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ABSTRACT
This paper shows the development of a Predictive Sliding Mode
Controller (PSMC). The proposed controller blends the design
of Sliding Mode Control (SMC) with Model Predictive Control
(MPC). The combination of SMC and MPC improves the perfor-
mance of these two control laws. The designed control strategy
has stronger robustness and chattering reduction property to con-
quer within the system uncertainties. The Predictive Sliding Mode
Control strategy was improved by giving a New Predictive Slid-
ing Mode Controller (NPSMC). Finally, the performances of the
NPSMC, in terms of strong robustness to external disturbance and
parameters variation, chattering elimination, fast convergence were
judged, in comparaison with PSMC, SMC and MPC, using a non-
minimum phase system.

Keywords:
Non minimum phase systems, Sliding mode control, Model pre-
dictive control, Predictive sliding mode control, Chattering phe-
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1. INTRODUCTION
The classical Bode integral theorems provide unique relation-
ships between the amplitude and the phase of the frequency re-
sponse for a minimum phase system. A plant with dead-time or
with a right-half plane zero is called non-minimum phase sys-
tem as these relationships are then no longer valid [1]. It is well
known that such plants are not easy to control because they have
an initial inverse response to step input in the opposite direc-
tion to the steady state [2]. In some sense all practical discrete
time systems are non-minimum phase. The presence of unstable
zero in a process transfer function is thus identified as being re-
sponsible for its difficult dynamic behavior; it is also the source
of a considerable amount of difficulty in controller design. An
other aspect of controlling a process with unstable zero is the
problem of instability, which arises in order to achieve high per-
formance when the controller contains an inverse of the process
model [3, 4].
Model Based Predictive Control (MPC) has become one of
the most popular control methodologies both in industry and
academia [7]. Furthermore, the instability problems applying

Model Predictive Control to non minimum phase systems have
been reported in literature [4, 8], showing that the non-minimum
phase systems produce instability when the control horizon and
the maximum predictive horizon are equal to 1, while [9, 10]
demonstrated that this can be tuned to have stable behavior with
unstable zero in the Single Input Single Output (SISO) case.
MPC has instability problems because, for non-minimum phase
plants, the controller achieves the optimal output by canceling
the plant zeros, including the unstable zero, which leads to loss
of internal stability of the feedback system [11, 12].
On the other hand, Sliding Mode Control (SMC) is a technique
derived from Variable Structure Control (VSC) which was stud-
ied originally by Utkin [13]. For a broad class of systems, this
kind of control is particulary appealing due to its ability to deal
with nonlinearities, parameter uncertainties and disturbances.
However, undesired chattering produced by the high frequency
switching of the control may be considered as a problem for im-
plementing the sliding mode control methods to some real appli-
cations [20].
This paper shows how a combination of MPC and SMC results in
a control structure that has the main advantages of both SMC and
MPC. Some works based on mixing these two control techniques
can be found. An algorithm based on discrete time VSC was pro-
posed in [14, 15]. The transient response shaping allowed by the
multistage optimization approach is enhanced by the connection
of a generalized predictive controller with a variable structure al-
gorithm. A dual mode control scheme combining MPC and SMC
was presented in [16]. In the last work MPC was used to force the
state into terminal region within a finite horizon while it is out-
side the terminal region then an SMC was used when the state got
inside the terminal region. The main idea of the controller pro-
posed in this paper is to introduce the prediction of the sliding
surface into the control objective. To ameliorate this controller,
we introduced a New Predictive Sliding Mode Controller, aim-
ing at eliminating constant disturbances and parameters varia-
tions. These two controllers are applied to a non-minimum phase
system with parameter uncertainties and external disturbances.
The paper is organized as follows: Section 2 describes the basic
concepts by giving the system description and preliminaries, the
Sliding Mode control and the Model Predictive control theories.
Section 3, describes the synthesis of the Predictive Sliding Mode
Controller. In the same section, a simulation example is illus-
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trated. Section 4 describes the synthesis of the new Predictive
Sliding Mode Controller, with a simulation example. In section
5, the advantages of the presented controllers are verified by a
non minimum phase system with disturbances and parameter
variations. These results are compared with Sliding mode Con-
troller and Model Predictive Controller. Finally, section 6 draws
conclusions of the paper.

2. BASIC CONCEPTS
2.1 System description and preliminaries
Consider the following uncertain discrete time system [15]:

x(k + 1) = (A+ ∆A)x(k) + (B + ∆B) (u(k) + v(k))
y(k) = Hx(k) +Du(k)

(1)
Where x(k) ∈ Rn is the state vector and u(k) ∈ R is the scalar
input control. The matrices A, B, H and D are the nominal
model matrices with adequate dimensions. The parameter uncer-
tainties are given by ∆A and ∆B. v(k) ∈ R is the disturbance
input.
The system (1) can be written in the following form:

x(k + 1) = Ax(k) +Bu(k) + w(k)
y(k) = Hx(k) +Du(k)

(2)

with

w(k) = ∆Ax(k) + ∆Bu(k) + (B + ∆B) v(k) (3)

2.2 Sliding mode control
In this section, we present the control law based on the sliding
mode. The sliding function is defined as:

s(k) = Cx(k) (4)

where C ∈ R1×n.
A necessary and sufficient condition assuring sliding motion and
convergence to the sliding surface is:

|s(k + 1) |− |s(k) |< 0 (5)

According to sliding mode function (4), the sliding mode value
at the instant (k + 1) can be obtained as:

s(k + 1) = Cx(k + 1)
s(k + 1) = C [Ax(k) +Bu(k) + w(k)]
s(k + 1) = C [Ax(k) +Bu(k)] + Cw(k)

(6)

If there are no disturbances, the sliding function (4) value at time
(k + p) [17] is:

s(k + p) = Cx(k + p)

s(k + p) = CApx(k) +
p∑
j=1

CAj−1Bu(k + p− j) (7)

where k ∈ Z and p ∈ N .
To obtain the desiral performances, such as strong-robustness,
fast convergence and chattering elimination, we introduced a
reaching law to ensure the convergence of the sliding function
s(k) to zero.
To ensure a quasi-sliding mode, the sliding mode function must
verify the reaching law [15]:

s(k + 1) = s(k)−msgn(s(k)) (8)

where sgn is the signum function defined as:

sgn (s (k)) :=

{
−1 if s (k) < 0

1 if s (k) > 0

and m is the discontinuous term magnitude.
Using the last equation and equation(6), we obtain:

s(k + 1)− s(k) = Cx(k + 1)− s(k)
s(k + 1)− s(k) = CAx(k) + CBu(k)− s(k)
s(k + 1)− s(k) = s(k)−msgn(s(k))− s(k)
s(k + 1)− s(k) = msgn(s(k))

Then, the control law can be calculated as:

u(k) = (CB)−1[s(k)− CAx(k)−msgn(s(k))] (9)

2.3 Model Predictive control
Model Based Predictive Control (MPC) has been successfully
implemented in many industrial applications, showing a good
performance [4].
MPC does not designate a specific control strategy but a very
ample range of control methods, which make an explicit use of
a model of the process to obtain the control signal by minimiz-
ing an objective function. The synthesis of predictive control law
consist of three steps. The first step is to predict the process out-
put at future time instants. The second step is to calculate control
sequence minimizing an objective function. The third step is to
consider that the control law is the first element of control se-
quence. The basic idea of MPC is to calculate a sequence of fu-
ture control signals in such a way that it minimizes a multistage
cost function [4, 22]:

J(N ′, N,M) =
N∑

j=N ′
q(j) [yr(k + j)− y(k + j/k]2

+
M∑
j=1

λ(j) [u(k + j − 1)]2

where y(k + j/k) is an optimum j-step ahead prediction of the
system output on data up to time k, N ′ and N are the minimum
and maximum costing horizon, M is the control horizon, q(j)
and λ(j) are the weighting sequences, and yr(k+j) is the future
reference trajectory.
The objective of MPC is to compute the future control sequence
u(k), u(k+1),...in such a way that the future plant output y(k+
j) is driven close to yr(k + j) by minimizing the quadratic cost
function J(N ′, N,M) [4, 22].

3. PREDICTIVE SLIDING MODE
CONTROLLER

3.1 Synthesis of Predictive Sliding Mode controller
In this section, we consider the sliding mode control problem for
system (1), taking reaching law (8). The reference sliding mode
trajectory is chosen as [17, 18]:{

sr(k + p) = sr(k + p− 1)−msgn(sr(k + p− 1))
sr(k) = s(k)

(10)

The objective is to design a sliding mode predictive control,
using equation (6) and consider that w(k) is equal to zero, the
sliding function at instant (k + p) can be written as:

s(k + p) = CApx(k) +
p∑
j=1

CAj−1Bu(k + p− j)

where k ∈ N and p ∈ N .
Therefore, the predictive sliding mode value of time k on time
(k − p) can be deduced:

s(k/k − p) = CApx(k − p) +
p∑
j=1

CAj−1Bu(k − j) (11)

Equation (11) can be described in vector form as follows:

Sp(k + 1) = Γx(k) + ΩU(k) (12)
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where

Sp(k + 1) = [s(k + 1), s(k + 2), ..., s(k +N)]T

U(k) = [u(k), u(k + 1), ..., u(k +M − 1)]T

Γ =
[
(CA)T (CA2)

T
...
(
CAN

)T ]T

Ω =



CB 0 ... ... 0
CAB CB ... ... 0
. . ... ... .
. . ... ... .

CAM−1B CAM−2B ... CAB CB
. . ... . .

CAN−2B CAN−3B ... CAN−MB CAN−M−1B
CAN−1B CAN−2B ... CAN−M+1B CAN−MB


With N is the prediction horizon, M is control horizon and the
minimum costing horizon N ′ is chosen equal to 1.

In practice, to make correction to the future predictive sliding
mode value s(k + p), we introduce the error between practi-
cal sliding mode value s(k) and predictive sliding mode value
s(k/k − p). Therefore, the output of sliding mode prediction
s̃p (k + p) is given as follows:

s̃p(k + p) = s(k + p) + hpe(k)

s̃p(k + p) = CApx(k) +
p∑
j=1

CAj−1Bu(k + p− j)

+hpe(k)

(13)

Where e(k) = s(k)−s(k/k−p) and hp is a correct coefficient.
Rewrite Equation (13) in vector form:

S̃p(k + 1) = Sp(k + 1) +HpE(k) (14)

where

S̃p(k + 1) = [s̃p(k + 1), s̃p(k + 2), ..., s̃p(k +N)]T

Hp = diag [h1, h2, ..., hN ]

E(k) = S(k)− Smp(k)

S(k) = [s(k), s(k), ..., s(k)]1×N

Smp(k) = [s(k/k − 1), s(k/k − 2), ..., s(k/k −N)]T

The following corresponding optimization cost function is de-
fined [19]:

jp =

N∑
j=1

qj [s̃p(k + j)− sr(k + j)]2 +

M∑
l=1

gl [u(k + l − 1)]2

(15)
where sr(k + j) is the sliding mode reference trajectory, qj and
gl are weight coefficients.

In order to simplify the synthesis of the controller, we
consider (qj = 1) and gl = g. So, The following corresponding
optimization cost function is written as:

jp =

N∑
j=1

[s̃p(k + j)− sr(k + j)]2 +

M∑
l=1

g [u(k + l − 1)]2

(16)
Rewrite Equation(16) in vector form:

Jp =
∥∥S̃p(k + 1)− Sr(k + 1)

∥∥+ ‖U(k)‖2G =

[Γx(k) + ΩU(k) +HpE(k)− Sr(k + 1)]
T

[Γx(k)
+ΩU(k) +HpE(k)− Sr(k + 1)] + U(k)TGU(k)

(17)

where

Sr(k + 1) = [sr(k + 1), sr(k + 2), ..., sr(k +N)]T

G = [g, g, ..., g]

The optimal sequence of control is obtained by minimizing the
cost function Jp:

∂Jp
∂U(k)

= 0

Then, this sequence can be calculated as:

U(k) = −(ΩTΩ +G)−1ΩT [Γx(k) +HpE(k)− Sr(k + 1)]
(18)

Because of rolling optimization, only the present control input
signal is implemented, the next time control signal u(k+ 1) will
be calculated recursively by the control law.

3.2 Simulation example
The behavior, of the PSMC is illustrated by a simulation exam-
ple. Let’s consider the following system [17]:

x(k + 1) = Ax(k) +Bu(k) + w(k)

where:

A =

[
1 0.01

−0.651 0.797

]
B =

[
0

0.731

]
The sampling period T is chosen, according to the system’s
dynamics, equal to 0.01s.
For the Predictive Sliding Mode controller, choosing
G = 0.001 ∗ IM×M . C is designed as C =

[
3 1

]
and

setting the initial period values x (0) =
[

1 0.5
]
.

Select the predictive horizon N = 10, the control horizon
M = 5 and the correct coefficient matrix:
Hp = diag

[
1 0.8 0.6 0.5 0.3 0.2 0.2 0.4 0.1 0.5

]
Satisfying the robustness condition, the discontinuous term
magnitude m is chosen as follow:{

m = 3 if 48 < k < 92
m= 0.02 else

The results presented in this section are obtained with the pres-
ence of disturbances, whose evolution is given in figure 1, and
parameters variation are given by:

∆A = 0.5

[
0 0

3 sin(− 2kπ
10

) 3 sin(− 2kπ
10

)

]

∆B = 0.5

[
0

sin(− 2kπ
10

]
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Fig. 1. Evolutions of disturbances.
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The simulation results of PSMC are illustrated in figure 2 to fig-
ure 5. These figures are a comparaison between the results given
by PSMC, SMC and MPC. In fact, figure 2 and 3 show the evo-
lution of the state x1(k) and x2(k). Figure 4 presents the evo-
lution of the sliding surface. The evolution of the input u(k) is
presented in figure 5.
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Fig. 2. Evolutions of the state x1(k).
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Fig. 3. Evolutions of the state x2(k).
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Fig. 4. Evolutions of the sliding function.

These figures prove that the control law, given by Predictive Slid-
ing Mode Controller, can eliminate the chattering and force the
states to converge to zero better than Sliding Mode Controller
and Model Predictive Controller. But, it is still not able to reject
the constant disturbances perfectly.

4. NEW PREDICTIVE SLIDING MODE
CONTROLLER

4.1 Synthesis of New Predictive Sliding Mode
controller

To ameliorate the performances in term of rejecting constant
and periodic disturbances, we propose in this section a New
Predictive Sliding Mode Controller (NPSMC).
The optimal control problem is calculated, now, using a cost
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Fig. 5. Evolutions of the control input u(k).

function penalizing deviation of the controlled variables as well
as variations in the control signal. So the NPSMC block diagram
can be represented as follow: The objective is to design the
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Fig. 6. NPSM Controller block diagram.

sliding mode predictive control, or we have :

s(k + p) = CApx(k) +
p∑
j=1

CAj−1Bu(k + p− j)

where k ∈ Z and p ∈ N .
The sliding function at the instance k + 1, k + 2 and k + 3 can
be written as:

s(k + 1) = Cx(k + 1)
= CAx(k) + CB(u(k)− u(k− 1)) + CBu(k− 1)
= CAx(k) + CBδu(k) + CBu(k− 1)

s(k + 2) = Cx(k + 2)
= CAx(k + 1) + CBu(k + 1)
= CA2x(k) + CBδu(k + 1) + CABδu(k)+CBδu(k)
+CBu(k− 1) + CABu(k− 1)
= CA2x(k) + CBδu(k + 1) + C(A+ 1)Bδu(k)
+ C(A+ 1)Bu(k − 1)

s(k + 3) = Cx(k + 3)
= CA [A [Ax(k) +Bu(k)]] + CABu(k + 1) + CBu(k + 2)
= CA3x(k) + CBδu(k + 2) + C(A+ 1)Bδu(k + 1)

+C(A2+A + 1)Bδu(k) + C(A2+A + 1)Bu(k − 1)

Then, s(k + p) can be calculated as:

s(k + p) = CApx(k) + CBδu(k + p− 1)

+C (A+ 1) δu(k + p− 2) + · · ·+ C

[
p−1∑
j=0

Aj
]
Bδu(k)

+C

[
p−1∑
j=0

Aj
]
Bu(k − 1)

(19)
where δu(k) = u(k)−u(k−1) Equation (19) can be described
in vector form as follows:

Sp(k + 1) = Γx(k) + ΩF∆U(k) + ΩPu(k − 1) (20)
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where

Sp(k + 1) = [s(k + 1), s(k + 2), ..., s(k +N)]T

Sp(k) = [s(k), s(k + 1), ..., s(k +N − 1)]T

∆U(k) = [δu(k), δu(k + 1), ..., δu(k +M − 1), 0, ..., 0]T

Γ =
[
(CA)T (CA2)

T
...
(
CAN

)T ]T

ΩF =



CB 0 ... ... 0
C(A+ I)B CB ... ... 0

. . ... ... .

. . ... ... .

C

[
M−1∑
j=0

Aj
]
B ... ... C(A+ I)B CB

. . ... . .

C

[
N−1∑
j=0

Aj
]
B ... ... C

[
N−M−1∑
j=0

Aj
]
B C

[
N−M∑
j=0

Aj
]
B


With N is prediction horizon, M is control horizon and the mini-
mum costing horizon N ′ is chosen equal to 1.
and

ΩP =



CB
...

C

[
M−1∑
j=0

Aj
]
B

...

C

[
N−1∑
j=0

Aj
]
B


In practice, to make correction to the future predictive sliding
mode value s(k+p), we introduce the error between the practical
sliding mode value s(k) and the predictive sliding mode value
s(k/k − p). Therefore, the output of sliding mode prediction
s̃p (k + p) is given as follows:

s̃p(k + p) = s(k + p) + hpe(k)
s̃p(k + p) = CApx(k) + CBδu(k + p− 1)

+C (A+ 1) δu(k + p− 2) + · · ·+ C

[
p−1∑
j=0

Aj
]
Bδu(k)

+C

[
p−1∑
j=0

Aj
]
Bu(k − 1)+hpe(k)

(21)
Where e(k) = s(k)−s(k/k−p) and hp is a correct coefficient.
Rewrite Equation (21) in vector form:

S̃p(k + 1) = Sp(k + 1) +HpE(k) (22)

where

S̃p(k + 1) = [s̃p(k + 1), s̃p(k + 2), ..., s̃p(k +N)]T

Hp = diag [h1, h2, ..., hN ]

E(k) = S(k)− Smp(k)

S(k) = [s(k), s(k), ..., s(k)]1×N

Smp(k) = [s(k/k − 1), s(k/k − 2), ..., s(k/k −N)]T

The following corresponding optimization cost function is de-
fined:

jp =

N∑
j=1

qj [s̃p(k + j)− sr(k + j)]2 +

M∑
l=1

gl [δu(k + l − 1)]2

(23)

where sr(k + 1) is the sliding mode reference trajectory, qj and
gl are weight coefficients.
In order to simplify the synthesis of the controller, we consider
(qj = 1) and gl = g. So, The following corresponding optimiza-
tion cost function is written by:

jp =

N∑
j=1

[s̃p(k + j)− sr(k + j)]2 +

M∑
l=1

g [δu(k + l − 1)]2

(24)
Rewrite Equation(24) in vector form:

Jp =
∥∥S̃p(k + 1)− Sr(k + 1)

∥∥2
+ ‖∆U(k)‖2G

=
[
Γx(k) + ΩF∆U(k) + ΩPu(k − 1) +HpE(k)

−Sr(k + 1)]T
[
Γx(k) + ΩF∆U(k) + Ωpu(k − 1)

+HpE(k)− Sr(k + 1)] + ∆U(k)TG∆U(k)

(25)

where

Sr(k + 1) = [sr(k + 1), sr(k + 2), ..., sr(k +N)]T

G = [g, g, ..., g]

Let ∂Jp
∂∆U(k)

= 0 , the optimal law can be obtained:

∆U(k) = −((ΩF )TΩF +G)−1(ΩF )T [Γx(k) +HpE(k)
−Sr(k + 1)]

(26)
Because of rolling optimization, only the present increment of
control input signal is implemented, the next time increment of
control signal u(k+1) will be calculated recursively by the con-
trol law.

δu(k) = [1, 0, ...0]T ∆U(k) (27)

So, we have:

u(k) = u(k − 1) + δu(k) (28)

4.2 Simulation example
To improve the behavior of the NPSMC, we kept the same sim-
ulation example of the last section. Compared to SMC and MPC
, the simulation results of NPSMC are illustrated in figure 7 to
figure 10.
In fact, figure 7 and 8 show, respectively, the evolution of the
states x1(k) and x2(k). Figure 9 presents the evolution of the
sliding surface. The evolution of the input u(k) is presented in
figure 10.
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Fig. 7. Evolutions of the state x1(k).

Then, the application of the new strategy gives a very satisfac-
tory performances in terms of convergence, eliminating chatter-
ing,and rejecting constants disturbances.
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Fig. 8. Evolutions of the state x2(k).
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Fig. 9. Evolutions of the sliding function.
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Fig. 10. Evolutions of the control input u(k).

5. SIMULATION RESULTS
To evaluate the robustness of the two control laws equations (18)
and equation (26), we consider the isothermal Van de Vussen
systems [11]. this system involves series and parallel reactions
and is governed by the following equations:

Ca
dt

= −k1Ca − k3C
2
a + (Cain − Ca)F

V
Cb
dt

= k1Ca − k2Cb
F
V

(29)

The desired output is the concentration of B, Cb [mol/l], Ca
and Cain are the concentrations of A [mol/l] in the reactor
and in the feed respectively, the manipulate input, F is the
dilution rate [l/min], V is the volume [l], and the rate con-
stants are given by k1 = 5/6[min−1], k2 = 5/3[min−1],
k3 = 1/6[mol/litermin] [11].
Above no linear, non minimum phase process has been used to
show the controller performance. After linearizing model (29)
about the operating point the physical model gives the following
transfer function (30). The discretization has been made with
ampling rate Te = 0.2

y(k) =
−0.0939 + 0.1745z

−1

1− 1.2573z−1 + 0.3951z−2
u(k − 1) (30)

The state space representation of the isothermal Van de Vussen
systems is given as follows:

x(k + 1) = Ax(k) +Bu(k)

y(k) = Hx(k) +Du(k)

where:

A =

[
1.2573 −0.7902

0.5 0

]
B =

[
0.5
0

]

H =

[
−0.1878

0.698

]
D = [−0.0939]

The retained synthesis parameters are: m = 1.5, N = 10,
M = 5, C =

[
1 −1

]
, G = 0.01IN×N ,

x (0) =
[

3 1
]
,

Hp = diag
[

1 0.8 0.6 0.5 0.3

0.2 0.2 0.4 0.1 0.05
]

5.1 Case of constant disturbances
The results presented in this section are obtained with the

presence of disturbances, whose evolution is given in figure 11.
The parameters variation are given by:

∆A = 0.1

[
5 sin(− 2kπ

10
) 6 sin(− 2kπ

10
)

3 sin(− 2kπ
10

) 3 sin(− 2kπ
10

)

]
∆B = 0.1

[
2 sin(− 2kπ

10

3 sin(− 2kπ
10

]
; k ≥ 300

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

k

v(k)

Fig. 11. Evolutions of disturbances.

The comparaison between the NPSMC, PSMC, SMC and MPC
are given in figures 12 to 15. Figure 12 and figure 13 illustrate
respectively the evolution of states x1(k) and x2(k). The evolu-
tion of the sliding function is shown in figure 14. Finally, figure
15 shows the evolution of the control input u(k).

0 50 100 150 200 250 300 350 400
−1

0

1

2

3

4

 

 

MPC
PSMC
SMC
NPSMC

k

x1(k)

Fig. 12. Evolutions of the state x1(k).

It can be seen that the performances of NPSMC are better than
all the other studied controller, not only, in rejecting constant
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k

Fig. 13. Evolutions of the state x2(k).
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Fig. 14. Evolutions of the sliding function.
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Fig. 15. Evolutions of the control input u(k).

disturbances, hard parameters variation, but also, in eliminating
chattering.

5.2 Case of periodic disturbances
The results presented in this section are obtained with the

presence of disturbances, whose evolution is given in figure 16,
and parameters variation are given by:

∆A = 0.1

[
5 sin(− 2kπ

10
) 6 sin(− 2kπ

10
)

3 sin(− 2kπ
10

) 3 sin(− 2kπ
10

)

]
∆B = 0.1

[
2 sin(− 2kπ

10

3 sin(− 2kπ
10

]
; k ≥ 300

The states response, the sliding mode function and the control
input,with PSMC, NPSMC, SMC, and MPC are given, respec-
tively, in Figures 17 to 20.
.
A comparaison between the NPSMC, PSMC, SMC and MPC re-
veals that the use of the new control strategy (NPSMC) reduce
the chattering problem effectively (k ≥ 300).
Furthermore, the results obtained prove the capability of the pro-
posed control law to reject periodic disturbances.
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0
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0.6

v(k)

Fig. 16. Evolutions of disturbances.
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Fig. 17. Evolutions of the state x1(k).

0 50 100 150 200 250 300 350 400
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

 

 

MPC

PSMC

SMC

NPSMC

k

x2(k)

Fig. 18. Evolutions of the state x2(k).

6. CONCLUSION
The predictive sliding mode controller, presented in this paper,
combines the design technique of SMC and MPC. A predictive
sliding mode control strategy is proposed and a discrete-time
reaching law is improved by applying a predictive sliding surface
and a reference trajectory. It is shown that mixing both control
techniques gives a new controller with a better robustness proper-
ties. To ameliorate the performances of the PSMC, we introduce
the NPSMC whose performance was judged using a non mini-
mum phase system. In fact, The New Predictive Sliding Mode
controller can guarantee desired performance, such as chattering
elimination, fast convergence, strong robustness to constant and
periodic disturbances and parameters variation.
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