
International Journal of Computer Applications (0975 – 8887)  

Volume 70– No.1, May 2013 

29 

Proposing Effort Estimation of COCOMO II through 

Perceptron Learning Rule 

 
Saoud Sarwar 

Professor (Department of Computer Sceince) 
AFSET, MDU 

 

Monika Gupta 
PG Scholar 

AFSET, MDU 

 

 

ABSTRACT 

The software cost estimation is now one of centre of attention 

for computer software industries. As software industry runs 

many projects simultaneously they have to prioritize different 

processes based on time, cost, and number of staff, sequentially. 

With the increasing complexity of software, the cost of the 

software development is also increasing. So it is required to rely 

on the effective techniques for estimating software costs. 

Accurate cost estimation is needed because it can help to 

prioritize and classify development projects. In this paper, the 

most popular software cost estimation model, COCOMO II 

(post architecture model of COCOMO), is discussed. The 

estimation of COCOMO II is enhanced through neural network. 

The network is trained trough perceptron learning rule. The 

company’s previous projects dataset of estimation and actual 

cost can be used to train the network. The cost estimation result 

of COCOMO II is compared with trained network.     

Keywords 

 Software cost estimation, neural network, COCOMO II, 

perceptron learning. 

1. INTRODUCTION 
Before starting any project, it is required to estimate the cost of 

project in terms of time, money and manpower for ensuring its 

feasibility for both customer and software organization. This 

estimation will also help the project manager to prioritize the 

development processes. With more accurate results of 

estimation, an organization can manage its time, money more 

efficiently. 

There are many software cost estimation techniques [1, 2, 3] 

and models which are classified as algorithmic and non-

algorithmic approach [4]. The algorithmic approach is based on 

size of project function point analysis, Linear Models, 

Multiplicative models and COCOMO.  

The COCOMO II [5, 6] (Post Architecture Model), based on 

algorithmic method, is now most popular technique of cost 

estimation in terms of Person-month for a project because of its 

simplicity, capability and accuracy.  

The drawback of algorithmic techniques led to the introduction 

of non-algorithmic techniques for cost estimation which 

includes fuzzy logic, machine learning, neural network, and 

expert judgement [7]. 

 This paper proposed an estimation model that will take the 

advantage of both algorithmic (COCOMO II) and non-

algorithmic approach (neural network). Many researchers are 

also developing cost estimation model based on non-

algorithmic approach [8, 9, 10, and 11]. 

This paper is organised as follows. Section 1 describes the cost 

estimation of software and various techniques for estimation. 

Section 2 describes the COCOMO II model with all its cost 

drivers. Section 3 describes basic structure of artificial neural 

network and perceptron learning rule. Sections 4, discusses the 

related works to the software effort estimation. Section 5, 

present the new model of estimation that incorporate COCOMO 

II and neural network. Finally section 6 concludes the paper.  

2. COCOMO II - POST ARCHITECTURE 

MODEL: 
The constructive cost model (COCOMO) is most popular 

method for effort estimation based algorithmic approach. The 

COCOMO was proposed by Barry Boehm in 1982[12]. The 

COCOMO 81 was the first model on that time. The working 

environment and the parameters of software are matched with 

COCOMO to estimate the effort of that project. This output of 

the COCOMO in terms effort is then used to measure the time, 

cost, and person needed for the software project development. 

With changing environment of the software project 

development in 1990’s it became difficult to calculate the effort 

with COCOMO 81. To overcome the weakness of COCOMO 

81, a new version of COCOMO, COCOMO II [13], was 

introduced and calibrated in 1997 by Boehm. 

COCOMO II has three models but the most detailed is Post 

Architecture Model. This model is used when all the 

architecture of the project development has been decided. It 

uses the size of project (in terms of Kilo source line of codes 

(KSLOC)) as well as 22 cost drivers, which includes five scale 

factors and 17 effort multipliers, for the estimation of effort. 

The output of COCOMO II, in terms of person/month, is 

calculated as  

 

      

     
 

                                  
                  

     ……..(1) 

Where B = 1.01 + 0.01 X                  
    

In equation 1, A is called as multiplicative constant. 

All the five scale factors and 17 effort multipliers (commonly 

known as Cost drivers) are described in table 1. 

 

The detailed description of all the cost drivers and effort 

multipliers is given by Boehm [14], COCOMO II model 

Definition manual.   

3. ARTIFICIAL NEURAL NETWORK 
Artificial neural network [15, 16] is consisting of large number 

of interconnected processing elements called neurons. Artificial 
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neural network is mathematical model that is inspired from 

central nervous system of human brain.  

Table 1: cost drivers of COCOMO II 

Symbol Name 

SF1 Precedentedness 

SF2 Development Flexibility 

SF3 Architecture and Risk Resolution 

SF4 Team cohesion 

SF5 Process Maturity 

EM1 Required Software 

EM2 Data Base Size 

EM3 Product Complexity 

EM4 Required Reusability 

EM5 Documentation Match to Life-cycle Needs 

EM6 Time Constraint 

EM7 Storage Constraint 

EM8 Platform Volatility 

EM9 Analyst Capability 

EM10 Programmer Capability 

EM11 Applications Experience 

EM12 Platform Experience 

EM13 Language and Tool Experience 

EM14 Personnel Continuity 

EM15 Use of Software Tools 

EM16 Multi-Site Development 

EM17 Required Development Schedule 

 

As natural neurons receives input signal through synapse and if 

the strength of received signal is greater than some threshold  then 

the neuron is said to be activated and fires a signal through axon. 

Similarly in artificial neurons, it consists of inputs and associated 

weight (strength of signal). 

A mathematical function called activation function is used to 

determine the activation value of artificial neuron. In ANNs either 

excitatory or inhibitory neural connections are possible. The 

activation function can be Gaussian, linear, Sigmoid and Tach. 

Another mathematical function is used to calculate the output of a 

neuron. Artificial neural network consist of large number of such 

type of neurons.      All the neurons are connected through a 

connection link and each connection link have a weight 

associated with it. This weight contains the information about the 

input signal which is used to solve a particular problem. The first 

neural network model was proposed by McCulloch and Pitts in 

1943. 

 Artificial neurons are the processing unit of artificial neural 

network. The basic structure of neuron is given in figure 1. 

 

Figure 1: Artificial Neuron 

Artificial neural network is of two type’s namely feed forward 

neural network and feed backward or recurrent neural network. 

In feed forward network, there is no backward loop of current 

output to input neurons. The flow of information is only in 

forward direction and not in backward direction. There is no 

effect of previous results to current results. While in recurrent 

neural network there is a backward loop   to provide the current 

output to input neurons.  

The weights associated with neurons can be adjusted to produce 

the desired output. There are various algorithms used to adjust 

the weight of neuron   in order to obtain the desired output. The 

process of adjusting weights is known as training or learning. 

The learning can be supervised learning or un-supervised 

learning. In supervised learning target (desired) output is 

associated with each input. The output of the network is then 

compared with target output which measures the amount of 

error. Then the learning rule is used to reduce the amount of 

error between target and actual output of the network. A 

training set of input and target output is used to train the 

network. While in unsupervised leaning, there is no target 

output. The weights and bias are adjusted with network input 

only.  

The learning rule used in our approach is perceptron 

learning[17] and the network is perceptron neural network. The 

output produced by the perceptron network is in True (1) and 

false (0) value for input presented to it the perceptron learns 

through the examples provided to it. The weighted sum of 

inputs is combined to produce the output.  If the output is 

greater than some threshold value then output of perceptron is 

true or 1 otherwise output is false or 0. When output is false 

weights are adjusted in order to reduce the amount of error 

between the target and the actual output.  

 

 Figure 2: perceptron learning 

Where f(yx) is the activation function and it is defined as:  

F(x) =  
          
         

    (2) 

T is some threshold value. 

4. RELATED WORK 
Many researchers are have worked upon the cost estimation of 

software project using Artificial Neural Network that 

incorporate COCOMO [18, 19, 20, 21, 22 and 23]. 

Ch.Satyananda Reddy [18], adopted feed forward multilayer 
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perceptron with linear activation function to avoid slow 

convergence problem Jorgensen [19] provides a detailed review 

of different studies on the software development effort. Another 

study by Samson et al. [20] used an albus multilayer perceptron 

to predict software effort. They have used Boehm’s COCOMO 

dataset. Srinivasan and Fisher [22] discussed the use of a neural 

network with a back propagation learning algorithm for cost 

estimation. They found that the neural network performed well 

than other techniques. K. Vinay Kumar, V. Ravi, Mahil Carr, 

and N. Raj Kiran [23] have used the wavelet neural network for 

estimating the software project development cost. N. Tadayon 

[8] also discussed the neural network with a back propagation 

learning algorithm.  

5. PROPOSED ESTIMATION MODEL 

INCORPORATES ANN 
The proposed structure of neural network is organised to 

incorporate the COCOMO II-post architecture mode and trained 

through perceptron learning rule. There are three main entities 

in the neural network namely the neurons (nodes), the 

interconnection structure and the training algorithm. The 

performance of an artificial neural network depends on number 

of layers, number of neuron in each layer and the training 

method. The COCOMO II includes 22 cost drivers, five scale 

factor and 17 effort multipliers. Each of these cost drivers 

represents the different attribute of a project like staff attributes, 

software and hardware attributes, environment attributes. The 

value of each cost driver can change with change in project 

attribute. The effort in terms of person per month is calculated 

through equation 1 which will act as target input for the 

calculated output. 

The proposed structure of neural network consist of three layers 

namely: input layer, hidden layer and output layer. In input 

layer, there are 24 neurons which are 5 scale factor (SF), 17 

effort multipliers (EM) and 2 bias inputs. All of these inputs 

have some initial weights associated with them. In hidden layer 

there are two neurons and at the output layer there is only one 

neuron as shown in figure 3. 

 

Figure 3: architecture of neural network. 

The processing at neuron N1 & N2 is done as: 

N1= Bias1 +                  
 
    (3)  

N2= Bias2 +          
  
     (4) 

The value of each cost driver is provided to the network through 

the input layer. The summations of inputs (that are multiplied 

with the associated weights) are processed as given in equation 

3 & 4 for scale factors and effort multipliers.  As the COCOMO 

uses the multiplication of inputs and network uses summation, 

so to neutralize the input, a log function is used. 

The activation function given in equation (2) is used to 

calculate the output of hidden layer neurons as f(N1j) and f(N2i). 

Depending on the output signal produced by the neurons of 

hidden layer, the output of the neuron at the output layer is 

either true or false. If the output is true then no weights are need 

to be adjusted but if the output is false then weights are 

adjusted.  

The value at output layer neuron is calculated as given in 

equation 1 by taking the value of Bias1 equals to 1.01 and the 

value of Bias2 equal to Log (A). The value of weights at input 

layer are initialised as wi =1 for 1< i <= 5 and vj =1 for 

1<j<=17. If the value is greater or equal to activation function 

then true signal is produced by  the network which means 

estimation of cost drivers are correct else weights are need to be 

modified. The weights are modified as 

wi(new) = wi(old) + α x input(i) 

6. CONCLUSION 
The accurate and reliable estimation of effort is very important 

for software project development. In this paper, we have 

constructed an enhanced model of COCOMO II through neural 

network. The model has been trained through perceptron 

learning rule. The model will take the advantage of COCOMO 

II for effort estimation and neural network for learning 

capability. The model will check whether the estimation of 

COCOMO II is correct or not. If the estimation is correct then 

model will output as TRUE otherwise FLASE. In case of 

FALSE result, modifications needs be done to correct the 

estimation. 
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