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ABSTRACT
This paper deals with an (n + 1)-unit warm standby sys-
tem based on imperfect repair facility and two types of fail-
ures. These types of failure are hardware and human error
failures. Various measures of the system reliability are ob-
tained using the regenerative point technique. Finally a numer-
ical example is presented to illustrate the theoretical results.
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1. INTRODUCTION
The theory of reliability is one of the most important branches
of operations research and system engineering. Any system is
analyzed in order to be complete, must give due consideration to
system reliability. With remarkable advances made in electronics
engineering, military and communication systems have become
more sophisticated and when such systems fail, very serious sit-
uations aries. Thus in the present day context, high system re-
liability has become very important from the viewpoint of both
makers and users.
A system designer is faced often with problems of determining
the various system measures like reliability, availability · · · etc.
He also has to suggest ways that improve the efficiency of a given
system. Due to the nature of the subject, the methods of proba-
bility theory and mathematical statistics are necessary to study
and solve the problems that arise in reliability theory.
Many papers [1, 9–12, 14, 18] studied the reliability of the two-
unit standby system from various points of view. In all these pa-
pers, the authors did not take into their account the human error
failures in spite of 20 − 30% of failures are due to human error
(see Mister [17]).
In addition, many papers [2–8], [13], [15, 16] dealt with the re-
liability of some standby systems are subject to the human error
failures.

As we know, there is no papers in the literature deal with (n+1)-
unit standby system in which n units are initially in operation and
the other unit is kept as a standby unit. Thus the aim of this paper
is to bridge a gab of analyzing (n + 1)-unit warm standby sys-
tem based on imperfect repair facility and two types of failures.
Various measures of the system reliability such as mean time to
system failure, steady-state availability, steady-state busy period
and cost benefit analysis, are derived based on regenerative point
technique.
Finally, numerical example is given to illustrate the theoretical
results.

2. ASSUMPTIONS
The following assumptions are associated with the proposed
model.

1- The system consists of n+ 1 identical units.
2- Initially n units begin operation and the other unit is kept as

warm standby.
3- The switch is perfect and instantaneous. (i.e. it is not fail and

the time spend to put the standby in operating is negligible).
4- The operative units suffer two types of failures namely, hard-

ware and human error failures, while standby unit suffers only
one type of failure.

5- There is one repair facility one serverman which it is avail-
able with probability P .

6- After repair the unit is as good as new.
7- All random variables are independent and exponentially dis-

tributed
8- The system fails when there are (n− 1) operating only.

3. NOTATIONS
λi, i = 1, 2 : failure rates of hardware and human error respec-
tively
νi, i = 1, 2 : repair rates of repair for hardware and human error
failures respectively
γ : failure rate of the standby unit
η : repair rate of the standby unit
1− exp(λit), i = 1, 2 : CDF of hardware and human error fail-
ures respectively
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1 − exp(−νit), i = 1, 2 : CDF of repair due to hardware and
human error respectively
1− exp(−γt) : CDF of standby failure time
1− exp(−ηt) : CDF of repair time of the standby unit
1− exp(−ξt) : CDF of waiting time for repair facility to be ac-
tive
E0 : state of the system at t = 0
E : set of regenerative states
E : set of non-regenerative states
P : probability that facility the repair is available
qi,j(t) : PDF of time for the system transition from regenerative
state Si to Sj
Qij(t) : CDF of time for the system transition from regenerative
state Si to Sj
q
(k)
ij (t) : PDF of time for the system transition from regenerative

state Si to Sj via state Sk
q
(k,I)
ij (t) : PDF of time for the system transition from regenera-

tive state Si to Sj via two non-regenerative state Sk and SI
µi :

∫
P (System sojourns in states Si of the set E for at least

time t) dt
Mi(t) : P (System is up initially in state Si of the set E is up at
time T without passing through any other regenerative state or
returning to itself through on or more states of E)
AVi(t) : P (system is up to time t|E0 = Si of E)
B1
i (t) : P (the serverman is busy with repair due to hardware

failure)
B2
i (t) : P (the serverman is busy with repair due to haman error

failure)
B3
i (t) : P (the serverman is busy with standby repair)

Πi(t) : CDF of time to system failure starting from state Si
u : dummy variable in Laplase transform (LT )
∗ : symbol for LT
c© : symbol for convolution
St : unit is in standby case
ri, (i = 1, 2) : unit is under repair due to hardware failure and
human error failure respectivey
R : repair continued from earlier state
Sr : the standby unit is under repair
SR : the repair of standby unit continued from earlier state
Wr : the unit is waiting for repair
SWr : the standby unit is waiting for repair
rfg : the repair facility is available
rfb : the repair facility is not available
WR : the unit is waiting for repair from earlier state
SWR : the standby unit is waiting for repair from earlier state
On : n units are operating.
The proposed system can be in one of the following states:
S0 ≡ (On, St), S1 ≡ (On, r1, rfg), S2 ≡ (On, r2, rfg),
S3 ≡ (On, Sr, rfg), S4 ≡ (O0,Wr1, rfb),
S5 ≡ (On,Wr2, rfb), S6 ≡ (On, SWr, rfb),
S7 ≡ (On−1, R1, wr1), S8 ≡ (On−1, R1, wr2),
S9 ≡ (On−1, R2, wr1), S10 ≡ (On−1, R2, wr2),
S11 ≡ (On−1,WR1, wr1), S12 ≡ (On−1,WR1, wr2),
S13 ≡ (On−1,WR2, wr1), S14 ≡ (On−1,WR2, wr2),
S15 ≡ (On−1, SR,wr1), S16 ≡ (On−1, SR,wr2),
S17 ≡ (On−1, SWR,wr1), S18 ≡ (On−1, SWR,wr2).

REMARK 1. 1. The states S0 − S6 are regenerative states.

2. The states S7 − S18 are non-regenerative states.

4. THE TRANSITION PROBABILITIES
It can be observed that the points of entry into any of the states
Si of the set E are regenerative points. Let T0(≡ 0), T1, T2, · · ·
denote the epochs at which the system enters any state Si of E
and let Xn denote the state visited at epoch Tn+ (i.e. just after
transition at Tn). It is easy to see that {Xn, Tn} is a Markov

renewal process with state space E and

Qij(t) = P [Xn+1 = j, Tn+1 − Tn ≤ t|Xn = t],

is the semi Markov kernel over E.
The matrix of transition probabilities s given by

P = (Pij) = (Qij(∞)) = Q(∞),

with nonzero elements. It is easy to obtain

P01 =
npλ1

nλ1 + nλ2 + γ
.

Similarly

P02 = npλ2
nλ1+nλ2+γ

, P03 = pγ
nλ1+nλ2+γ

, P04 = nqλ1
nλ1+nλ2+γ

,

P05 = nqλ2
nλ1+nλ2+γ

, P06 = qγ
nλ1+nλ2+γ

, P17 = nλ1
nλ1+nλ2+γ1

.

P18 = nλ2
nλ1+nλ2+γ1

, P10 = γ1
nλ1+nλ2+γ1

,

P
(7)
11 = nλ1

nλ1+nλ2+γ1
= P17, P

(8)
12 = nλ2

nλ1+nλ2+γ1
= P18,

P20 = γ2
nλ1+nλ2+γ2

, P29 = nλ1
nλ1+nλ2+γ2

,

P2,10 = nλ2
nλ1+nλ2+γ2

, P
(9)
21 = nλ1

nλ1+nλ2+γ2
= P29,

P
(10)
22 = nλ2

nλ1+nλ2+γ2
= P2,10, P3,15 = nλ1

nλ1+nλ2+η
,

P3,16 = nλ2
nλ1+nλ2+η

, P3,0 = η
nλ1+nλ2+η

,

P
(15)
31 = nλ1

nλ1+nλ2+η
= P3,15, P

(16)
32 = nλ2

nλ1+nλ2+η
= P3,16,

P41 = ξ
nλ1+nλ2+ξ

, P4,11 = nλ1
nλ1+nλ2+ξ

,

P4,12 = nλ2
nλ1+nλ2+ξ

, P
(11,7)
41 = nλ1

nλ1+nλ2+ξ
= P4,11,

P
(12,8)
42 = nλ2

nλ1+nλ2+ξ
= P4,12, P52 = ξ

nλ1+nλ2+ξ
= P41,

P5,13 = P4,11, P5,14 = P4,12,

P
(13,9)
51 = P

(12,8)
42 , P6,3 = P4,1,

P6,17 = P4,11, P6,18 = P4,12,

P
(17,15)
61 = P6,17 = P4,11, P

(18,16)
62 = P6,18 = P4,12.

5. THE MEAN SOJOURN TIMES
One can show that

µ0 =
1

nλ1 + nλ2 + γ
, (1)

µ1 =
1

nλ1 + nλ2 + µ1

, (2)

µ2 =
1

nλ1 + nλ2 + µ2

, (3)

µ3 =
1

nλ1 + nλ2 + η
, (4)

µ4 = µ5 = µ6 =
1

nλ1 + nλ2 + ξ
. (5)

6. THE MEAN TIME TO SYSTEM FAILURE
In this section, we derive the mean time to failure MTTF. Upon
using the probability theory we get

Π0(t) = e−(nλ1+nλ2+γ)t +

6∑
i=1

q0i(t) c©Π1(t), (6)

Π1(t) = e−(nλ1+nλ2+ν1)t + q10(t) c©Π0(t), (7)

Π2(t) = e−(nλ1+nλ2+ν2)t + q20(t) c©Π0(t), (8)
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Π3(t) = e−(nλ1+nλ2+η)t + q30(t) c©Π0(t), (9)

Π4(t) = e−(nλ1+nλ2+ξ)t + q41(t) c©Π1(t), (10)

Π5(t) = e−(nλ1+nλ2+ξ)t + q52(t) c©Π2(t), (11)

Π6(t) = e−(nλ1+nλ2+ξ)t + q63(t) c©Π3(t). (12)

Taking Laplace transform of both sides of the system (6)-(12),
setting u = 0 and solving for Π

∗
0(0) yields

Π
∗
0(0) = MTTF =

L2

L1

, (13)

L1 =1− P01P10 − P02P20 − P03P30 − P04P41P10

− P05P52P20 − P06P63P30,

L2 = µ0 + a1µ1 + a2µ2 + a3µ3 + P04µ4 + P05µ5 + P06µ6,

where

a1 = P01 + P04P41, a2 = P02 + P05P52, a3 = P03 + P06P63.

7. SYSTEM AVAILABILITY
Using probabilistic arguments, gives

AV0(t) = M0(t) +

6∑
i=1

q0i(t) c©AVi(t), (14)

AV1(t) =M1(t) + q10(t)AV0(t) + q
(7)
11 (t)AV1(t)

+ q
(8)
12 (t)AV2(t),

(15)

AV2(t) =M2(t) + q20(t)AV0(t) + q
(9)
21 (t)AV1(t)

+ q
(10)
22 (t)AV2(t),

(16)

AV3(t) =M3(t) + q30(t)AV0(t) + q
(15)
31 (t)AV1(t)

+ q
(16)
32 (t)AV2(t),

(17)

AV4(t) =M4(t) + q41(t)AV1(t) + q
(11,7)
41 (t)AV1(t)

+ q
(12,8)
42 (t)AV2(t),

(18)

AV5(t) =M5(t) + q52(t)AV2(t) + q
(13,9)
51 (t)AV1(t)

+ q
(14,10)
52 (t)AV2(t),

(19)

AV6(t) =M6(t) + q63(t)AV3(t) + q
(17,15)
61 (t)AV1(t)

+ q
(18,16)
62 (t)AV2(t),

(20)

where

M0(t) = exp[−(nλ1 + nλ2 + γ)t],
M1(t) = exp[−(nλ1 + nλ2 + µ1)t],
M2(t) = exp[−(nλ1 + nλ2 + µ2)t],
M3(t) = exp[−(nλ1 + nλ2 + η)t],

M4(t) = exp[−(nλ1 + nλ2 + ξ)t] = M5(t) = M6(t).

Taking Laplace transform of both sides of Eqs. (14)-(20) and
solving for AV ∗0 (u), the steady-state availability of the system
AV0 can be given by

AV0 = lim
t→∞

AV0(t) = lim
u→0

uAV ∗0 (u) =
N0

D0

,

where

N0 =µ0 + µ1P01 + µ2P02 + µ3P03 + µ4P04 + µ5P05 + µ6P06

− µ0P17 − µ2P02P17 − µ3P03P17 − µ4P04P17 − µ5P05P17

− µ6P06P17 + µ2P01P18 − µ0P2,10 −mu1P01P2,10

− µ3P03P2,10 − µ4P04P2,10 − µ5P05P2,10 − µ6P06P2,10

+ µ0P17P2,10 + µ3P03P17P2,10 + µ4P04P17P2,10

+ µ5P05P17P2,10 + µ6P06P17P2,10 + µ1P02P29

− µ0P18P29 − µ3P03P18P29 − µ4P04P18P29

+ µ5P05P18P29 + µ6P06P18P29 + µ1P03P3,15

+ µ2P03P3,16 − µ2P03P17P3,16 + µ1P03P29P3,16

+ µ1P04P41 + µ2P04P18P41 − µ1P04P2,10P41

− µ1P04P4,11 + µ2P04P18P4,11 − µ1P04P2,10P4,11

+ µ2P04P4,12 − µ2P04P17P4,12 + µ1P04P29P4,12

+ µ1P05P5,13 + µ2P05P18P5,13 − µ1P05P2,10P5,13

+ µ2P05P5,14 − µ2P05P17P5,14 + µ1P05P29P5,14

+ µ2P05P52 − µ2P05P17P52 + µ1P05P29P52

+ µ1P06P6,17 + µ2P06P18P6,17 − µ1P06P2,10P6,17

+ µ2P06P6,18 − µ2P06P17P6,18 + µ1P06P29P6,18

+ µ3P06P36 − µ3P06P17P36 − µ3P06P2,10P36

+ µ3P06P2,10P17P36 − µ3P06P29P18P36

+ µ1P06P29P3,15P36 + µ2P06P18P3,15P36

− µ1P06P2,10P3,15P36 + µ2P06P3,16P36

− µ2P06P17P3,16P36 + µ1P06P29P3,16P36,

and

D0 =− µ0(−P10 − P18P20 + P10P2,10)− µ1(−P01 + P01P2,10

− P02P29 − P03P3,15 + P03P2,10P3,15 − P03P29P3,16

− P04P41 + P04P2,10P41 − P04P4,11 + P04P2,10P4,11

− P04P2,29P4,12 − P05P5,13 + P05P2,10P5,13 − P05P29P5,14

− P05P29P52 − P06P6,19 + P06P2,10P6,19 − P06P29P6,20

− P06P3,15P63 + P06P2,10P3,15P63 − P06P29P3,16P63)

− µ2(−P02P10 − P18 + P03P18P30 − P03P10P3,16

− P04P10P4,12 − P05P10P5,14 − P05P10P52

− P06P10P6,20 + P06P18P30P63 − P06P10P63P3,16)

− µ3(−P03P10 − P03P18P20 + P03P10P2,10

− P06P10P63 − P06P18P63P20 + P06P10P63P2,10)

− µ4(−P04P10 − P04P18P20 + P04P15P2,10)

− µ5(−P05P20 + P05P17P20 − P05P10P29)

− µ6(−P06P10 − P06P18P20 + P04P10P2,10).

8. BUSY PERIOD ANALYSIS
8.1 Expected busy period with repair due to

hardware failure
Upon using the probabilistic arguments, we obtain the following
equations;

B1
0(t) =

i=6∑
i=1

q0i(t) c©B1
i (t), (21)

B1
1(t) = G1(t)+q10(t) c©B1

0(t)+q
(7)
11 (t) c©B1

1(t)+q
(8)
12 (t) c©B1

2(t),
(22)

B1
2(t) = q20(t) c©B1

0(t) + q
(9)
21 (t) c©B1

1(t) + q
(10)
22 (t) c©B1

2(t),
(23)
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B1
3(t) = q30(t) c©B1

0(t) + q
(15)
31 (t) c©B1

1(t) + q
(16)
32 (t) c©B1

2(t),
(24)

B1
4(t) = [q41(t) + q

(11,17)
41 (t)] c©B1

1(t) + q
(12,8)
42 (t) c©B1

2(t),
(25)

B1
5(t) = q51(t) c©B1

1(t)+ [q52(t)+ q
(14,10)
52 (t)] c©B1

2(t), (26)

B1
6(t) = q

(17,15)
61 (t) c©B1

1(t)+q
(18,16)
62 (t) c©B1

2(t)+q63(t) c©B1
3(t).

(27)
Taking Laplace transform of Equations [(21)-(27)] and solving
for B1∗

0 (s), we get

B1∗
0 (u) =

N1(u)

D0(u)
. (28)

The steady-state of the total fraction of time for which serverman
is busy with hardware repair is given by

B1
0 = lim

t→∞
B1

0(t) = lim
u→0

uB1∗
0 (u) =

N1

D0

, (29)

where

N1 =
1

ν1
[P01 − P01P29 + P03P3,15 − P03P2,10P3,15

+ P03P29P3,16 + P04P41 − P04P2,10P41

+ P04P4,11 − P04P4,11P2,10 + P04P4,10P29

+ P05P5,13 − P05P2,10P5,13 + P05P29P5,14

+ P05P29P52 + P06P6,17 − P06P2,10P6,17

+ P06P29P6,18 + P06P63P3,15

− P06P2,10P63P3,15 + P06P29P3,16P63].

8.2 Expected busy period with repair due to human
failure

Let B2
k(t) be the probability that the server man is busy with

repair due to human failure at time t starting form state si ∈ E.
Upon using the probabilistic arguments, we obtain the following
equations;

B2
0(t) =

i=6∑
i=1

q0i(t) c©B2
i (t), (30)

B2
1(t) = q10(t) c©B2

0(t) + q
(7)
11 (t) c©B2

1(t) + q
(8)
12 (t) c©B2

2(t),
(31)

B2
2(t) = q20(t) c©B2

0(t) + q
(9)
21 (t) c©B2

1(t) + q
(10)
22 (t) c©B2

2(t),
(32)

B2
3(t) = V (t)+q30(t) c©B2

0(t)+q
(15)
31 (t) c©B2

1(t)+q
(16)
32 (t) c©B2

2(t),
(33)

B2
4(t) = [q41(t) + q

(11,17)
41 (t)] c©B2

1(t) + q
(12,8)
42 (t) c©B2

2(t)
(34)

B2
5(t) = q19,951 (t) c©B2

1(t) + [q52(t) + q
(14,10)
52 (t)] c©B2

2(t),
(35)

B2
6(t) = q

(17,15)
61 (t) c©B2

1(t)+q
(18,16)
62 (t) c©B2

2(t)+q63(t) c©B2
3(t).

(36)

Once again takin Laplace transforms of Equations [(30)- (36)]
and solving for B2∗

0 (s), we get

B2∗
0 (u) =

N2(u)

D0(u)
, (37)

The steady-state of expected busy period of the human error re-
pair is given by

B2
0 = lim

t→∞
B2

0(t) = lim
u→0

uB2∗
0 (u) =

N1

D0

. (38)

Upon using Equations (38), we get

N2 =
1

ν2
[P02 − P02P17 + P01P18 + P03P18P3,15

+ P03P3,16 − P03P17P3,16 + P04P18P41

+ P04P18P4,11 + P04P4,12 − P04P4,12P17

+ P05P18P5,13 + P05P5,14 − P05P5,14P17

+ P05P52 − P05P52P17 + P06P18P6,17 + P06P6,18

− P06P17P6,18 + P06P18P3,15P63 + P06P3,16P63

− P06P17P3,16P63].

8.3 Expected Busy period with Standby Repair
Let B3

i (t) be the probability that the server man is busy with the
standby repair at time t starting from state Si ∈ E.
Using the probabilistic arguments, yields

B3
0(t) =

6∑
i=1

q01(t) c©B3
i (t) (39)

B3
1(t) = q10(t) c©B3

0(t) + q
(7)
11 (t) c©B3

1(t) + q
(8)
12 (t) c©B3

2(t)

B3
2(t) = q20(t) c©B3

0(t) + q
(9)
21 (t) c©B3

1(t) + q
(10)
22 (t) c©B3

2(t)

B3
3(t) = q30(t) c©B3

0(t) + q
(15)
31 (t) c©B3

1(t) + q
(16)
32 (t) c©B3

2(t),

B3
4(t) = [q41(t) + q

(11,17)
41 (t)] c©B3

1(t) + q
(12,8)
42 (t) c©B3

2(t)

B3
5(t) = q

(19,9)
51 (t) c©B3

1(t) + [q52(t) + q
(14,10)
52 (t)] c©B3

2

B3
6(t) = q

(17,15)
61 (t) c©B3

1+q
(18,16)
62 (t) c©B3

2(t)+q63(t) c©B3
3(t).

After some calculations, the steady-state expected busy period
with standby repair can be given as follows

B3
0 = lim

t→∞
B3

0(t) = lim
u→0

uB3∗
1 (u) =

N3

D0

,

where B3∗
1 (S) is LT of B3

0(t), and

N3 =
1

η
[P03(1− P17 − P2,10 + PP17P2,10 − P18P29 − P06P17)

− P06P63(P2,10 − P2,10P17 + P29P18)].

9. COST BENEFIT ANALYSIS
Let C(t) be the net revenue of the system in (0, t], then

C(t) = αµup(t)−
i=3∑
i=1

βiµ
i
R(t), (40)

where
α is the revenue per unit of up time
βi; i = 1, 2, 3 are the cost per unit time of repair of the unit
and the switch respectively.

µup =

∫ t

0

AV0(t) dt

µiR(t) =

∫ t

0

Bi0(t) dt

4
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Taking LT of (40), gives

C∗(u) = αµ∗up(u)−
3∑
i=1

βiµ
i∗
R(u).

Define C to represent the expected profit per unit of time in
steady state.
So C can be written as follows

C = C(∞) = lim
t→∞

C(t)

t
= lim
u→0

u2C∗(u)

=
αN0 −

∑3
i=1 βiNi

D0

.

(41)

10. NUMERICAL EXAMPLE
Setting α = 300, β1 = 20, β2 = 10 and β3 = 5, n = 2,
λ2 = 0.002, P = 0.8, q = 0.2, ν1 = 0.08, ν2 = 0.02, η = 0.06
and ξ = 0.04.
Figures (1-4) represent the variation of MTTF,AV0,B2

0 ,B3
0 and

C versus λ1 when ν1 < ν2, ν1 = ν2 and ν1 > ν2.
Note: To save the space, figures versus λ2 are omitted because
they have the same manner.

REMARK 2. From Figures (1,2 and 4), we can see that

1- The MTTF, AV0 and C decreases as λ1 increases
2- From Fig (3) the expected Basy period B0

1 , B
0
2 and B0

3 in-
crease as λ1 increases.

11. SPECIAL CASES
1- Setting n = 1, we get the results for two-unit warm standby

based on imperfect repair facility and two types of failures.
2- Setting n = 1 and γ = 0, the results for two-unit cold

standby system based on imperfect repair facility and two
types failures.

3- Setting n = 1, γ = 0 and P = 1, we obtain the result for
two-unit cold standby system based on two types of failure.

12. CONCLUSION
The stochastic behaviour of (n + 1)-unit warm standby system
based on imperfect repair facility and two types of failure are
studied. Some measures of reliability for the system are derived
in the steady state. Based on a numerical example, it has been
showed that MTTF, AV0 and C decrease as λ1 or λ2 increases
while B1

0 , B
2
0 and B3

0 are increasing as λ1 or λ2 increases.
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