
International Journal of Computer Applications (0975 – 8887)

Volume 70– No.1, May 2013

29

Proposing Effort Estimation of COCOMO II through

Perceptron Learning Rule

Saoud Sarwar

Professor (Department of Computer Sceince)
AFSET, MDU

Monika Gupta
PG Scholar

AFSET, MDU

ABSTRACT

The software cost estimation is now one of centre of attention

for computer software industries. As software industry runs

many projects simultaneously they have to prioritize different

processes based on time, cost, and number of staff, sequentially.

With the increasing complexity of software, the cost of the

software development is also increasing. So it is required to rely

on the effective techniques for estimating software costs.

Accurate cost estimation is needed because it can help to

prioritize and classify development projects. In this paper, the

most popular software cost estimation model, COCOMO II

(post architecture model of COCOMO), is discussed. The

estimation of COCOMO II is enhanced through neural network.

The network is trained trough perceptron learning rule. The

company’s previous projects dataset of estimation and actual

cost can be used to train the network. The cost estimation result

of COCOMO II is compared with trained network.

Keywords

 Software cost estimation, neural network, COCOMO II,

perceptron learning.

1. INTRODUCTION
Before starting any project, it is required to estimate the cost of

project in terms of time, money and manpower for ensuring its

feasibility for both customer and software organization. This

estimation will also help the project manager to prioritize the

development processes. With more accurate results of

estimation, an organization can manage its time, money more

efficiently.

There are many software cost estimation techniques [1, 2, 3]

and models which are classified as algorithmic and non-

algorithmic approach [4]. The algorithmic approach is based on

size of project function point analysis, Linear Models,

Multiplicative models and COCOMO.

The COCOMO II [5, 6] (Post Architecture Model), based on

algorithmic method, is now most popular technique of cost

estimation in terms of Person-month for a project because of its

simplicity, capability and accuracy.

The drawback of algorithmic techniques led to the introduction

of non-algorithmic techniques for cost estimation which

includes fuzzy logic, machine learning, neural network, and

expert judgement [7].

 This paper proposed an estimation model that will take the

advantage of both algorithmic (COCOMO II) and non-

algorithmic approach (neural network). Many researchers are

also developing cost estimation model based on non-

algorithmic approach [8, 9, 10, and 11].

This paper is organised as follows. Section 1 describes the cost

estimation of software and various techniques for estimation.

Section 2 describes the COCOMO II model with all its cost

drivers. Section 3 describes basic structure of artificial neural

network and perceptron learning rule. Sections 4, discusses the

related works to the software effort estimation. Section 5,

present the new model of estimation that incorporate COCOMO

II and neural network. Finally section 6 concludes the paper.

2. COCOMO II - POST ARCHITECTURE

MODEL:
The constructive cost model (COCOMO) is most popular

method for effort estimation based algorithmic approach. The

COCOMO was proposed by Barry Boehm in 1982[12]. The

COCOMO 81 was the first model on that time. The working

environment and the parameters of software are matched with

COCOMO to estimate the effort of that project. This output of

the COCOMO in terms effort is then used to measure the time,

cost, and person needed for the software project development.

With changing environment of the software project

development in 1990’s it became difficult to calculate the effort

with COCOMO 81. To overcome the weakness of COCOMO

81, a new version of COCOMO, COCOMO II [13], was

introduced and calibrated in 1997 by Boehm.

COCOMO II has three models but the most detailed is Post

Architecture Model. This model is used when all the

architecture of the project development has been decided. It

uses the size of project (in terms of Kilo source line of codes

(KSLOC)) as well as 22 cost drivers, which includes five scale

factors and 17 effort multipliers, for the estimation of effort.

The output of COCOMO II, in terms of person/month, is

calculated as

 ……..(1)

Where B = 1.01 + 0.01 X

In equation 1, A is called as multiplicative constant.

All the five scale factors and 17 effort multipliers (commonly

known as Cost drivers) are described in table 1.

The detailed description of all the cost drivers and effort

multipliers is given by Boehm [14], COCOMO II model

Definition manual.

3. ARTIFICIAL NEURAL NETWORK
Artificial neural network [15, 16] is consisting of large number

of interconnected processing elements called neurons. Artificial

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.1, May 2013

30

neural network is mathematical model that is inspired from

central nervous system of human brain.

Table 1: cost drivers of COCOMO II

Symbol Name

SF1 Precedentedness

SF2 Development Flexibility

SF3 Architecture and Risk Resolution

SF4 Team cohesion

SF5 Process Maturity

EM1 Required Software

EM2 Data Base Size

EM3 Product Complexity

EM4 Required Reusability

EM5 Documentation Match to Life-cycle Needs

EM6 Time Constraint

EM7 Storage Constraint

EM8 Platform Volatility

EM9 Analyst Capability

EM10 Programmer Capability

EM11 Applications Experience

EM12 Platform Experience

EM13 Language and Tool Experience

EM14 Personnel Continuity

EM15 Use of Software Tools

EM16 Multi-Site Development

EM17 Required Development Schedule

As natural neurons receives input signal through synapse and if

the strength of received signal is greater than some threshold then

the neuron is said to be activated and fires a signal through axon.

Similarly in artificial neurons, it consists of inputs and associated

weight (strength of signal).

A mathematical function called activation function is used to

determine the activation value of artificial neuron. In ANNs either

excitatory or inhibitory neural connections are possible. The

activation function can be Gaussian, linear, Sigmoid and Tach.

Another mathematical function is used to calculate the output of a

neuron. Artificial neural network consist of large number of such

type of neurons. All the neurons are connected through a

connection link and each connection link have a weight

associated with it. This weight contains the information about the

input signal which is used to solve a particular problem. The first

neural network model was proposed by McCulloch and Pitts in

1943.

 Artificial neurons are the processing unit of artificial neural

network. The basic structure of neuron is given in figure 1.

Figure 1: Artificial Neuron

Artificial neural network is of two type’s namely feed forward

neural network and feed backward or recurrent neural network.

In feed forward network, there is no backward loop of current

output to input neurons. The flow of information is only in

forward direction and not in backward direction. There is no

effect of previous results to current results. While in recurrent

neural network there is a backward loop to provide the current

output to input neurons.

The weights associated with neurons can be adjusted to produce

the desired output. There are various algorithms used to adjust

the weight of neuron in order to obtain the desired output. The

process of adjusting weights is known as training or learning.

The learning can be supervised learning or un-supervised

learning. In supervised learning target (desired) output is

associated with each input. The output of the network is then

compared with target output which measures the amount of

error. Then the learning rule is used to reduce the amount of

error between target and actual output of the network. A

training set of input and target output is used to train the

network. While in unsupervised leaning, there is no target

output. The weights and bias are adjusted with network input

only.

The learning rule used in our approach is perceptron

learning[17] and the network is perceptron neural network. The

output produced by the perceptron network is in True (1) and

false (0) value for input presented to it the perceptron learns

through the examples provided to it. The weighted sum of

inputs is combined to produce the output. If the output is

greater than some threshold value then output of perceptron is

true or 1 otherwise output is false or 0. When output is false

weights are adjusted in order to reduce the amount of error

between the target and the actual output.

 Figure 2: perceptron learning

Where f(yx) is the activation function and it is defined as:

F(x) =

 (2)

T is some threshold value.

4. RELATED WORK
Many researchers are have worked upon the cost estimation of

software project using Artificial Neural Network that

incorporate COCOMO [18, 19, 20, 21, 22 and 23].

Ch.Satyananda Reddy [18], adopted feed forward multilayer

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.1, May 2013

31

perceptron with linear activation function to avoid slow

convergence problem Jorgensen [19] provides a detailed review

of different studies on the software development effort. Another

study by Samson et al. [20] used an albus multilayer perceptron

to predict software effort. They have used Boehm’s COCOMO

dataset. Srinivasan and Fisher [22] discussed the use of a neural

network with a back propagation learning algorithm for cost

estimation. They found that the neural network performed well

than other techniques. K. Vinay Kumar, V. Ravi, Mahil Carr,

and N. Raj Kiran [23] have used the wavelet neural network for

estimating the software project development cost. N. Tadayon

[8] also discussed the neural network with a back propagation

learning algorithm.

5. PROPOSED ESTIMATION MODEL

INCORPORATES ANN
The proposed structure of neural network is organised to

incorporate the COCOMO II-post architecture mode and trained

through perceptron learning rule. There are three main entities

in the neural network namely the neurons (nodes), the

interconnection structure and the training algorithm. The

performance of an artificial neural network depends on number

of layers, number of neuron in each layer and the training

method. The COCOMO II includes 22 cost drivers, five scale

factor and 17 effort multipliers. Each of these cost drivers

represents the different attribute of a project like staff attributes,

software and hardware attributes, environment attributes. The

value of each cost driver can change with change in project

attribute. The effort in terms of person per month is calculated

through equation 1 which will act as target input for the

calculated output.

The proposed structure of neural network consist of three layers

namely: input layer, hidden layer and output layer. In input

layer, there are 24 neurons which are 5 scale factor (SF), 17

effort multipliers (EM) and 2 bias inputs. All of these inputs

have some initial weights associated with them. In hidden layer

there are two neurons and at the output layer there is only one

neuron as shown in figure 3.

Figure 3: architecture of neural network.

The processing at neuron N1 & N2 is done as:

N1= Bias1 +

 (3)

N2= Bias2 +

 (4)

The value of each cost driver is provided to the network through

the input layer. The summations of inputs (that are multiplied

with the associated weights) are processed as given in equation

3 & 4 for scale factors and effort multipliers. As the COCOMO

uses the multiplication of inputs and network uses summation,

so to neutralize the input, a log function is used.

The activation function given in equation (2) is used to

calculate the output of hidden layer neurons as f(N1j) and f(N2i).

Depending on the output signal produced by the neurons of

hidden layer, the output of the neuron at the output layer is

either true or false. If the output is true then no weights are need

to be adjusted but if the output is false then weights are

adjusted.

The value at output layer neuron is calculated as given in

equation 1 by taking the value of Bias1 equals to 1.01 and the

value of Bias2 equal to Log (A). The value of weights at input

layer are initialised as wi =1 for 1< i <= 5 and vj =1 for

1<j<=17. If the value is greater or equal to activation function

then true signal is produced by the network which means

estimation of cost drivers are correct else weights are need to be

modified. The weights are modified as

wi(new) = wi(old) + α x input(i)

6. CONCLUSION
The accurate and reliable estimation of effort is very important

for software project development. In this paper, we have

constructed an enhanced model of COCOMO II through neural

network. The model has been trained through perceptron

learning rule. The model will take the advantage of COCOMO

II for effort estimation and neural network for learning

capability. The model will check whether the estimation of

COCOMO II is correct or not. If the estimation is correct then

model will output as TRUE otherwise FLASE. In case of

FALSE result, modifications needs be done to correct the

estimation.

7. REFERENCES
[1] J.P. Lewis, “Large Limits to software estimation”,

Software Engineering Notes, Vol. 26, No. 4, July 2001.

[2] Stamelos, etal. “Estimating The Development cost of

custom software”, Information and Management, v.40 n.8,

pp.729-741, 2003

[3] R. W. Jensen, "Extreme Software Cost Estimating",

CrossTalk, Journal of defense software Engg., Jan 2004.

[4] Vahid Khatibi “Software Cost Estimation Methods: A

Review”, Journal of Emerging Trends in Computing and

Information Sciences, Volume 2 No. 1 on 2010.

[5] Boehm, B., B. Clark, E. Horowitz, C. Westland, R.

Madachy, R. Selby, “Cost Models for Future Software Life

Cycle Processes: COCOMO 2.0,” Annals of Software

Engineering Special Volume on Software Process and

Product Measurement, J.D. Arthur and S.M. Henry (Eds.),

International Journal of Computer Applications (0975 – 8887)

Volume 70– No.1, May 2013

32

J.C. Baltzer AG, Science Publishers, Amsterdam, The

Netherlands, Vol 1, 1995, pp. 45 – 60

[6] Center for Software Engineering , “COCOMO II Model

Definition Manual,” Computer Science Department,

University of Southern California, Los Angeles, Ca.

90089, http://sunset.usc.edu/Cocomo.html, 1997.

[7] R. T. Hughes, "Expert judgment as an estimating method",

Information & Soft. Technology, pp. 67-75, 1996.

[8] Nasser Tadayon., “Neural network approach for software

cost estimation,” In proceedings of the IEEE International

Conference on Information Technology: coding and

computing Computing(ITCC’05), Vol. 2, pp. 815-818,

2005.

[9] Idri, A. Khoshgoftaar, T.M. Abran, A., “Can neural

networks be easily interpreted in software cost

estimation?,” Proceedings of the IEEE International

Conference on Fuzzy Systems, FUZZ-IEEE’02, Vol.:2,

1162-1167, 2002.

[10] Finnie, G.R. and Wittig, G.E., “AI tools for software

development effort estimation,” In proceedings of the

IEEE International Conference on Software Engineering:

Education and Practice, Washington DC, pp 346-353,

1996.

[11] B. Tirimula Rao, B. Sameet, G. Kiran Swathi, K. Vikram

Gupta, Ch. Ravi Teja, S. Sumana, “A novel neural network

approach for software cost estimation using Functional

Link Artificial Neural Network(FLANN)”, International

Journal of Computer Science and Network Society, Vol.9

No.6, June 2009.

[12] B. Boehm, C. Abts, and S. Chulani, “Software

Development Cost Estimation Approaches – A Survey,”

University of Southern California Center for Software

Engineering, Technical Reports, USC-CSE-2000- 505,

2000.

[13] Bradford Clark, Sunita Devnani-Chulani, Barry Boehm.,

“Calibrating the COCOMO II Post-Architecture Model”.

[14] Boehm, "Cost Models for Future Software Live Cycle

Processes: COCOMO 2.0", Annl Soft. Eng. pp. 45-

60,1995.

[15] N. Kassabov, "Foundations of Neural Networks, Fuzzy

Systems, and Knowledge Engineering", MIT press, 1996.

[16] D. E. Neumann, "An Enhanced Neural Network Technique

for Software Risk Analysis", IEEE Trans. Soft. Eng., pp

904-912, vol. 28, 2002

[17] www.msu.edu/course/lin/463/ss04/learning.pdf

[18] Ch. Satyananda Reddy and KVSVN Raju, “ An Optimal

Neural Network Model for Software Effort Estimation”,

Int.J. of Software Engineering, IJSE Vol.3 No.1 January

2010

[19] Jorgerson, M., “Experience with accuracy of software

maintenance task effort prediction models,” IEEE

Transactions on Software Engineering, Volume 21 (8),

674–681, 1995.

[20] Samson, B., Ellison, D., Dugard, P., “Software cost

estimation using an Albus perceptron (CMAC),” Journal

of Information and Software Technology, Volume 39 (1),
55–60, 1997.

[21] Seluca, C., “An investigation into software effort

estimation using a back propagation neural network,”
M.Sc.Thesis, Bournemouth University, UK, 1995.

[22] Srinivasan, K., Fisher, D., “ Machine learning approaches

to estimating software development effort,” IEEE

Transactions on Software Engineering, Volume 21 (2),

126–137, 1995.

[23] K. Vinay Kumar, V. Ravi, Mahil Carr, N. Raj Kiran,

“Software development cost estimation using wavelet

neural networks”, The journal of Systems and Software

81(2008) 1853-1867.

http://www.msu.edu/course/lin/463/ss04/learning.pdf

