
International Journal of Computer Applications (0975 – 8887)

Volume 69– No.7, May 2013

35

SQL Injection Attacks: Technique and

Prevention Mechanism

Gaurav Shrivastava
Mahakal Institute of Technology, Ujjain

Kshitij Pathak
Mahakal Institute of Technology, Ujjain

ABSTRACT

In today’s era where almost every task is performed through

web applications, the need to assure the security of web

applications has increased. A survey held in 2010 shows web

application vulnerabilities and SQL Injection attack ranked

among top five[1]. SQL Injection attack (SQLIA) is

performed by those persons who want to access the database

and want to steal, change or delete the data which they do not

have permission to access [1]. In SQLIA adversary requests

through a malicious query which shows some confidential

data [2]. In research, it is also proved that when a network and

host-level entry point is highly secured, the public interface

provided by an application is the one and only source of SQL

injection attack. SQLIA can’t be applied without using space,

single quotes or double dashes [3]. So to prevent SQLIA,

these options are taken in observation. Previous model [10]

used JDBC-LDAP library which did not support instances,

alias and set operations (UNION and UNION ALL). If a

query with injection is accepted by any database which is

based on relational approach, then it will be accepted by all

databases that are based on relational approach. This paper is

focused on SQLIA and its techniques and encounters the

shortcoming of previous models. This paper proposed a

model which uses two databases one relational and other

hierarchical to ensure about injection in a query, compare the

results by applying tokenization technique on both databases.

If the results are same, there is no injection, otherwise it is

present. The proposed model uses a tokenization technique so;

query containing Alias, Instances and Set operations can also

be blocked at the entry point.

Keywords

SQLIA; Classification of SQLIA; Query Tokenization.

1. INTRODUCTION

SQLIA is an attack on web-applications. SQLIA occurs when

adversary changes the logic, semantics or syntax of an SQL

query [1]. The query which is generated dynamically based on

user input, maliciously crafted with SQL keywords, operators,

strings or literals, executes in the database server. The aim of

the intruder for the SQLIA is to access database for which he

is unauthorized [2]. So, accessing information beyond

limitations intruder applies SQLIA in the form of queries

which are syntactically correct [3]. The results of SQLIA are

as below:

Bypass authentication: It is a serious type of attack. Intruder

can access the sensitive information about another user and

can access the information available in his account. This

attack is applied when intruder bypasses the validation

(checking of username and password) phase and can access

the authorized area/space of victim [4].

Confidentiality Loss: When the confidential data from the

database is extracted/ by the intruder, confidentiality is lost.

Integrity Loss: When intruder access the database as well as

he apply SQLIA in such a way that he can have authority of

altering the database, it has a major impact on the integrity of

the system as he can alter the database as he thinks. It

becomes dangerous if this is done in banking web

applications, as intruder can get privilege to the accounts also.

Unwanted operations: intruder can perform unwanted

operations such as shutting down the database, change it,

upload files or delete files from database [5].

This paper emphasizes on various aspects of SQLIA. Section

II shows prevention techniques and operations in the previous

work done in this field. Section III contains proposed solution

using tokenization approach section IV shows the comparison

between existing and proposed model. Section V contains the

conclusion part of this paper and future research directions to

prevent SQLIA.

2. BACKGROUND WORK

The attacker’s objective for using the injection technique is

lies in gaining control over the application database. In a web

based application environment, most of the web based

applications, social web sites, banking websites, online

shopping websites works on the principle of single entry point

authentication which requires user identity and password. A

user is identified by the system based on his identity. This

process of validation based on user name and password, is

referred as authentication. Web architecture illustrated in Fig

1.showes general entry point authentication process. In

general client send a HTTP request to the web server and web

server in turn send it to the database layer. Database end

contains relational tables so queries will be proceeding and

result will be send to the web server. So entire process is

database driven and each database contains many tables that

are why SQLIA can be easily possible at this level.

SQL Injection is a basic attack used for mainly two intentions:

first to gain unauthorized access to a database and second to

retrieve information from database.

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.7, May 2013

36

Function based SQL Injection attacks are most important to

notice because these attacks do not require knowledge of the

application and can be easily automated [6].

Oracle has generally aware well against SQL Injection attacks

as there is are multiple SQL statements that support (SQL

server), a no. of executive statements (SQL servers) and no. of

INTO OUT FILE functions (MYSQL) [7]. Also use of blind

variables in Oracle environments for performance reasons

provides strong protections against SQL Injection attack.

There are two types of SQLIA detection:

Static Approach: This approach is also known as pre-

generating approach. Programmers follow some guidelines for

SQLIA detection during web application development. An

effective validity checking mechanism for the input variable

data is also requires for the pre-generated method of detecting

SQLIA.

Dynamic Approach: This approach is also known as post-

generated approach. Post-generated technique are useful for

analysis of dynamic or runtime SQL query, generated with

user input data by a web application. Detection techniques

under this post-generated category executes before posting a

query to the database server [2,7].

2.1 Classification of SQLIA: SQLIA can be classified into

five categories:

1) Bypass Authentication

2) Unauthorized Knowledge of Database

3) Unauthorized Remote Execution of Procedure

4) Injected Additional Query

5) Injected Union Query

1) Bypass Authentication: Researchers have proved that query

injection can’t be applied without using space, single quotes

or double dashes (--). In bypass authentication, intruder passes

the query in such a way which is syntactically true and access

the unauthorized data [8].

 For example:

This SQL statement will be passed because 1=1is always true

and - - which is used for comments, when used before any

statement, the statement is ignored. So the result of this query

allows intruder to access into user with its privileges in the

database [3].

2) Unauthorized Knowledge of Database: In this type of

attack, intruder injects a query which causes a syntax, or

logical error in to the database. The result of incorrect query is

shown in the form of error message generated by the database

and in many database error messages, it contains some

information regarding database and intruder can use these

details. This type of SQLIA is as follows:

This query is logically and syntactically incorrect. The error

message can display some information regarding database.

Even some error messages display the table name also.

3) Unauthorized Remote Execution of Procedure: SQLIA of

this type performs a task and executes the procedures for

which they are not authorized. The intruder can access the

system and perform remote execution of procedure by

injecting queries. For example:

In above query, only SHUTDOWN operation is performed

which shuts down the database [2].

4) Injected Additional Query: When an additional query is

injected with main query and if main query generates Null

value, even though the second query will take place and the

additional query will harm the database. For example:

First query generates Null because the space is not present

between ‘and’ and password, but the system executes the

second query and if the given table present in database, it will

be dropped.

5) Injected Union Query: In this type of attack, the intruder

injects a query which contains set operators. In these queries,

the main query generates Null value as a result but attached

set operators data from database. For example:

In above query, the first part of query generated Null value

but it allows the intruder to access the salary information of a

user Having id 10125.

SELECT SALARY_INFO from employee

where username=’ or 1=1 - - ‘and password=”;

SELECT SLARY_INFO from employee where

 username = ‘rahul’ and password =convert

(select host from host);

SELECT SALARY_INFO from employee

where username=’rahul’ and password=’’;

 drop table user’;

SELECT SALARY_INFO from employee where

username=’’ and password=’’ UNION SELECT

SALARY_INFO from employee where emp_id=’10125’;

SELECT SALARY_INFO from employee

where username=’’; SHUTDOWN; and password =’’;

Figure 1. Web Achitecture

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.7, May 2013

37

2.2 Major Elements of SQLIA:

It is shown in various research papers that SQLIA can’t be

performed without using space, single quotes and/or double

dashes. These are the major elements of SQLIA. SQLIA is

occurred when input from a user includes SQL keywords, so

that the dynamically generated SQL query changes the

intended function of the SQL query in the application. When

user input types a number, there is no need to use single

quotes in the query. In this case SQL Injection is injected by

using space. This query can be done on original query.

Original Query: SELECT * from employee where

emp_id=10125;

The injection query can be of this form using space:

Injected Query: SELECT * from employee where

emp_id=10125 or 1=1;

The injection query shown below is a query which uses single

quotes:

SELECT*from employee where emp_name=’rahul’or1=1;

In this case if an employee with name rahul is present in

database, information is retrieved. But if the name is not

present, even then the query is executed because the statement

1=1 is always true.

The injection query may contain double dashes (--)

SELECT * from employee where emp_name=’rahul’;--‘and

SALARY_INFO>25000;

SQLIA is a prominent topic and lots of research work has

been done for the detection and prevention of SQLIA. In [3]

the author proposes the TransSQL model. In this model author

proposes a model for SQLIA prevention. TransSQL is server

side application so, it does not changes legacy of web

application. This model uses the idea of database duplication

and run time monitoring. The proposed model is fully

automated and the result shows the effectiveness of system.

TransSQL propose to use two data bases, one is original

relational database and another (LDAP) is copy of the first

one, But data is arranged in hierarchical form. When a query

is paused by the user, the system checks if the query contains

the injection or not. The query is inserted in both original

database and LDAP. If result of both databases is same, it

shows the input query is free from injection, but if results are

different, it means, the query contains injection. So the system

shows the result as Null. The major shortcoming of this

models that it is not applicable for injection queries which

contain instances, alias, UNION and UNIONALL [11]. In [9],

tokenization method is proposed, which is efficient but

applied on original as well as query with injection is not

possible for all queries that their original query is already

stored. In [2], the author proposes rule-based detection

technique, which is based on classification task. For a

particular query, rule dictionary is generated and query is

replaced with these rules. If another query is present, the rules

are applied in new entry and using classification approach,

identify that new query contains the SQL injection or not.[2]

proposes, two levels of authentication: SQL authentication

and XML authentication, and every query is passed though

both systems for checking and preventing against SQLIA.

2.3 Query Tokenization: The query tokenization technique is

implemented by query parser method. In this method, the

original query and query with Injections are considered

differently. Table 1 shows the overall process of tokenization.

Tokenization is performed by detecting space, single quotes

(‘ ‘) or double dashes (- -) and all strings before each symbol

constitute of token. Tokens are decided on the basis of spaces

between them. All the tokens are stored as an element of the

array. Two arrays resulting from both original and a query

with injection are obtained with their lengths. If the length of

both arrays is same, there is no injection. If lengths are

different there is injection. Table 1 and Table 2 shows

resulting arrays after tokenization for query 1 and query 2

which are as follows:

Query 1: Original Query SELECT * from Employee where

emp_name= ’Rahul’;

Query 2: Query with Injection SELECT * from employee

where emp_name=’Rahul’ or ‘1’= ‘1’;

0 1 2 3 4 5 6 7 8

SEL

ECT

*

from

Empl

oyee

Whe

re

emp_nam

e=

Rah

ul

or 1 = 1

0 1 2 3 4

SELECT

* from

Employee Where emp_name= Rahul

 Table 1. Tokenization Process

Table 2. Tokenization Result of Original Query

Table 3. Tokenization Result of Query with injection

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.7, May 2013

38

When index of table 2 and table 3 are compared the length of

both array are unequal. So, it is sure that the second query has

injection.

2.4 Evaluative Study of Previous Models: Table 4 shows all

the pros and cons of previous model in the field of SQL

Injection Attack. Table illustrated below compares five

models Sania:[7], SBSQLID[8], RDUD[9], TransSQL[11]

and Tokenization [10] on the basis of their advantages and

drawbacks.

3. PROPOSED MODEL

SQLIA is a server type of web vulnerability, which impacts

badly on web applications. In this section, a novel model for

SQLIA prevention is proposed. As mentioned in previous

section, several models are proposed for prevention of

SQLIA, but they are not applicable for all type of injection

attacks. SQLIA prevention via double authentication through

tokenization is an approach to control SQLIA. This paper

proposes double authentication process on both relational and

hierarchical databases by applying tokenization approach on

both databases. This task is performed via three steps.

Step 1: Query Forwarding

Step 2: Tokenization process on query

Step 3: Comparison of array index

Figure 2 shows the proposed architecture of SQLIA

prevention through double authentication via tokenization by

using above three essential steps.

Step 1: Query Forwarding- When a query comes from a user

via user interface, the input query is forwarded to both

databases, one which is created by relational approach and

other based on hierarchical approach.

Step 2: Tokenization Process on Query- the input query is

divided into various tokens on the basis of space, single

quotes and double dashes between them. Once the tokens are

decided, they are stored in array. Tokenization process is

applied on both databases.

Step 3: Comparison of Array Index- In this step, the array

length of both the arrays are compared. If the length of L1 and

L2 are same, there is no injection present in the query and the

query is proceed further to main database for retrieving result.

But if the lengths L1andL2are different, then injection exists

and query is not forwarded to the database. The result is a

NULL value.

Model

Advantage

Disadvantages

Sania: [7] 1) It can detect SQL

vulnerabilities

during the

development and

debugging phase of

a web application.

2) It identifies

vulnerable spots by

analyzing SQL

queries .

1) It requires

knowledge of

database in lack of

knowledge attack can

not be handled.

SBSQLID:

[8]

1) The main

advantage of this

approach is that,

error massage

generated does not

contain any Mata-

data. (Information

about the database

which could help

the attacker)

1) Web service is not

integrated with the

web application. Any

modification that

should be done to the

system should be

done in such a way

that it should be

supported by the web

service.

RDUD[9]

1) It uses supervised

learning approach

using SVM to learn

and to classify a

query at run time.

2) It is based on

classification task.

1) Special care is

taken for maintaining

the integrity of the

web profile files to

avoid poisoning of

web profiles.

2) Not applicable for

By pass

Authentication

Trans SQL

[11]

1) It is a server side

application. So, it

does not change the

legacy web

application.

2) Query is checked

twice before

retrieving

information.

1) This model is

unable to prevent

against set operations,

instances, alias

directly.

Query

Tokenization

[10]

1) It converts query

into tokens which

contains between

space, single quotes

and double dashes.

.2) Applied for all

types of SQLIA.

1) The original query

of input query which

contain injection,

must be stored.

Table 4. Comparative Analysis of all existing models

Figure 2. Proposed Architecture

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.7, May 2013

39

This model uses two types of databases, pone hierarchical and

other relational. The aim of using two databases having

different representations is that when one query with injection

applied on relational database is accepted, it can be accepted

by all databases based on relational databases and important

information can be disclosed. While using different databases

having different storage strategies, shows different results for

same query. And if the results are different, it shows the

presence of injection.

4. COMPARATIVE ANALYSIS

 Table 5 shows the comparison between existing SQLIA

prevention technique and proposed technique on the basis of

different SQL injection type like Bypass authentication,

Unauthorized Knowledge of Database, Unauthorized Remote

Execution of Procedure, injected additional query, Injected

Union & Union ALL Query, Injected Alias query and Injected

Instance query. Existing TransSQL technique uses LDAP

database which may trap in some of the case like

UNION,UNION ALL etc. because the part of SQL

commands, UNION, UNION ALL are not supported by

JDBC-LDPA library[11]. This paper proposed technique

which uses XML-Authentication and Query Tokenization

technique to eliminate the drawbacks of existing model. Table

below shows the outcomes of existing TransSQL model and

the expected outcomes of proposed model.

SQL Injection Types SQLIA prevention technique

Existing

Model’s

Outcomes

Proposed Model’s

Expected

Outcomes

1. Bypass Authentication Prevented Prevented

2. Unauthorized
Knowledge of Database

Prevented Prevented

3.Unauthorized Remote
Execution of Procedure

Prevented Prevented

4.Injected Additional Query Prevented Prevented

5. Injected Union & Union
ALL Query

Not
Prevented

Prevented

6. Injected Alias query Not
Prevented

Prevented

7. Injected Instance query Not
Prevented

Prevented

5. CONCLUSION AND FUTURE WORK

Now–a-days, when web applications have become popular

and many companies rely on them, the need of security of

web application increases. SQLIA is the top most threat to

web applications. In SQLIA, intruder passes an injected query

in the system and access the unauthorized data. If an injected

query is accepted by any relational database, it will be

accepted by all databases which are based on relational

approach, for example, SQL ,MySQL, MS Access. So, if

input query will be checked by two different databases, using

different approaches (relational and hierarchical approaches),

then the proper checking of injection can be done. This paper

is focused on the SQLIA, its classification and its prevention

techniques. This research paper proposes introduction of a

new system which is used for the prevention of SQL injection

and also accepts and checks the query which contains

instances, alias, UNION or UNION ALL, etc set operators, by

applying tokenization on hierarchical and relational databases.

6. REFERENCES

[1] R. Ezumalai, G. Aghila, “Combinatorial Approach for

Preventing SQL Injection Attacks”, 2009 IEEE

International Advance Computing Conference (IACC

2009) Patiala, India, 6-7 March 2009.

[2] Asha. N, M. Varun Kumar,Vaidhyanathan.G of

Anomaly Based Character Distribution Models in

the,”Preventing SQL Injection Attacks”, International

Journal of Computer Applications (0975 – 8887) Volume

52– No.13, August 2012

[3] Mehdi Kiani, Andrew Clark and George , “Evaluation e

Detection of SQL Injection Attacks”.The Third

International Conference on Availability, Reliability and

Security,0-7695-3102-4/08, 2008 IEEE.

[4] V.Shanmughaneethi, C.EmilinShyni and

Dr.S.Swamynathan, “SBSQLID: Securing Web

Applications with Service Based SQL Injection

Detection” 2009 International Conference on Advancesin

Computing, Control, and Telecommunication

Technologies, 978-0-7695-3915-7/09, 2009 IEEE

[5] Yuji Kosuga, Kenji Kono, Miyuki Hanaoka, Hiyoshi

Kohoku-ku, Yokohama, Miho Hishiyama, Yu Takahama,

Kaigan Minato-ku, “Sania: Syntactic and Semantic

Analysis for Automated Testing against SQL Injection”

23rd Annual Computer Security Applications

Conference, 2007, 1063-9527/07, 2007 IEEE

[6] Prof (Dr.) Sushila, MadanSupriyaMadan, “Shielding

Against SQL Injection Attacks Using ADMIRE Model”,

2009 First International Conference on Computational

Intelligence, Communication Systems and Networks,

978-0-7695-3743-6/09 2009 IEEE

[7] A S Yeole, B BMeshram, “Analysis of Different

Technique for Detection of SQL Injection”, International

Conference and Workshop on Emerging Trends in

Technology (ICWET 2011) – TCET, Mumbai, India,

ICWET’11, February 25–26, 2011, Mumbai,

Maharashtra, India. 2011 ACM.

[8] Ke Wei, M. Muthuprasanna, Suraj Kothari, “Preventing

SQL Injection Attacks in Stored

Procedures”.Proceedings of the 2006 Australian

Software Engineering Conference (ASWEC’06).

[9] Debasish Das, Utpal Sharma, D. K. Bhattacharyya,

“Rule based Detection of SQL Injection Attack”,

International Journal of Computer Applications (0975 –

8887) Volume 43– No.19, April 2012.

[10] NTAGW ABIRA Lambert, KANG Song Lin, “Use of

Query Tokenization to detect and prevent SQL Injection

Attacks”, 978-1-4244-5540-9/10/2010 IEEE.

[11] Kai-Xiang Zhang, Chia-Jun Lin, Shih-Jen Chen, Yanling

Hwang, Hao-Lun Huang, and Fu-Hau Hsu, “TransSQL:

A Translation and Validation-based Solution for SQL-

Injection Attacks”, First International Conference on

Robot, Vision and Signal Processing, IEEE, 2011

 Table5 .SQLIA Techniques Countermeasures

