
International Journal of Computer Applications (0975 – 8887)

Volume 70– No.12, May 2013

10

CFO Parallel Implementation on GPU for Adaptive Beam-
forming Applications

Eman Ahmed

Faculty of Computer
and Information

Sciences, Ain Shams
University

Abbassia 11566,
Cairo, Egypt

K. R. Mahmoud

Faculty of
Engineering, Helwan

University

Helwan,

 Egypt

Safwat Hamad

Faculty of Computer
and Information

Sciences, Ain Shams
University

Abbassia 11566,
Cairo, Egypt

Z. T. Fayed

Faculty of Computer
and Information

Sciences, Ain Shams
University

Abbassia 11566,
Cairo, Egypt

ABSTRACT

The scientific community is still interested in heuristic

techniques and optimization algorithms that could be applied

in complex problems such as the antenna adaptive beam

forming problem. This paper presents an empirical study of

solving the problem of antenna adaptive beam forming using

Central Force Optimization (CFO) algorithm. The algorithm

implemented using Compute Unified Device Architecture

(CUDA) then applied on a graphics processing unit (GPU).

CFO is well known alternatives for global optimization based

on a nature-inspired Heuristic. Extensive experimentations

were applied to compare their performance through a number

of case studies. CFO has a higher computational complexity

but it gives good results. The experimentations showed that

the resulting beam-pattern optimized by the CFO required a

large processing time which is not acceptable for an on line

applications. Hence, the demand for a parallel solution that

accelerates these computations is considered. Therefore, a

parallel version of CFO is proposed and implemented using

(CUDA) then applied on a (GPU). The comparison is

presented to show how the parallel version of the CFO

outperforms the sequential one, thus an online procedure is

available for time-critical applications of the adaptive beam-

forming.

Keywords

CFO, global optimization algorithm, evolutionary algorithm,

CUDA, GPU.

1. INTRODUCTION
We ask that authors follow some simple guidelines. In

essence, we ask you to make your paper look exactly like this

document. The easiest way to do this is simply to download

the template, and replace the content with your own material.

Modern optimization techniques are able to solve problems

with a non-linear and non-convex dependence of design

parameters. So, it has provoked great interest among the

scientific and technical community in a wide variety of fields

recently. Some of these algorithms have been used

successfully in many electromagnetism and antenna problems.

Recently there are many electromagnetism and antenna

optimization techniques are used such as the new nature

inspired algorithm: Central Force Optimization (CFO). CFO

algorithm takes much time which lead us to use parallel

computing to make it take less time. Recently researchers

have great interest in using low cost GPUs for applications

that require intensive parallel computing due to the ability of

these devices to solve parallelizable problems much faster

than traditional sequential processors.

In the work presented here, the problem of antenna adaptive

beam forming is solved using sequential and parallel

implementations of the CFO algorithm. This paper presents an

approach for the implementation of CFO algorithm on GPU

using the NVIDIA CUDA environment in the adaptive beam-

forming applications. Furthermore, a comparative result is

included to evaluate the performance of CFO algorithm using

a set of case studies. The rest of the paper is structured as

follows: Section 2 presents the problem formulation. In

Section 3, CFO algorithm and some modification on it are

presented. At the end of this section, the proposed

modification in CFO is presented with its parallel

implementation. Finally, section 4 outlines the conclusions.

2. PROBLEM FORMULATION
Adaptive antennas refer to a group of antenna technologies

that increase the system capacity by reducing the co-channel

interference and increase the quality by reducing the fading

effects. A smart antenna array containing m identical elements

can steer a directional beam to maximize the signal from

desired users, signals of interest (soi), while nullifying the

signals from other directions, signals not of interest.

 Different techniques of placing nulls in the antenna patterns

to suppress interference and maximizing their gain in the

direction of desired signal and minimizing their gain in the

direction of undesired signal have received considerable

attention in the past and still have great interests recently such

as Genetic Algorithm (GA) . In addition, various versions of

CFO algorithm have been successfully used in linear and

circular antenna array synthesis problems [2, 6].

Antennas may be arranged in a (line, circle, plane, etc.) to

yield a different radiation pattern. In this work, the complex

excitations, amplitudes and phases of the adaptive antenna

array elements are calculated for a given 24-antenna elements

uniform circular array (UCA). The antenna elements consist

of vertical (z-directed) half-wave dipole elements equally

spaced in the x-y plane along a circular ring, where the

distance between adjacent elements is dc = 0.5 λ where λ is

the wavelength.

Now, the radiation pattern of the antenna array could be

computed according to the pattern multiplication theorem as

follows: Array Pattern = Array Element Pattern x Array

Factor (AF)

Where the Array element pattern is the pattern of the

individual array element and Array factor is a function

dependent only on the geometry of the array and the

excitation (amplitude, phase) of the elements. The array factor

AF is independent of the antenna type assuming all of the

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.12, May 2013

11

antenna elements are identical. Assuming that the elements of

the array are uniformly-spaced with a separation distance d;

then the equation of the array factor that need to be

maximized in specific direction using Evolutionary algorithms

will be

 (1)

Where In is the current of array element n, αn is the phase of

array element n, posn is the position of array element n in the

circular array, r is the radius of the circular array, θ was fixed

to 90 degree and β is the phase shift which is here equal 2 π,

AF(θ,φ) (Array factor for a uniformly-spaced N-element

circular array) in φ direction.

3. CENTRAL FORCE OPTIMIZATION

(CFO)
First, a brief description of classical CFO algorithm,

introduced by R. A. Formato, will be illustrated as well as

some modifications that are done on it. These modifications

will be analysed and finally the improved CFO algorithm is

proposed with its sequential and parallel implementation.

3.1 Classical CFO Algorithm

Central Force Optimization (CFO) is a nature-inspired

gravity-based meta-heuristic for a multidimensional search

[4]. CFO is an optimization evolutionary algorithm (EA) that

locates the extreme of an objective function. This objective

function is defined on a decision space (DS) of unknown

topology that is searched by the EA. Then the value of the

objective function to be maximized is computed step-by-step

at each particle's location. After that, it is taken as an input to

a user-defined function that becomes CFO's mass.

CFO finds the maxima of an objective function f(xi……., xNd)

by flying a set of particles through the decision space (DS). In

an Nd dimension, each particle p with position vector

 experiences an acceleration

 at the discrete

time step (j-1) given by

 (2)

where is the total number of particles, the particle number

p = 1, 2, …, , the time step j = 0, 1, …, , is the total

number of iterations, G is the gravitational constant,

 is

the position vector of particle p at step j-1,

 is

the fitness value at particle p and time step j-1, U() is the Unit

Step function and finally β and α are the CFO exponents [5].

CFO mass is defined as the difference of fitness raised to the

power α multiplied by the Unit Step function. In addition, the

Unit Step U() is essential because it creates positive mass.

Thus it insures that CFO's gravity is attractive. CFO starts

with a user-specified initial particles positions and

acceleration distributions. The initial acceleration vectors are

usually set to zero. Then each particle's position vector at step

j is updated according to the following equation:

 (3)

Where is the increment in the time step. Particles may fly

outside the decision space and should be retrieved to it. There

are many possible particle retrieval methods. A useful one is

the reposition factor Frep (0 ≤ Frep ≤ 1) which plays an

important role in CFO's convergence. It is shown in Figure 1

that Frep is usually set to 0.5 or 0.9, or it may be variable [5].

Where
 and

 are the minimum and maximum

values of the kth spatial dimension corresponding to the

optimization problem constraints.

3.2 Modifications Done on CFO Algorithm
CFO contains several user-specified parameters. The most

important parameters (determined empirically) are the initial

particle distribution (total number of particles and their

deployment in the DS) and the Frep. The initial particle

distribution determines how the decision space topology is

sampled at the beginning of a run, while Frep is important in

avoiding local trapping. Here the modifications done on those

important parameters and some analysis on it will be

presented.

The first modification is Gamma Modification (Variable

Initial Particle Distribution). Formato R. A presents this

modification in details in [4].

In Brief this modification uses the following equation:

 (4)

This equation is used to initialize particles on axes parallel to

the original axes whose intersection point is marked by

position vector where and are the diagonal's

endpoint vectors of the original axes . Parameter 0≤ γ≤1

determines where along the diagonal the orthogonal particle

array is placed [4].

So this modification is to use a parameter called gamma (γ) in

initializing the particles using empirical values from 0 to 1 for

the gamma parameter and then observe the best value for

gamma that gives best particle distribution which gets the best

results. After analyzing this modification, the experimental

results showed that however using the best value for gamma

(the best particle distribution) for the problem gives excellent

results, this modification is not practical. Because it was

found that there is a need to try all values of gamma with each

problem to know the best value for gamma for this problem.

This means that there is no standard or general value for

gamma as it depends on the problem fitness function. So it

cannot be considered as a modification to the algorithm,

instead it can be considered as a way of particle initialization.

The second modification is Shrink Decision Space (DS).

Formato R. A also presents this modification in details in [4].

The modification is to shrink the decision space (DS) around

the best particle position as the iteration number increases. DS

(b) (a)

Fig 1: (a) Errant particle reposition factor retrieval.

 (b) Illustration of particle repositioning in 2-D DS.

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.12, May 2013

12

size is adaptively reduced every 20th step around the particle's

location that have the best fitness, . DS's boundary

coordinates are reduced by one-half the distance from the best

particle's position to the boundary of the DS on

coordinate-by-coordinate basis. Thus,

 (5)

And

 (6)

are the equations used in shrinking where the primed

coordinate is the new decision space boundary and the dot

denotes vector inner product. After analyzing this

modification the experimental results showed that this

modification is very effective with all types of problems

(unimodal /multimodal) (low Dimension/ high Dimension).

This shrinking needs to have some sort of reactive adaptation

as will be explained in the proposed CFO.

The third modification is Acceleration Clipping. Acceleration

clipping is a new modification introduced in [5] to damp the

particles' motion and to prevent particles from flying out of

the decision space. The acceleration clipping scheme is

introduced to limit the maximum acceleration of the particles

to refine the particles motions and decreases the number of

outside flying particles. After analyzing this modification, the

experimental results showed that this modification was not

effective enough so it does not included in the proposed CFO.

The fourth modification and last modification is Particle

Initialization (Random, Uniform on Axis, Uniform Grid). This

modification presented in [6] in details. It presents three ways

in particle initialization: initialize them in uniform grid,

initialize them uniform on axis, or use random initialization.

After analyzing this modification and trying the three different

ways to initialize particles in CFO; the experimental results

showed that it depends on the problem. Some problems get its

best results when initialize its particles uniform on Axis and

other when initialize them on Grid and other when initialize

them random. But in most of the test functions and in the

problem of adaptive beam-forming, the initialization of the

particles uniform on Axis is much better than other

initializations.

3.3 The Proposed Modification of CFO

Algorithm
As explained above the modifications done on CFO; now will

present what was taken from these modifications and the

contributions done on it. One of the best modifications done

was shrinking the Decision Space which means to limit the

space you search in. The presented modification was to shrink

DS every 20 iterations by half the distance between the best

particle's position and the boundary of DS. To improve the

results of this modification there is a need to make it based on

performance measures such as convergence speed and fitness

saturation. The results showed that as iterations increasing

CFO converge more to the optimum so shrinking DS can be

done every dynamic number of iterations and by dynamic

ratio of the distance between the best particle's position and

the boundary of the DS.

So first shrinking the DS every dynamic number of iterations

will be introduced. This can be done by shrinking DS every

50 iterations and then every 45 iterations and so on until every

5 iterations. This means that after 50 iterations the first

Shrinking to the Decision Space will be made. Then as CFO

converge more to the optimum, the second shrink will be

made after 45 iterations and then after 40 iterations and so on;

minus 5 each time until reach to shrink after 5 iterations and

continue shrinking after 5 iterations till the end. So the DS

size is adaptively reduced every 50 to 5 steps around the

particle's location that have the best fitness.

Second shrinking the DS by dynamic ratio of the distance

between the best particle's position and the boundary of the

DS will be introduced. This can be done as following: first

shrink the DS by small value because CFO still not converge

enough to the optimum and then increase the shrinking value

as iterations increases. Thus Increase the Shrinking DS Ratio

 as iterations increases. Thus DS's boundary

coordinates are reduced by multiplied by the

distance from the best particle's position to the boundary of

the DS on a coordinate-by-coordinate basis. Thus,

 and

 , are

the equations that used in the shrinking where

changed linearly from 0.1 to 0.5. The proposed CFO

algorithm is as the classical CFO but adds shrinking DS step

as explained above and use On-Axis particle initialization as

illustrated in the proposed CFO algorithm flow chart in figure

5. The sequential result of CFO is illustrated in table1 for

three test cases in adaptive beam-forming application.

Table 1. CFO Sequential results

CFO Pattern

Desired: 180

Undesired :60,240

Desired:0,60

Undesired :180,30

Desired: 180,60

 Undesired :240,30

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.12, May 2013

13

3.4 Parallel CFO
After analyzing sequential CFO to see which step that take

most time, it was found that update acceleration is the step

that take the most time as shown in figure 2 as it takes 99.63%

from the total time of the CFO algorithm.

Fig 2: CFO time distribution

The update acceleration step is the main problem in

implementing parallel CFO because the equation of update

acceleration is dependent on last updated position and fitness

for all particles.

The loop on particles that update acceleration, position and

fitness cannot be parallelized because the update acceleration

step for a specific particle is dependent on the calculated

position and fitness of the previous particle in the loop. When

trying to isolate update of acceleration for all particles then

update position and fitness for all particles the results of the

Adaptive beam-forming problem was affected badly as seen

in experimental result of CUDA results section. The flow

chart of parallel CFO implementation is illustrated in figure 6.

3.4.1 Implementation of Parallel CFO On The

GPU
As in PSO and in any EVs; CFO has two parallel variants one

global and other local. Global: Where all the mathematical

calculations are parallelized, computing fitness function,

acceleration, and position for all particles in parallel using two

different kernels on GPU. Local: Where the Whole entire

algorithm executed on the Local Memory of GPU except the

initialization of the particles which is executed on the CPU.

The global one is chosen to be implemented due to the limited

memory of the available GPU and to be able to use as many

particles as needed without limitation of memory.

The sequential CFO algorithm was implemented as reference,

in order to assess the performance of parallel variants as

shown in table1 of CFO sequential results. In any parallel

implementations, the programming strategy involved the

creation of one thread for each CFO Particle. The rule was to

replace all the sequential loops (specifically those where the

iterations were in terms of the Particles number) by a single

multithreading kernel call. The structure of the sequential

CFO algorithm contains the following functional blocks [3]: -

Population initialization which initializes each particle of the

population on axis, Fitness function evaluation, and Update

acceleration, and Update position.

The main idea is to create one thread for each CFO particle;

Note that in the sequential CFO version all the functional

modules are executed in one loop on the host processor.

And to be able to execute CFO parallel it was split to 3

independent loops (update fitness, update position, and update

acceleration) which affects badly on the results as will be seen

in the results section in addition that the used GPU is not

support the double precision so it lacks for accuracy and if

GPU that supports double precision is used this will affects on

the time as it will take more time.

In the first parallel variant, the Global one, any arithmetic

calculation is distributed to the GPU, replacing both the

fitness function evaluation and update position and update

acceleration modules by the associated kernel calls (see

Figure 3) Use one thread for each particle in each kernel as

there are three kernels are used: Kernel1 for (evaluate the

fitness of all particles), Kernel2 for (update the position of all

particles), Kernel3 for (update the acceleration of all

particles).

Fig 3: Pseudo Code of the Parallel CFO algorithm using

CUDA

3.4.2 CFO CUDA Results:
Here the first version of the adaptive beam forming

application with CFO using CUDA is proposed and this is

sample of the experimental results that show CPU time and

GPU time of CFO for a three different test cases of adaptive

beam-forming. Experiments were run on a PC equipped with

an Intel Core (TM) 2Duo processor running at 2.80 GHz with

a NVIDA GeForce 9500GT video card from NVIDIA

Corporation. All of the simulation runs were performed under

the following settings: Number of antenna in antenna array =

24, Number of Particle = 180, Number of Iterations = 250.

The sequential execution of the program took 1617729 ms

while running the CFO algorithm on GPU NVIDA (GeForce

9500) the execution time was only 298158 ms. In particular

the achieved running speedup was of about 5.5 times as

illustrated in figure 4. Some of selected results is shown in

Table 2 where the first column displays images illustrating the

optimum normalized radiation pattern resulted from the

proposed CFO the second column shows figures that illustrate

the optimum normalized radiation pattern measured in dB,

and the last column illustrates the change of fitness value with

iterations. The results were recorded for three different test

cases.

Initialize CFO Parameters

Initialize Particles Position and acceleration

<perform a first evaluation of the fitness functions> kernel1
For (i = 0; i < Number_of_Iterations; i ++)

{

 <update the position of all particles> kernel2

 <re−evaluate the fitness of all particles> kernel1

 update reposition factor CPU

 <update the Acceleration of all particles> kernel3

 Shrink Decision Space CPU

}

retrieve global best information to be returned as final result

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.12, May 2013

14

Fig 4: sample runs and average speed up =5.5 for CFO

4. CONCLUSION
In this paper, a parallel version of CFO is proposed,

implemented using (CUDA), and applied on a (GPU).

Extensive experimentations showed that the parallel version

of the CFO outperforms the sequential one, thus a real time

adaptive beam-forming algorithm procedure can be used for

time-critical applications.

Furthermore, a comparative study showed that; in the

sequential mode, CFO algorithm produces more accurate

results. The reason behind this is that the CFO relies on

double precision computations which are not actually

supported by the GPU used here.

5. REFERENCES
[1] Mohammad Shihab et. s.l. DESIGN OF NON-

UNIFORM CIRCULAR ANTENNA ARRAYS USING

PARTICLE SWARM OPTIMIZATION.: Journal of

ELECTRICAL ENGINEERING, 2008, Vol. 59. 216-

220.

[2] BALANIS, C. A. Antenna Theory: Analysis and Design.

New Jersey : JohnWiley & Sons, Inc., 2005.

[3] Eman Ahmed, K. R. Mahmoud, Safwat Hamad, and Z.

T. Fayed. Using Parallel Computing for Adaptive

Beamforming Applications.. Cambridge, USA : PIERS

Proceedings, July, 2010. 5-8.

[4] Formato, R. A. IMPROVED CFO ALGORITHM FOR

ANTENNA. USA : Progress In Electromagnetics

Research B, 2010, Vol. 19.

[5] Dib, G. M. Qubati and N. I. MICROSTRIP PATCH

ANTENNA OPTIMIZATION USING MODIFIED

CENTRAL FORCE OPTIMIZATION. Jordan : Progress

In Electromagnetics Research B, 2010, Vol. 21.

[6] Formato, Richard A. Central Force Optimization: A New

Nature Inspired Computational Framework for

Multidimensional Search and Optimization. USA : s.n.

Fig 5: Flowchart of the main steps of the proposed CFO

algorithm

yes

Define: Fitness Function

Choose Run Parameters:

 Nt, Np, Nd

 G, α, β

 Reposition Factor

 Decision space(DS) boundaries

Initialize: R, A

Compute initial: M, Global best

fitness

For each time

step

For each particle

Compute new position vector

R

If R in DS

Compute initial: M, Global best

fitness

Compute A

Retrieve errant particle

The solution is the position vector R

of the global best fitness

Shrink DS

No

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.12, May 2013

15

…………………………………………

…………

Yes

No

…………………………………………

…………

……………………………………………

………

…………………………………………

…………

Initialize CFO Parameter

Initialize Position / Acceleration of all Particles

Fitness Evaluation

for Particle (1)

Fitness Evaluation

for Particle (2)

Fitness Evaluation

for Particle (N)

I < iteration_num

Update Position for

Particle (1)

Update Position for

Particle (2)

Update Position for

Particle (N)

Fitness Evaluation

for Particle (1)

Fitness Evaluation

for Particle (2)

Fitness Evaluation

for Particle (N)

Retrieve global best

information

Update reposition Factor

Update

Acceleration for

Particle (1)

Update Acceleration

for Particle (2)

Update

Acceleration for

Particle (N)

Shrink DS

Fork

Joint

Fork

Joint

Fork

Joint

Fig 6: Flow Chart of the Parallel CFO algorithm

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.12, May 2013

16

Table 2. Experimental results of CFO using CUDA

 (a) Radiation Pattern (b)y-axis is Radiation Pattern in dB and x-axis is angle

in radian
(c) y-axis is fitness value and x-axis is iteration
number

Desired:

0, 60

Undesired

:180,30

Desired:

180, 60

Undesired

240, 30

Desired:

180

Undesired

: 60, 240

