
International Journal of Computer Applications (0975 – 8887)

Volume 69– No.8, May 2013

53

Developing a new Hybrid Cipher using AES, RC4 and
SERPENT for Encryption and Decryption

Naser Aghajanzadeh

Islamic Azad University, Qazvin
Branch, Computer &Power Faculty,

Qazvin, Iran

Fatemeh Aghajanzadeh

Islamic Azad University, shar Rey
Branch, Technical & Engineering

Faculty, Tehran, Iran

Hamid Reza Kargar

Islamic Azad University, Qazvin
Branch, Computer &Power Faculty,

Qazvin, Iran

ABSTRACT

This paper aims at developing a new hybrid cipher by

combining the characteristics of 3 ciphers namely AES

(Advanced Encryption Standard),Rc4 (also known as ARC4)

and Serpent. The characteristics of both the ciphers are

studied and a new cipher combining the characteristics of both

the ciphers is generated which is more secure than the original

ciphers. AES, SERPENT characteristics are its security and its

resistance against attacks and the major characteristic of Rc4

is its speed.

Therefore these characteristics are imbibed in the newly

generated cipher. Thus it proves to be faster than the original

AES and secure against most attacks. Three combination

techniques have been formulated to generate a hybridized

cipher and the procedure along with the strengths and

weaknesses outlined. The third cipher is the major cipher

which is focused on in this paper. It is also shown that this

cipher is resistant against most attacks. This will ensure the

secrecy and confidentially of the messages it is used to

encrypt.

General Terms

Diffusion analysis, Hybrid, speed improvement, combination

of ciphers, confidentiality, encryption, decryption

Keywords

Encrypt, speed, security, AES, Rc4, SERPENT, hybrid,

confidentiality.

1. INTRODUCTION
Encryption is the process of transforming plaintext data into

ciphertext in order to conceal its meaning and so preventing

any unauthorized recipient from retrieving the original data.

Hence, encryption is mainly used to ensure secrecy.

Companies usually encrypt their data before transmission to

ensure that the data is secure during transit. The encrypted

data is sent over the public network and is decrypted by the

intended recipient. Encryption works by running the data

(represented as numbers) through a special encryption

formula (called a key)[1].

If it is possible to determine the plaintext without knowing the

key, it can be concluded that the cipher is insecure and easily

broken. A cipher attack or a broken cipher means that a third

party ends up getting the information. The science used in

cipher attack to recover any data or to forge the data as to try

to pass it off as authentic is known as cryptanalysis[2].

Data is most vulnerable during its transmission across

network and this is where cryptography plays a major role by

protecting data through encryption. If the cost or time required

to break a cipher is too high to be pragmatic, then the cipher is

said to be computationally secure. If a cipher is secure even

against attackers with unlimited time and resources then the

cipher is said to be unconditionally secure. If a cipher is able

to achieve even computational security then it is a secure

cipher and can be used in many applications. Unconditional

security is not feasible which is why the aim is to strive for

computational security[1].

2. BACKGROUND AND RELATED

WORK
Various studies and research has been conducted to analyze

and study the comparative performance of various algorithms.

[3] Analyses various symmetric encryption techniques and

compares them on points such as avalanche effect by varying

key or plaintext. A study on the combination of Rc4 and AES

has been constructed and many probable theories have been

outlined for the development of a new algorithm. [4]

Formulates a theory on combining block and stream ciphers to

give a more complex hybrid cipher. [5] Studies the various

attacks on Rc4 and concludes that Rc4 is more secure if hash

functions are used in the formation of session keys. Rc4

encryption decryption speed depends mainly on the key length

and size of the data provided [6]. Data type is important as it

takes more time to encrypt images compared to encrypt text

[6]. There have been attempts to improve the security of Rc4

algorithm by using other ciphers or other well-known secure

techniques. One such attempt is to combine Rc4 with the

polyalphabeticVigenèrecipher to produce a more secure

cipher [7]. Cryptanalysis of Rc4 like ciphers [8] finds that the

key stream of Rc4 can be tracked and the parts of a key can be

recovered given a smaller key size.

3. OVERVIEW OF THE ALGORITHMS

3.1 AES
It is a symmetric-key algorithm (same key is used in both

encryption and decryption) and based substitution-

permutation design that makes AES so secure against attacks.

It is a block cipher which means it breaks data in blocks and

combines key with each to get encrypted data[9].

AES has transformation rounds which are called a definite

number of times to encrypt data depending on the bit length

Of the key used in the algorithm i.e. 10, 12 or 14 rounds are

used for 128, 192 or 265 bit key respectively. The rounds can

be called in the reverse manner to decrypt the ciphertext[10].

AES pseudo-code:

Function modifiedAES

Pass in: input[], key

State Input

Generate Round Key

Add Round Key

For round 1 to round5

{

Mix Columns

AddRoundKey

}

Sub Bytes

Shift Rows

Add Round Key

Output state

Pass out: output []
End

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.8, May 2013

54

Sub Bytes

Shift Rows

Function

As can be seen, the final round will differ only in the aspect

that it will not have the Mix-Columns transformation.

3.1.1 Transformation Rounds:
1. Substitute Bytes: A substitution box is created referring

which one byte can be replaced with another[10].

2. Shift Rows: Using a certain pre-defined formula each row

is shifted a few steps in a cyclic manner[10].

3. Mix Columns: This combines the 4 bytes in each column.

4. Add Round Key: Round key is added again so that the

procedure can be repeated for the next round[9].

Figure 1: Transformations for one round of AES

3.1.2 Advantages:
This cipher is highly secure, shows a high performance and is

fast in both hardware and software because of its substitution

permutation network. It has low memory requirements and is

easiest to defend against power and timing attacks[11].

3.1.3 Disadvantages:
It is relatively new, complex and doesn’t have many

implementations till date. It is not very popularly used in

WEP because of hardware limitations since it is not as fast in

hardware as Rc4. Another vulnerability is that it is a block

cipher. And if the same key or derived key is used with more

than one block it makes the process of breaking the other

blocks relatively easier[9].

3.2 Serpent
Serpent ([12]) is a symmetric block cipher that belongs to a

class of substitution-permutation networks (SPN). It was

developed by Ross Anderson (University of Cambridge

Computer Laboratory), Eli Biham (Technion Israeli Institute

Of Technology), and Lars Knudsen (University of Bergen,

Norway). In the version that was submitted for AES contest

the method operates on 128 bit blocks of data using in the

processes a 256 bit external key. The transformation flow is

divided into 32 uniform rounds repeated over the data block

with each round consisting of (nearly identical) sequence of

elementary operations. Each round requires its special 128-bit

round key; since the last round needs two keys, total of 33

different round keys are required and these are generated from

the external key in a separate key schedule[13].

Fig. 2 represents data transformations that constitute the

encryption process. Let P be a 128b plaintext, Bi – a data

Block that enters the i-th round Ri, Ki – the round key, C –

encoded ciphertext. Before the plaintext block enters the

procedure a special bit reordering – so called InitialThen the

Final Permutation FP (which is an inverse of IP) is applied to

give the ciphertextC. Inside the 32 rounds the actual encoding

is carried out.

Figure 2: data transformations in Serpent

The first 31 ones (0…30) are identical and the last one (31) is

slightly modified. As the first transformation in each round,

the block Bi is XOR-ed with the round key Ki that is supplied

by the key schedule. The resulting vector is then passed

through Substitution Boxes. The algorithm defines 8 different

S-Boxes numbered 0 … 7 with each round Riusing S-Box

number i mod 8. The vector created by S-Boxes undergoes

Linear Transformation LT giving block Bi+1 that is the input

to the next round. In the last round R31 the linear

transformationis replaced with XOR operation with the last

key K32 (therefore two keys are required in this round). The

whole data path from the plaintext P to the ciphertextC can be

formally described by a sequence of the following equations:
B0 := IP (P) (1)

Bi+1 := LT (Sboxi mod 8(Bi⊕Ki)), i = 0 … 30 (2)

B32 := SBox7 (B31⊕ K31) ⊕ K32 (3)
C :=FP (B32)

B. Elementary Transformations

The three elementary operations that make up the rounds are:

key mixing, bit substitution and linear transformation. Of

these three, the first one is just an 128-bit 2-input XOR

operation, but the latter are more evolved and require more

complex implementations that must be designed according to

specification[13].

Like in Rijndael, static substitution boxes perform the

nonlinear transformation of the data block in every round.

Unlike the AES winner which applies repeatedly the same one

8x8 substitution, the Serpent defines 8 different 4x4 S-boxes

(i.e. mappings of 4 bits into 4 bits) with each round using just

one S-box. As a result each S-box is used in precisely four

rounds, and in each of these it is used 32 times in parallel to

transform the whole 128-bit block. In the initial version of the

algorithm the authors adopted the S-boxes from DES in order

to ensure a high level of public confidence that no secret

trapdoor was inserted in them. Later, after public investigation

of properties of DES S-boxes that was inspired by new

advances in differential and linear cryptanalysis, a new (and

better) ones were proposed with even stronger immunity to

attacks. Again, to keep high level of public confidence their

contents wasgenerated by a special numerical routine which

was explicitly clarified and justified. As far as the linear

transformation that concludes the rounds is concerned,

State

State

Add Round

Key

State

Shift

Rows

State

Sub Bytes

State

s s s s s s s

M

M

s

Mix Columns

i:= i + 1

i< 31?

Plaintext P

Data Block Bi

S-Box i mod 8

Round Key Ki

Round Key K32

Final Permutation FP

Ciphertext C

Linear Transform.LT

i:= 0
Initial Permutation

Ip

All signals and
data paths are128b

i = 31?

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.8, May 2013

55

initially simple rotations of the 32-bitsubwords were

proposed. In order to ensure maximal avalanche effect, the

idea was to choose these rotations in away that guaranteed

maximal effect in the fewest number of rounds. However, as

the avalanche was still slow, the authors had to move to more

complex transformations and found the XOR operation

sufficiently effective: each output bit of the LT is the

exclusive-or of specific (from 3 to 7) input bits. More

complex operations like words addition were also investigated

but their cost was too high in both hardware and software

implementations and therefore they were dropped ([12]).

3.2.1 The Key Schedule (Fig.3)
The task of the key schedule is to generate 33 round keys Ki

from the external key K that is supplied by the user. The key

K can be of almost any length but when the proposal for AES

standard was formulated it was fixed at 128, 192 or 256 bits

with special expansion procedure that is to be applied to keys

Figure 3: Key Schedule in Serpent

with less than 256 bits. The procedure maps short keys to the

full length by appending one “1” bit to the MSB end, followed

by as many “0” bits as required to make up 256 bits. This

routine maps every short key to a full-length key with no two

short keys being equivalent and ensures that the key schedule

receives as an input external key that is exactly 256 bits long.

The schedule first creates a set of 32-bit prekeyswi. The

starting 8 prekeys numbered from –1 to –8 are simply filled

with bits of the external (user) key K:
{w–1, w–2, … w–8} := K (5)

and then another 132 prekeysw0…w131 are generated by the

following affine recurrence:
wi:=(wi–1wi–3wi–5wi–8i) <<< 11

where <<< denotes rotation and ⊕

the golden ratio(√5 +1)/2(represented as 32-bit

vector0x9E3779B9in hexadecimal notation).The

underlyingpolynomial x8 + x7 + x5 + x3 + 1 is primitive,

which togetherwith the addition of the round index guarantees

an even distribution of key bits throughout the rounds and

eliminates weak and related keys.The round keys are now

calculated from the prekeys using the same set of 8

substitution boxes that are defined for the cipher path. The

general rule is that the key Ki is computed from a group of

four prekeysw4i, w4i+1, w4i+2 and w4i+3 that undergoes bit

substitution and reordering:

K0 := IP(SBox3(w0, w1, w2, w3))

K1 := IP(SBox2(w4, w5, w6, w7))

… (7)

K31 := IP(SBox4(w124, w125, w126, w127)

K32 := IP(SBox3(w128, w129, w130, w131)

To avoid repetitive use of the same substitution as later in the

round, during computation of Ki the schedule uses S-boxes

number (3 – i) mod 8[14,15,16].

3.3 Rc4:

It is a symmetric key cipher like AES and Serpent . It is a

stream cipher which means that the random key generated in

Rc4 is applied to each bit of the plaintext one at a time to get

the encryptedtext.

Rc4 pseudo-code:

//Initialization

For i 1 to i255

Array S[i] i

Array T[i]array K[K mod

length]

//permuting S

I0

For j0 to j255

I sum (I, S[j], T[j]) mod 256

Swap S[j] and S[i]

//generating stream

I,j0

While k<input_length

Isum(i,1)mod 256

Jsum(j,S[i])mod256

Swap(S[i],S[j])

Tempsum(S[i],S[j])mod256

KS[temp]

OutputInput XOR k

End while
Here K is the key and S is a state vector which contains a

permutation of 8 bit numbers in the range 0 to 255 and one of

these numbers is chosen according to predefined rules for

encryption and decryption[17].

Here, length denotes the length of the key used. If length is

255 then the key is copied directly to array T else the key is

copied and for the remaining part of T, the procedure is

repeated continuously till array T has the required number of

elements.

Using the key values in the array T, the values in the array S

are permuted. Once the initial S vector is ready, keep

swapping the values in S according to values in the current

array of S. This process is repeated continuously. The S

generated is used to obtain the value of byte k. The k can be

XORed with the input to encrypt or decrypt the data.

It uses the logic that (A XOR B) XOR B = A, where B=key.

3.3.1 Advantages:
It is very fast, popular and trademarked. It is a simple, easy to

implement algorithm. The output or the ciphertext generated

by using Rc4 algorithm looks completely random and

randomization is a key factor in making a cipher strong.

3.3.2 Disadvantages:
It is a stream cipher, uses a linear operation which can be

easily reversed thus prone to attacks and not very secure. It is

not recommended in newer applications which require more

security. A serious issue regarding Rc4 is discussed in [9], a

large number of weak keys were identified and the knowledge

of a few bits off the keys could reveal the output[18,19].

4. EXPERIMENTAL DESIGN
The designs proposed are better than the original algorithms.

The first two are better in terms of security and the 3rd is

better in terms of security as well as speed. Rc4 which is a

simple stream cipher uses simple invertible operations. If the

invertible operations used are linear then the cipher can be

easily broken [4]. Ex: XOR operation.

Take the following example: If

P is the plaintext and X1 is the key used then ciphertext Ccan be

generated as follows:C=P⊕X1

To get back the plaintext, the ciphertext needs to beXORed with

the key again.C⊕X1=P⊕X1⊕X1=P

ie. C⊕X1=P

If the plaintext is known the key X1 can be easily generated.I

C⊕P=X1

32b

32

S

Bo

x

W 4i–8

Ri-

1

W 4i–8
W 4i–8
W 4i–8
W 4i–8
W 4i–8
W 4i–8
W 4i–8

W 4i+2

W 4i+3
Bi+1

Ki
LT

32 SBox W 4i

W 4i+1

Bi

Cipher path Key schedule

128b

Ri-

2

Ro

un

d

Ri

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.8, May 2013

56

Another case would be:

If P1 and P2 are two different plaintexts and the same key X1 is

used to generate the cipher text,

C1=P1⊕X1

C2=P2⊕X1

To generate the plaintexts,

C1⊕X1=P1

C2⊕X1=P2

Since the key used is same,

C1⊕P1=C2⊕P2

The above equation shows that if P1 is known, P2 can be

generated and vice-versa. Even if P1 and P2 are both

unknown, most of the plaintext can be easily broken by

cryptanalysis. Hence, using the same key with a linear

operation for different plaintexts is a liability.

In order to improve security, if 2 keys are used instead of one

for the same plaintext it would increase the overhead of

generating 2 keys and it would not even make the cipher

secure enough. Eg. Assume P for plaintext, C for

ciphertextand X1 and X2 as the 2 keys used to generate the

ciphertext. If linear operation is used to generate the cipher text

then:C=P⊕X1⊕X2X1⊕X2 is same as X2⊕X1. So even if 2

keys are used in different order, the result will end up being

the same as using a single key which is same for 2 different

plaintexts.To get back plain text all that needs to be done is:

P=C⊕X2⊕X1P1=C1⊕X2⊕X1P2=C2⊕X2⊕X1

Again, since the keys used in both the plaintexts are

equivalent it impliesC1⊕P1=C2⊕P2.

Thus knowing one variable will mean that the other can be

easily known which concludes that linear operation does not

provide much security in terms of possible attacks.

A solution for this is to use a different key each time which is

not pragmatic unless a record is maintained of all the used

keys. But a compensation is that the period of rc4 key

generation is greater than 10^100 [16], so the keys repeat after

a long period which is quite impractical to trace.

Another solution is to use a nonlinear operation but one which

is invertible so that decryption is also possible. Eg.Addition or

subtraction.

If X1 and X2 are the 2 keys used and P is the plaintext then
C=P⊕X1+X2

In order to get back the plaintext,
(C-X2)⊕X1=P

This would be much more difficult to break. Decryption will

be easy if both X1 and X2 are known, but without the

knowledge of even one of them, it is difficult to break. Even if

same keys are used with two different plaintexts, this would

be difficult to break.

(C1-X2)⊕X1=P1

(C2-X2)⊕X1=P2

Since XOR is not distributive, it is not possible to get an

equation having only C and P due to which non-linear

operations are much stronger.

But even this is susceptible to attacks. Hence combining it

with an algorithm like AES would make it more secure. In

AES, the transformations are called again and again and the

plaintext is shuffled continuously to generate a random

looking ciphertext. By 2006, the best known attacks were on 7

rounds for 128-bit keys, 8 rounds for 192-bit keys, and 9

rounds for 256-bit keys [15].

5. NEED FOR HYBRID CIPHER
With the growing trend of using computers and internet for all

purposes, sending data securely has become highly risky.

Hence, security is the growing need of the day which stream

ciphers like Rc4 are unable to provide.

WEP application uses Rc4 but Scott Fluhrer in his paper

Weaknesses in the Key Scheduling Algorithm of RC4 [12]

throws light on the risk factor. He shows how knowing a few

bits of the key in the Rc4 cipher can easily break the cipher

and determine the output of the cipher with a high probability.

It was shown that for a ciphertext attack, a key of arbitrary

length could be easily recovered using this technique which

renders the cipher highly insecure.

AES has been suggested as a replacement on several

occasions but AES being new and a block cipher, it is not as

popular as Rc4. Moreover, AES is very slow compared to Rc4

which is one of the fastest ciphers known and is the major

reason for its popularity.

As security issues continue to arise, it is time to look at an

alternate approach which is why the proposed algorithm can

prove to be a cross between Rc4 and AES combining the

characteristics of time and speed into a new cipher.

Rc4 combined with AES is highly likely to create a secure

algorithm. RC4 can be combined with AES in various ways.

5.1 Rc4Aes
(i)Rc4 output is given to AES as an input. Thus the ciphertext

generated by Rc4 is the plaintext for AES and the required

ciphertext is the output produced by AES. To decrypt the

ciphertext reverse the procedures i.e. use AES decryption 1st

and give the output to Rc4 to decrypt and generate the initial

plaintext.

The advantage here is that even if AES is broken, the plaintext

cannot be recovered as there is another layer of security in the

form of Rc4.

(ii)Rc4 produces a random looking ciphertext as its output

which becomes a key in AES operations. Here, the plaintext is

what is given as a plaintext in AES and the ciphertext is AES

output. For decryption reverse the process. Use AES

decryption with the Rc4 output as the key. The output

generated will be the initial plaintext.

The advantage here is that even if AES is broken, the key

remains unknown as the pseudo key (the output of Rc4) is

attacked and the actual key remains safe.
5.2 Rc4-Serpent

The output of Rc4 is used as plaintext in Serpent in a similar

way as done in Rc4AES.

(i)Rc4 output is given to Serpent as an input. Thus the

ciphertext generated by Rc4 is the plaintext for Serpent and

the required ciphertext is the output produced by Serpent. To

decrypt the ciphertext reverse the procedures i.e. use Serpent

decryption 1st and give the output to Rc4 to decrypt and

generate the initial plaintext. The advantage here is that even

if Serpent is broken, the plaintext cannot be recovered as there

is another layer of security in the form of Rc4.

(ii)Rc4 produces a random looking ciphertext as its output

which becomes a key in Serpent operations. Here, the

plaintext is what is given as a plaintext in Serpent and the

ciphertext is Serpent output. For decryption reverse the

process. Use Serpent decryption with the Rc4 output as the

key. The output generated will be the initial plaintext.

The advantage here is that even if Serpent is broken, the key

remains unknown as the pseudo key (the output of Rc4) is

attacked and the actual key remains safe.

5.3 Proposed Hybrid Approach
The better solution is to combine rc4 ,AES and Serpent as to

get a better speed without compromising the system security.

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.8, May 2013

57

The key issue with AES and Serpent is that it is a block

cipher. Many blocks are encrypted with a single key, thus

interrelating the blocks. If one block is managed to be broken,

all others which share the common key can also be easily

broken. Attack which is difficult against one block can be

highly simplified when given multiple blocks with shared key.

AES and Serpent security depends on the permutation-

combination transformations that are called a number of

times. On reducing this number the speed of the cipher will

increase but at the same time the security will decrease and

the cipher will be more vulnerable to attacks. This

vulnerability needs to be compensated by other changes in the

algorithm. The algorithm can be made more secure if the

following is used:

->Non-linear operations:

As explained in the experimental design, nonlinear keys are

much more secure compared to linear keys. They make it

much more difficult to obtain the plaintext even if the keys

used with different plaintexts are the same. Moreover, it is

comparatively secure against a known plaintext attack.

->Make sure all the blocks in AES don’t use the same key:

As explained above, AES is a block cipher and use of same

key with multiple blocks is a security issue. Changing that

will make the cipher highly secure.

->Make the output cipher look as random as possible (can use

whitening):

Randomness ensures that there is no connection or similarity

between the plaintext and ciphertext thus making it much

more difficult to hack at a plaintext. Whitening is a well-

known cryptographic technique which is used to mix up and

combine various text or cipher characters thus giving a more

random look to the original plaintext. This is a reversible

process and thus can easily be imbibed in any cipher.

->Linear Transformation LT giving block Bi+1 that is the

input to the next round. In the last round R7 the linear

transformation is replaced with XOR operation with the last

key K8 (therefore two keys are required in this round).

The concept is illustrated below:

Decreasing rounds in AES and Serpent would increase the

speed. So, considering the 128 bit AES and Serpent, the

number of rounds is reduced from 10 to 8 in this particular

hybrid cipher. This compromises the security. To compensate,

any of the above mentioned techniques could be used. This

would considerably increase the security without decreasing

the speed too much. This can be represented as shown below.

Fig-4 shows the part of AES,Serpent that is used in the hybrid

cipher.

Unlike the 10 rounds in the original 128 bit cipher, this has

only 8 rounds with the first 7 rounds having all the

permutation and transformation techniques of byte

substitution, row shifting, mix columns, and then finally

round key addition before moving to the next round. Round 8

in the hybrid is same as the round 10 in the original AES and

the round 32 in the original Serpent. It doesn’t include column

mixing and Linear Transformation. Similarly in the 1st

round, Round key is added before the encryption rounds start.

Whitening is used to enhance the security of the cipher in the

following manner. If P is the plaintext and W is the whitening

value which is to be used, then a non-linear operation is used

to combine P and W to generate whitened plaintext called C1.

This whitening of the plaintext is done before the actual

encryption. C1 looks very random as whitening plaintext P it

with W will generate random looking text.Whitening can be

carried out as follows. If length of whitening value W is L1

and length of the data to be encrypted P is L2 then, there can

be three things that will happen.

1. L1=L2

This is the perfect case in which the length of the whitening

value and the length of the data is same and the data can be

whitened without a hitch. Thus C1=P+W, where ‘+’ is any

non-linear operation.

2. L1>L2

When length of the whitening value is more than the length of

the data some extra amount of padding has to be hitched to the

end of the actual data for whitening to go smoothly.

3. L2>L1

When the length of the plaintext data is more than the length

of the whitener W, the whitener has to be used again and

again with the plaintext in rotation to make sure that all the

text gets whitened. Even though the whitener is used

repeatedly on the same data, it would still be random and not

easy to break because of the non-linear operation. Thus the

size of the whitener is increased by continuously appending

the whitener to itself.

The above is

implemented

inthe

following

manner:

Input<-P,W

If L1==L2

C1=P+W

Else if L1>L2

P1=P

While L1!=L2

P=X.P1//padding

C1=P+W

else

W1=W

While L1<L2

W=W.W1//append

if L1>L2

P1=P

While L1!=L2

P=X.P1//padding

C1=P+W

Output<-C1
This way, even if the cipher is broken, the plaintext cannot be

recovered as the whitening added to the plaintext makes it

look random. This way the attacker cannot know if the cipher

has been broken as the plaintext still appears random.

Whitening operation is also pretty cheap hence it wouldn’t

cause a lot of overhead to the cipher. To further increase the

complexity whitening value can be used with the round key

for each block so that each block doesn’t use the same key

and the cipher becomes more secure against attack. During

decryption it is a simple reverse process to remove the

whitening since the operation used is non-linear invertible.

This way unless the whitening values and the key used is

known, the plaintext cannot be deciphered.

The new cipher is put forward as follows:

Input<-P,W //generate whitening

value W

C1=P+W //whitening //C1 will

act as the plaintext which is to be

inputted into Rc4

Generate key S1

C2=C1(Rc4)S1

Function modifiedAES

Pass in: C2, key

State Input

Generate Round Key//use

whitening on round key using W2

Add Round Key For

round 1 to round5

{

SubBytes

Shift Rows

Mix Columns

AddRoundKey

}

SubBytes

Shift Rows

Add Round Key

 Output state

Pass out: C

End Function

W is random. W is generated before the actual encryption

process starts with Rc4. C1 (whitened plaintext) is given as

the input plaintext and S1 is the key used to encrypt it. The

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.8, May 2013

58

output generated from the Rc4 is C2. This is what is fed as

input to the modified AES and Serpent.

Figure 4: Encryption rounds of Hybrid Approach

Another whitener is generated called W2 to whiten the round

keys. The final output from the AES / Serpent is our desired

ciphertext which is C. For every round, the bits in the

whitener are altered such that it can act as a different whitener

for every round. Thus the round key used for every round will

be different. Modifying the bits in the whitener does not incur

much overhead and the resultant changes in round keys makes

the cipher more secure against attacks.

Decryption is carried out by reversing the above process. For

a person who has the whiteners and the necessary keys,

decryption is a simple process. But without the whiteners and

the key, breaking this cipher would be very tough.

6. THEORETICAL CALCULATIONS
is also relatively cheap and easy operation. A small percent of

actual time can be allotted to these operations to The

benchmarks used [12]:

AES=206.19=approx. 206 cycles/byte

SERPENT=742.284=approx. 742 cycles/byte

Rc4=26.97=approx. 27 cycles/byte

=>AES/Rc4=7.6 approx.And serpent/rc4= 27.59

The above statements hold for a stream of continuous data

where Rc4 is much faster than AES and Serpent.

Initially there are 10 rounds. After reducing 2 rounds, the

speed will increase and time will decrease by 20%. Therefore

the time taken by AES now will be 20% less or 80% of the

original time taken which is 165 and that is approx =

6.1(speed of Rc4). Since Rc4 is also used in the algorithm, the

speed will be reduced by some factor which is determined by

the speed of the Rc4.

The time taken by the new algorithm = (time of new AES

algorithm) + (time taken to run Rc4) = 165+27 = 189.

The percent increase in speed of the new algorithm with

respect to the original AES is calculated using this which

approximately comes to 8.33%. Owing to the use of

whitening operations and Linear Transformation which

involve non-linear combination with the plaintext and with the

round keys in AES and Serpent, there is overhead. Moreover

the bit values of the whitener are changed in every round. But

whitening is a cheap operation with very little overhead.

Altering bit positions account for the overhead.

Thus taking the cost of the overhead into account the resultant

algorithm should be at least 9% faster than the original one.

7. EXPERIMENTAL OBSERVATIONS
Table1 rates the performance of each of the individual

ciphers. The performance is determined on the basis of the

time taken to encrypt and decrypt the data. It is seen that RC4

is the fastest. AES_RC4 and RC4_AES take a bit more time

than AES since it combines 2 ciphers with overhead. The

proposed hybrid algorithm proves to be an intermediate and

takes fairly less time compared to AES.

File size Rc4 AES AES_RC4
SERPEN

T-RC4
Hybrid

1KB 13 89.4 101.4 102.8 69.5

2KB 24.9 178.2 205.3 206.1 140.6

5KB 52.3 393.1 447.4 448.6 313.8

1MB 101.2 784.8 887.1 887.3 624.2

3MB 291.8 2187.8 2481.5 2480.3 1748.9

5MB 456.3 3420.8 3879.2 3880.1 2733.6

7MB 639.1 4788.5 5431.8 5430.6 3828.1

10MB 905.3 6789.75 7697.4 7697.8 5429.2

20MB 1810.3 13668.7 15481.3 15482.6 10931.6

30 MB 2715.6 20530.4 23248 23247.3 16417.7

40 MB 3615.7 27450 31069.7 31068.1 21915.6

50 MB 4520.5 34279.6 38808.1 38807.2 27413.2

100 MB 9089.4 68350.2 77420 77430.6 54678.5

Table 1: Performance of Ciphers: Time Vs File Size

The performance of the ciphers is shown in the graph below.

The graph (Graph-1&2) echoes the results in the table.

Minimum time is taken by Rc4 and the hybrid cipher proves

to be fairly faster than AES. AES_RC4 and RC4_AES have

almost the same execution time due to which the graph lines

overlap.

Graph 1: Time Vs File Size

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

ti
m

e

file size

Rijendael(AES)
Serpent
RC4
Rc4-AES
RC4-Serpent
Hybrid

 Add Round Key

Substitute Bytes

Shift Rows

Mix Columns

Add Round Key

Linear Transformation

 Substitute Bytes

Shift Rows

Mix Columns

Add Round Key

Linear Transformation

 Substitute Bytes

Shift Rows

Mix Columns

Add Round Key

Linear Transformation

 Substitute Bytes

Shift Rows

Add Round Key

Round 1

Round 2

Round 7

Round 8

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.8, May 2013

59

Graph 2: Ciphers Vs Throughput

The above graph compares all the ciphers based on their

throughput. RC4 again tops with the maximum throughput

since it encrypts maximum data in minimum time. Followed

by RC4 is the hybrid algorithm which is fairly better than the

other ciphers.

7-2 Diffusion analysis
Diffusion is made for algorithms that exhibits a strong

avalanche effect taking the following cases.
 Changing one bit at a time in a plaintext, keeping key as

constant.

 Changing one bit at a time in a key, keeping plaintext as

constant.

 Changing many bits at a time in a key, keeping plaintext

as constant.

 Changing many bits at a time in a plaintext, keeping key
as constant.

As shown in Graph-3, at the end of first round ,RC4-AES

again tops with the Avalanche Effect. As we observe in the

Graph-3, at the end of final round and Avalanche values

changes around the Serpent,RC4-Serpent and hybrid

algorithm. This resulted Followed by Serpent & RC4-

Serpent is the hybrid algorithm which is fairly better than the

other ciphers.

the Graphs (4-9) which illustrate the avalanche rates of all

algorithms. Graph-4 compares 5 of the algorithms together to

show the average amount of avalanche versus the number of

rounds. The horizontal axis is for rounds one through 32. The

vertical axis is the number of bits, on the average for one

encryption, that change in a ciphertext, compared with a

reference ciphertext, when a single bit is changed in the

plaintext, compared with a reference plaintext. 16 keys were

used while 128 single bits changes were made for each key,

for a total of 2k encryptions for each algorithm for each round

count. Graph 5-9 is a histogram of avalanche for the

algorithms. On the horizontal axis are the number of bits that

changed in the ciphertext after a single bit was changed in the

plaintext. The vertical axis is labeled # Occur. That is the

number of occurrences of encryptions when a certain number

of bits were changed in the ciphertext. The total number of

encryptions for this histogram was 12,800 for each round

amount. The number of keys used was 100 for each round

amount. The vertical scale is limited to 2000, but the peak

number of occurrences was 3280 when only one bit changed

in the ciphertext in the first round. The 5 Graphs (Graphs 5 - 9

) in this paper were used to estimate the excess avalanche for

each algorithms. The excess avalanche was estimated by

dividing the total rounds for a algorithms by the number of

rounds it took for the avalanche measurements to have values

which are close to the optimal values.

Graph 3: Results of Avalanche Effect of algorithms

This technique has some vagueness, due to the integer

quantization of rounds, and because of variable estimates of

closeness to the optimum values. Excess avalanche was given

the highest "weight", because this affects the security of the

algorithm more than speed or code size do.

Graph 4 : Average Avalanche for the algorithms

Graph 5 : histogram of avalanche for the Serpent

0

2

4

6

8

10

12

RC4 AES SERPENT RC4-AES RC4-SERPENT HYBRID

Diffusion, 1 round Diffusion, 2 rounds
Overall Diffusion

Count

Rijendael(AES) 17 64 332

Serpent 13 58 940

Rc4-AES 19 70 400

RC4-Serpent 16 64 987

Hybrid 14 63 640

0

200

400

600

800

1000

1200

Rijendael(AES)

Serpent

Rc4-AES

RC4-Serpent

Hybrid

0

20

40

60

80

0 1 2 3 and up

Rijendael(AES)

Serpent

Rc4-AES

RC4-Serpent

Hybrid

0

500

1000

1500

2000

2500

3000

3500

3 4 5 6 7 8 11 12 14 15 16 17 18 19 20 21 26 32 34 36 40 44 48 52 56 60 64 68 72 76 80 83 84 85 86

O

cc
u

r

round 1

round 2

round 3

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.8, May 2013

60

Graph 6 : histogram of avalanche for the RC4- Serpent

Graph 7 : histogram of avalanche for the Rijndael

Graph 8 : histogram of avalanche for the RC4- Rijndael

Graph 9 : histogram of avalanche for the Hybrid

8. SECURITY ANALYSIS
There are several ways to break a cipher or hack it in order to

reach the significant data it encrypts. Brute force is one such

technique. Brute force has been successfully applied on many

ciphers to yield accurate results. Cryptanalysis is also another

way through which the key can be found and used to encrypt

other messages in place of the actual one. Algebraic equations

can also be formulated which can generate a few bits of the

key. Known plaintext attacks are also quiet common and can

generate key values with high accuracy.

Most of these techniques will not work in the case of this

cipher. The cipher is secure due to a number of reasons. The

modified AES cipher is secured by a number of factors such

as the Rc4 key and the whitening operations and Serpent

Linear Transformation. The plaintext is secured many times.

Security is tightened by whitening before encryption, Serpent

Linear Transformation, using Rc4 encryption and by

encrypting it using the modified AES operations. In order to

get to the plaintext, 4 layers of security have to be broken If

the modified AES is broken, then the attacker will still be left

with a ciphertext which is the Rc4 input. And even if he

breaks that he will still be left with the whitened plaintext. It

is not enough just to get the key in order to break the cipher.

Since there are so many rounds of operation involved the

attacker will need to know the other agents involved like the

whitener. He will need to know the keys involved in Rc4

encryption and the one used in modified AES. Breaking one

key itself is a very difficult. Adding another key and a

whitener tightens the security by adding more constraints.

The keys used in this case are two 128 bit keys. One is used in

Rc4 and the other used in modified AES. This makes it a total

of 256 bits the attacker has to break. The whitener also adds

considerable number of bits to the length the attacker already

has to find out in order to break the cipher.

Brute force for two 128 bit keys is out of the question. Too

many combinations have to be tried out in order to generate

the right key and even then the attacker will not be able to

know if the key has finally been broken since he is still be left

with random looking text. In order to realise if the key is

broken, everything will have to be correctly evaluated

including the whitener and the 2 keys. It takes a considerable

amount of time to break this ensuring that brute force is not a

very feasible method of breaking the cipher.

A cryptanalysis attack is slightly more plausible. But even this

attack can be considered as a failure. An attacker can analyze

the cipher and develop methods to break it. He can input

several texts and analyze the outputs. But at every stage, the

attacker will come across new and random looking plaintext

which will make his analysis even more complex. The

randomness involved in Rc4 and the whitener is enough to

confuse the attacker and ensure the unlikely possibility of

breaking the cipher by using cryptanalysis.

Several algebraic equations can be formulated to break this

cipher. The number of minimum equations needed to break

this cipher will be equal to the total sum of the length of the 2

keys and the whitener. Solving these equations is a very

lengthy and tedious process even by using a processor. Owing

to the amount of time it will take to break this cipher, and if

and when the cipher is broken the attack will be ineffectual

owing to the amount of time passed.

The vulnerability of the block cipher is also overcome by

ensuring that the keys used in the block differ leading to the

whitener whose bits are altered. Therefore if one block is

broken, the other blocks remain secure from attack. A block

can be broken if a known plaintext for that block is found.

The attacker will need to solve for each and every block in

0

200

400

600

800

1000

1200

1400

1600

1800

2000

3 5 7 11 14 16 18 20 26 34 40 48 56 64 72 80 84 86

O

cc
u

r
round 1

round 2

round 3

0

200

400

600

800

1000

1200

1400

1600

1800

2000

3 4 5 6 7 8 9 11 12 14 15 16 17 20 24 28 29 44 48 52 56 60 62 63 64 68 72 80 84

O

cc
u

r

round 1

round 2

0

200

400

600

800

1000

1200

1400

1600

1800

2000

3 4 5 6 7 8 9 11 12 14 15 16 17 20 24 28 29 44 48 52 56 60 62 63 64 68 72 80 84

O

cc
u

r

round 1

round 2

0

200

400

600

800

1000

1200

1400

1600

1800

3 5 7 11 14 16 18 20 26 34 40 48 56 64 72 80 84 86

O

cc
u

r

round 1

round 3

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.8, May 2013

61

order to break the cipher and even then it will be just one

layer of security.

It is possible to study the encryption and decryption algorithm

in detail in order to come up with a cipher attack that will

break the cipher in a shorter time compared to brute force or

cryptanalysis. All possible techniques can be combined in

order to break this cipher. If all the above mentioned

techniques are used together to break this cipher, breaking the

cipher with accurate results is a remote possibility. This needs

a lot of effort and funds in order to make this a reality.

Breaking the cipher with a high cost factor is not worth the

effort and thus is not feasible.

Thus the newly developed cipher is a secure cipher which can

be used in various fields demanding a lot of security. The

cipher will be immune to most attacks including brute force

and cryptanalysis and breaking the cipher at a high cost is not

feasible which heightens its security factors.

All the above mentioned reasons are sufficient to certify that

the cipher is secure enough to suit the needs of most

applications that need high security.

9. INFERENCE
RC4 terms up the best when it comes to speed and throughput

but the rating on security scale is not very high. On security

scale, AES scores better but it is definitely not as fast as Rc4.

It is possible to get better and highly secure algorithms by

using a combination of Rc4 and AES. The new hybrid

algorithm is highly secure compared to most other ciphers and

is faster than the original AES algorithm. Thus it is possible to

inculcate the better parts of two algorithms into a new

algorithm which fares better than the original. By reducing the

number of rounds, the AES is made faster and the reduced

security in this case is compensated by using the security

techniques explained. The proposed hybrid cipher is seen to

have a 20% improved speed compared to the original AES

and a higher security compared to the original Rc4.

This highly improved cipher is easy to understand and

generates secure ciphertext in a short time. It is thus a very

realistic method of approach in modern applications which

require security without compensating the speed. This was not

possible with the individual ciphers of Rc4 and AES but the

hybrid cipher is better applicable since it is a combination of

both.

10. FUTURE WORK
The field of cryptography is getting more advanced due to the

upcoming trends in internet network and wireless. Further

work is possible in this area by combining more such ciphers.

Ciphers can be combined to make them more secure, more

usable and effective. This technique can be further used in all

spheres wherever encryption is needed. This paper discusses

how to encrypt text securely within a short time using the

hybrid cipher. This can be further extended to other forms of

data such as images and audio video transmissions which also

require high security but without the overhead of extra time

taken for encryption.

11. REFERENCES

[1] William Stallings “Cryptography and Network

Security”,3rdEdition, Prentice-Hall Inc., 2005.

[2] Janakiraman V S, Ganesan R, Gobi M

“HybridCryptographic Algorithm for Robust Network

Security”ICGST- CNIR, Volume (7), Issue (I), July 2007

[3] HimaniAgrawal, Monisha Sharma, “Implementation and

analysis of various symmetric cryptosystems”, Indian

J.Sci, Technol. Vol.3, Issue 12, pp:1173-1176, domain

sire : http://www.indijst.org.

[4] S. Harris, "Exploring Cipherspace: Combining stream

ciphers and block ciphers", presented at IACR

Cryptology ePrint Archive, 2008, pp.473-473.

(http://eprint.iacr.org/2008/473.pdf)

[5] Rick Wash, Lecture Notes on Stream Ciphers and Rc4

(http://www.rickwash.com/papers/stream.pdf)

[6] AllamMousa and Ahmad Hamad (2006), "Evaluation of

the RC4 Algorithm for Data Encryption", International

Journal of Computer Science & Applications Vol. 3,

No.2 , June 2006, pp 44-

56.(http://www.tmrfindia.org/ijcsa/V3I24.pdf)

[7] HussamKassem, Hamad Saber, “Better Performances of

RC4 Ciphering Using New Algorithm”, Australian

Journal of Basic and Applied Sciences, 5(4): 127-134,

2011 ISSN 1991-8178

(http://www.insipub.com/ajbas/2011/127-134.pdf)

[8] Serge Mister, Stafford E. Tavares “Cryptanalysis of Rc4

like Ciphers”, Proceedings, Workshop in Selected Areas

of Cryptography, SAC '98. 1998.

[9] James Nechvatal, Elaine Barker andLawrence Bassham,

“Report on theDevelopment of the AdvancedEncryption

Standard (AES)”, Computerand Security Division,

National Instituteof Standards and Technology (NIST),

USDept. of Commerce.

[10] J. Daemen and V. Rijmen, AES Proposal: Rijndael,

AESAlgorithm Submission, September 3, 1999.

[11] J. Daemen and V. Rijmen, The block

cipherRijndael,Smart Card research and Applications,

LNCS 1820,Springer-Verlag, pp. 288-296.

[12] Scott R. Fluhrer , ItsikMantin , Adi Shamir, Weaknesses

in the Key Scheduling Algorithm of RC4, Revised

Papers from the 8th Annual International Workshop on

Selected Areas in Cryptography, p.1-24, August 16-17,

2001 (http://merlot.usc.edu/cs531-

s12/papers/Fluhrer01a.pdf)

[13] R. Anderson, E. Biham, L. Knudsen, “The Case for

Serpent”, TheThird Advanced Encryption Standard

Candidate Conference, April 13–14, 2000, New York,

USA (proceedings available from http:

//csrc.nist.gov/encryption/aes/round2/conf3/aes3conf.htm

), 2000.

[14] R. Anderson, E. Biham, L. Knudsen, “Serpent and

Smartcards”, SmartCard Research and Applications,

Proc. 3rd InternationalConferenceCARDIS '98, Louvain-

la-Neuve, Belgium, September 14–16, 1998.Lecture

Notes in Computer Science, Volume 1820, Springer,

2000.

[15] R. Anderson, E. Biham, L. Knudsen, “Serpent: A

Proposal for theAdvanced Encryption Standard”, The

First Advanced Encryption Standard (AES) Candidate

Conference, Ventura, California, August 20–22, 1998

(http://www.cl.cam.ac.uk/~rja14/serpent.html), 1998..

[16] J. Sugier,Implementing Serpent Cipher in Field

Programmable Gate Arrays, PolandICIT 2011 The 5th

International Conference on Information Technology

[17] Jovan Dj. Goli´c, Linear statistical weakness of alleged

RC4 keystreamgenerator, Advances in Cryptology—

http://eprint.iacr.org/2008/473.pdf
http://www.rickwash.com/papers/stream.pdf
http://www.tmrfindia.org/ijcsa/V3I24.pdf
http://www.insipub.com/ajbas/2011/127-134.pdf
http://merlot.usc.edu/cs531-s12/papers/Fluhrer01a.pdf
http://merlot.usc.edu/cs531-s12/papers/Fluhrer01a.pdf

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.8, May 2013

62

EUROCRYPT ’97 (Konstanz),Lecture Notes in Comput.

Sci., vol. 1233, Springer, Berlin, 1997,pp. 226–238. MR

MR1603060

 [18] ItsikMantin, Analysis of the stream cipher RC4, Master’s

thesis, TheWeizmann Institute of Science, 2001.

[19] A. Menezes, P. van Oorschot, and S. Vanstone,

Handbook of AppliedCryptography, CRC press, 2001.

[20] John Kelsey, Stefan Lucks, Bruce Schneier, Mike Stay,

David Wagner, and Doug Whiting, “Improved

Cryptanalysis of Rijndael, Fast Software Encryption”,

2000 pp213–230

[21] RSA Laboratories, What is

Rc4(http://www.rsa.com/rsalabs/ node.asp?id=2250)

[22] “Survey and Benchmark of Stream ciphers for Wireless

Sensor Networks” N. Fournel, M. Minier, S. Ubeda -

LIP, ENS Lyon ,France -May 10, 2007

(http://wistp2007.wistp.org/fileadmin/wistp /wistp

2007/Slides2007/Day2/WISTP2007-SmallDevices-

p3.pdf)

http://www.rsa.com/rsalabs/%20node.asp?id=2250
http://wistp2007.wistp.org/fileadmin/wistp%20/wistp%202007/
http://wistp2007.wistp.org/fileadmin/wistp%20/wistp%202007/

