is blurred by some function h which is 

called impulse response, blur or point spread function (PSF). 

PSF is the smallest image detail an imaging system can form. 

The wide range of degradations considered are atmospheric 

distortions, optical aberrations, sensor blur, motion blur 

resulting from camera shake or the movements of the objects 

in the scene and noise. Noises may be introduced by the 

transmission medium, the recording medium, measurement  

errors  due to  the  limited  accuracy  of  the  recording 

system, quantization of the data for digital storage or any 

combination of these [3]. Degradation process is in general 

nonlinear and space varying but large number of problems 

could be addressed with a linear and shift-invariant (LSI) 

model considering every point in image equally blurred. 

Output of an LSI system is the convolution of the true image 

with the impulse response of the system as shown in Fig.1 (a).

 
(a) 

 
(b) 

Fig.1: (a) Image Formation (b) Image degradation model. 

Suppose that         is the true image that we would like to 

recover from the degraded measurement         where 

      indicates special coordinates. For a linear shift-invariant 

system, the imaging process can be formulated as 

                                            (1) 

where “*” is the convolution operation, h(x, y) is the PSF of 

the imaging system, and n(x, y) is the additive noise. The 

block diagram of this process is given in fig.1 (b).The imaging 

formulation can also be done in matrix-vector form or in 

frequency domain. Defining g, f, and n as vectorized versions 

of       ,        , and       , respectively, the matrix-

vector formulation is given by: 

                                            (2) 

where H is a two-dimensional sparse matrix with elements 

taken from h(x, y) to have the proper mapping from f  to g. On 

the other hand, the Fourier-domain version of the imaging 

model is given by: 

                                         (3)  

Where                         and          are the 

Fourier transforms of                          and        

respectively [2].Various restoration methods optimized with 

respect to different criteria have been introduced in the paper. 

3. BLUR MODELS 
PSF can be represented by a convolution kernel. Every 

convolution kernel is a not valid PSF. Constraints PSF must 

satisfy are: i)The kernel h must  satisfy the energy 

conservation constraint which  states  that  the  energy  is  

neither  lost  nor  gained by the blurring operation, ii)PSF is 
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an energy distribution function so every convolution kernel 

that contains negative values is not a valid PSF. 

3.1 Out of focus Blur  
When a 3D scene is imagined onto a 2D imaging plane, some 

parts of the scene are in focus while other parts are not as 

shown in Fig.2. 

 
Fig.2: Illustration of out of focus Blur 

 

 If the aperture of the camera is circular, the image of any 

point source is a small disk, known as the circle of confusion 

(COC). The degree of defocus (diameter of the COC) depends 

on the focal length and the aperture number of the lens and the 

distance between camera and object. The spatially continuous 

PSF of this uniform out-of-focus blur with radius R is given 

by 
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3.2 Motion Blur 
It occurs when there is relative motion between the object and 

the camera during exposure. A camera works by exposing a 

sheet of light sensitive film to a scene for a short period of 

time. The light from the scene hits the film causing the film to 

change chemically which results in picture representation. If 

the scene changes during this exposure than blurring of image 

is occurred since light from many scene hit the film [4]. 

 

 
(a)                                      (b) 

Fig.3: (a) Sphere being filmed (b) Sphere is moving in the 

direction of arrow. 

If the vrelative is the relative velocity between the camera & the 

scene under an angle φ radians with the horizontal axis during 

the exposure interval [0,texposure]. Defining the length of 

motion by L= vrelative* texposure , than  the PSF is given by; 
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Fig.3 (b) illustrates that the blur is effectively lowpass 

filtering operation. 

3.3 Atmospheric turbulence 
It is due to random variations in the reflective index of the 

medium between the object and the imaging system and it 

occurs in the imaging of astronomical objects. 
2 2
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Here  σ   determines  the  amount  of  spread  of  the  blur, and  

the  constant K is  to  be chosen so that constraint of PSF is 

satisfied.Fig. 4 illustrates atmospheric turbulence. 

 

 
Fig. 4: Atmospheric turbulence for different values of k 

 

4. IMAGE RESTORATION METHODS 
Image Restoration techniques are broadly classified as non-

blind technique if degradation process H is known or blind 

technique if degradation process H is unknown. Success of 

restoration algorithm depends on how accurately we model 

original image and the degradations. 

4.1 Inverse filtering 
If a good model of the blurring function H is known or can be 

developed, then inverse filtering is the quickest and easiest 

way to restore the blurred image. Since blurring is equivalent 

to low pass filtering of an image, inverse filtering provides 

with high pass filtering action to reconstruct the blurred image 

without much effort which require only the blur PSF as a 

priori knowledge. It perfectly restore the image when noise is 

absent. An inverse filter is a linear filter whose PSF 

            is the inverse of the blurring  function h(n1,n2)  

in the sense that 

                                     
    

   
                

                                                                             (7) 

                                        (8) 

M & N represent image dimensions. Problem can be solved as 

a set of M X N scalar problems in Fourier domain as follows 
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If M = N and H-1 exists then in matrix notation  

                                                 (10) 

Computational issues concerning inverse filtering are: i) if the 

additive noise N(u,v) is negligible than problem arises when 

H(u,v)  is very small, in that region inverse  filtering can not 

be used. Solution to the problem is if these points are known 

they can be neglected in the computation of F(u,v). ii) In the 

presence of external noise  rewriting (9) as  

( , )
ˆ ( , ) ( , )

( , )

N u v
F u v F u v

H u v
 

                      (11) 

N(u,v) dominates the result when H(u,v) is small [6]. The 

solution is pseudoinverse filtering which carry out the 

restoration process in a limited neighbourhood about the 

origin where H(u,v) is not very small. 
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where threshold T is defined by the user. To overcome noise 

sensitivity of the inverse filter a number of restoration filters 

have been developed that are called least square filters. The 

two most commonly used filters are Weiner filter & 

constrained least square filter. 

4.2 Wiener filtering 
The Wiener filter is optimal in terms of the mean square error 

between the ideal and the restored image. Its objective is to 

minimize the following function, 

ˆ ˆT
E{(f - f) (f - f)}

                                    (13) 

To do so two conditions should hold, first one is, 

ˆ{f} {f} {f} W {y}E E E E  
                (14) 

The second condition is indicates that error must be 

orthogonal to the observation about the mean  

TˆE{(f - f)(y - E{y}) } = 0
                         (15) 

In frequency domain solution is given by,     
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In frequency domain reconstructed image is given by; 
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Here H*(u,v) is the complex conjugate of H(u,v), and Sff(u,v) 

& Snn(u,v) are the power spectrum of the ideal image and the 

noise respectively. The power spectrum is a measure for the 

average signal power per spatial frequency (u, v) carried by 

the image. For spatial frequencies where Snn(u,v) <<Sff(u,v), 

the Wiener filter approaches to the inverse filter & it works as 

frequency rejection filter when Snn(u,v)>>Sff(u,v). If the noise 

is white noise, its power spectrum Snn(u,v) is determined by 

the noise variance   
  for all (u, v). The estimation of Sff(u,v) is 

somewhat more problematic since the ideal image is not 

available. The power spectrum of original image obtained in 

three ways: i) we can replace Sff(u,v) by an estimate of the 

power spectrum of the blurred image and compensate for the 

variance of the noise. ii) Estimate the power spectrum from a 

set of representative images iii) use a statistical model for the 

ideal image [5]. 

4.3 Constrained Least Square Filter 
The least squares estimator minimizes the sum of squared 

differences between the real observation g(x, y) and the 

predicted observation h(x, y) *f(x,y). In spatial domain cost 

function to be minimized can be written as, 

                                           (18) 

 

Its Fourier domain version, 

                                        (19) 

 In matrix-vector notation, 

                                       (20) 

Where H+ is 

                                                       (21) 

The constraint g = Hf is considered too strict because of noise 

and inaccuracies in the PSF estimate, and so the constraint is 

relaxed. In general, the regularized least squares estimation is 

given by: 

           
 

                             (22) 

Various regularization parameters are tabulated in Table I. 

 

Table I. Various regularization parameters 

Type Definition Remarks 
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The    matrix could represent 
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decomposition 
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Entropy 
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iterative 
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Markov 
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potential function       
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clique c &  is set of all 
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Constrained least squares (CLS) restoration with Tikhonov 

regularization can be formulated by choosing an   to minimize 

the Lagrangian 

                                           (23) 

Where      is a high pass filtered version of the image which 

imposes smoothness on the solution. This constraint controls 

the highpass version of the image which contains a 

considerably large amount of noise & can be handled using 

optimization techniques. The original image estimate after 

minimization of the function becomes; 

                                               (24) 

  is a positive regularization parameter used to control the 

trade-off between the fidelity and regularization terms. With 
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larger values of  , we get more regularisation, the restored 

image tends to have more ringing present near edges in the 

restored image [13]. With smaller values of  , the restored 

image tends to have more amplified noise effects. In fourier 

domain; 

         
             

                     
                 

4.4 Steepest Descent Iterative Method  
An iterative scheme is used when there is no direct solution or 

a direct solution is not computationally feasible. For iterative 

scheme new estimate is given by old estimate plus some 

function of old estimate. The steepest descent method updates 

an initial estimate iteratively in the reverse direction of the 

gradient of the cost function C(f ) [14]. An iteration of the 

steepest descent method is given by; 

                
     

  
 
    

                     (26) 

Where   is the step size and      is the ith estimate. The cost 

function if regularization is not used is defined as; 

                                          (27) 

which result in to the iteration; 

                
     

  
 
    

                        (28) 

which is also known as the Landweber iteration [15].The 

iterations are repeated until a convergence criterion is reached 

which is; i) the maximum number of iterations; ii) the rate of 

change in the estimated signal                          or in 

cost                             between two successive 

iterations. The step size    should be small enough to 

guarantee convergence, on the other hand, the convergence 

rate would be slow if it is too small [16]. To guarantee the 

convergence                          , where 

     is the maximum singular value of    . The conjugate 

gradient method is used to have faster convergence. In the 

steepest descent method the estimate is updated in the 

direction of the residual where as in the conjugate gradient 

method the update direction is conjugate to previous 

directions. 

Advantage of iterative algorithms are: i) there is no need to 

explicitly implement the inverse of an operator, ii) the 

restoration process is monitored as it progresses, iii) 

termination of the algorithm may take place before 

convergence & the effects of noise can be controlled in each 

iteration, iv) the algorithms used can be spatially adaptive. 

4.5 Bayesian Approach 
Statistical perspective to the image restoration problem is 

provided by Bayesian approach where unknown image, noise, 

and PSF are viewed as random variables. The solution of the 

problem is obtained by maximum likelihood (ML) estimator 

or maximum a posteriori (MAP) estimator or minimum mean 

squared error (MMSE) estimator. ML solution maximizes the 

probability        while the maximum a posteriori (MAP) 

estimator maximizes       . Using the Bayes rule, the MAP 

estimator can be written in terms of the conditional 

probability         and the prior probability of       ; 
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where      is dropped  from the last term as it is constant with 

respect to the argument f .The last term reveals that the MAP 

solution reduces to the ML solution when      is a uniform 

distribution. The minimum mean squared error (MMSE) 

estimator aims to find the expected value of f, defined as;  

E[     ]                                     (30) 

In image restoration problems image noise is mostly modelled 

to be a zero-mean independent identically distributed (iid) 

Gaussian random variable so the conditional probability of the 

observed image is; 

       
 

       
 

     
 

   
 
                        

   

  

  
 

       
      

 

   
        

                     (31)  

Where   the noise standard deviation and M is is the total 

number of pixels in the observed in image. Well known 

iterative Richardson-Lucy algorithm is based on Poisson noise 

model [17, 18]. Conditional probability of the observed image 

& an iteration of method are given by following equations; 

        
                                           

       
   

 

              
      

                
                              (32) 

Moacir P.et. al.have presented a restoration approach through 

band extrapolation [37]. An extrapolation algorithm using 

constraints on both spatial and frequency domains with a 

smoothing operator were combined with the Richardson-Lucy 

iterative algorithm. 

4.6 Projection onto Convex Set 
The projection onto convex sets (POCS) technique consists of 

iterative projection of an initial estimate onto predefined 

constraint sets [19]. Various popular constraint set used are; i) 

Data fidelity ii) pixel range constraint iii) frequency domain 

constraint set.  

 
Fig.5: An illustration of the projection onto data fidelity 

constraint set 

Data fidelity is commonly used as a constraint set to ensure 

consistency with observations and constrains the difference 

between the predicted pixel value and the observed pixel 

value.  

                                           (33) 

r(     ) is residual  given by; 

                                             
   (34)   

Sk is the set of pixels in the f(x, y) that contributes to the pixel 

(xk, yk), h(xk, yk; x, y) is the contribution of the pixel f(x, y), 
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and T(xk, yk) is the threshold value that controls the data 

fidelity constraint. Selection of threshold should be 

proportional to the noise power [20]. According to data 

fidelity constraint current estimate is changed when the 

absolute value of the residual is less than the threshold T(xk, 

yk) else it is updated . Fig.5 shows projection operation onto 

the data fidelity constraint set is formulated as; 

           

  

 
 
 
 

 
 
 

           
                               

                    

                  

                              

           
                               

                    

                   

      

The pixel range constraint set ensures resulting image pixel 

values within a certain range.  Frequency domain constraint 

sets is used when a certain frequency range of the true signal 

is known. Advantage of the POCS technique is the ease of 

incorporating space-variant PSF into the restoration. The 

technique guarantees convergence to a solution that is 

consistent with all the constraint sets when the constraint sets 

are convex and not disjoint but the solution is not necessarily 

unique & depend on the initial estimate and the order of the 

projections. 

4.7 Learning-Based Approach 
It uses powerful class-specific priors than generic image 

priors [21, 22]. It is used for both high-level classes and low-

level classes. Constraining Solution to a Subspace is a one of 

training-based approach. If the image to be restored belongs to 

a class and there is a set of training images f1,f2 .. fN from that 

class than image f can be represented in terms of the average 

image a and K basis vectors   = [ 1,     K]: 

                                                 (36) 

here e shows the contributions of the basis vectors. Vector e 

size is smaller than the total pixels in f. Vector e is calculated 

by taking the inner product with the basis vectors: 

                                                (37) 

Basis vectors are selected such that the difference between the 

image f and its subspace representation    is made as small as 

possible. The restoration problem can be formulated in terms 

of the representation vector e. Optimal representation vector 

for the regularized least squares approach is given by: 

                                     (38) 

 In this approach noise that is orthogonal to the subspace is 

automatically eliminated. 

4.8 Alternating Minimization 
In most of real life situation both the PSF and the true image 

must be estimated & this estimation process could be separate 

or joint. Estimation process uses various constraints such as 

nonnegativity, symmetry, and smoothness about the PSF and 

the true image. To find both the PSF h and the true image f 

that maximize the following posterior probability 

           
                 

    
                     (39) 

where         is the likelihood of observations       is the 

image prior, and      is the PSF prior. In optimization 

     probability is dropped as it is constant with respect to f & 

h. If parameterization is used for the prior distributions and 

introduced parameters are considered as random variables 

called hyperparameters than the posterior probability 

becomes; 

             
                             

    
                      

unknown image could be obtained as; 

                          
   

                    (41) 

Instead of determining the optimal f and h simultaneously 

alternating minimization is used which alternatively updates 

the one variable while keeping the other fixed [23, 24]. 

Equations for next estimate of f & h are as follows; 

                                              (42) 

                                            (43) 

and the corresponding alternating minimization iterations are 

                    
                

           
 

             
                  

             
                  

             
 

             
             

Initial true image estimation obtained by applying a shock 

filter [25] or a bilateral filter [26] results in highly successful 

blind deconvolution algorithms with sharp edges in image.  

4.9 Iterative Blind Deconvolution 

Iterative blind deconvolution (IBD) is one of popular 

algorithm for blind deconvolution proposed by Dainty [27]. 

The IBD algorithm iteratively estimates the original image as 

well as the PSF as shown in Fig 6. IBD makes use of spatial 

domain (positivity) as well as frequency domain constraints 

(G(u,v)=F(u,v) X H(u,v)). In Fourier domain, the current 

estimate      is updated as; 

                                               (46) 

which is essentially a weighted average of            and 

                 with weight parameter  . 

 
Fig. 6: IBD with spatial and Fourier domain constraints 

The iterative loop is repeated until a satisfactory restored 

image is obtained. Algorithm is sensitive to the initial guess & 

may run into infinite loop without convergence [28, 29]. 

4.10 Iterative Reweighted Least Squares 

(IRLS) Method 
The IRLS method [30] is designed to minimize ℓ  norm with 

       rewritten as weighted ℓ  norm as            
 

 
 

where       
      

 is diagonal of  matrix      with the current 

estimate is f (i) &      as the pseudo-inverse of     . The ℓ  

norm minimization problem becomes; 

                                              (47) 

The idea has been used in total variation-based restoration 

[31], where the regularizer is             
 

 
. 
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4.11 Iterative Shrinkage Method 
Traditional optimization algorithms are not efficient when the 

regularizer is nonquadratic. IST algorithms have been recently 

developed to do ℓ  minimization. In Proximal function IST 

technique cost function includes a distance term promoting 

the proximity between subsequent estimates [32].The distance 

term is quadratic and convex, and leads to a simple and 

effective algorithm. The modified cost function is; 

                                    
 

                
 

 (48) 

Where   is chosen such that the distance term is strictly 

convex. Amir Beck introduced new fast iterative shrinkage 

thresholding algorithm with a global rate of convergence 

which is proven to be significantly better [38]. 

4.12 Other Methods 
PDE Approach: Solutions to the image restoration uses 

theories on partial differential equations (PDEs) to develop 

new models representing an image f(x, y, t) as a function of 

space and time, and starting with the original image at t = 0. 

the evolution of the image in time can be written by;  

           
          

  
                                            (49)  

where the functional F takes spatial position, the image, and 

its first and second order spatial derivatives as the input. With 

the choice of the functional, it is possible to impose 

smoothness or sharpness on the restored image [33].  

Total Least Squares: TLS approach is an extension of the 

least squares method which only allows perturbations in the 

observation g. The Total Least Squares (TLS) approach 

allows errors in both the measured (or estimated) PSF and the 

observation. The TLS problem is formulated as finding f ,  g 

and  H minimizing the Frobenius norm          subject to 

the imaging constraint g +  g = (H+  H) f , where  H and  g 

are the error components in the PSF and observation [34]. 

ARMA Parametric Approach: Auto regressive moving 

average (ARMA) approach is ARMA parameter estimation 

problem used for blind deconvolution which has been studied 

extensively [35]. ARMA model the true image as a two-

dimensional autoregressive (AR) process and the PSF as a 

two-dimensional moving average (MA) process. Critical issue 

with this approach is that global AR parameters may not 

accurately represent the entire image. W. Dong introduced 

adaptive regularization terms into the sparse representation 

framework.  Autoregressive (AR) models are learned from the 

dataset of example image patches to find best fitted AR 

models to a given patch are adaptively selected to regularize 

the image local structures than the image non-local self-

similarity is introduced as another adaptive regularization 

term [36]. 

5. CONCLUSION 
The paper deal with restoration of images degraded by space-

Invariant blurs. Important and interesting image restoration 

techniques having potential for further development are 

discussed in brief. Various nonblind, blind (stastical, iterative, 

direct) methods discussed here provides foundation for image 

restoration which is going to maintain its importance as new 

devices, applications, and technologies continue to emerge 

and bring new challenges. 
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