RgI-closed Sets in Ideal Topological Spaces

Nirmala Rebecca Paul Madurai Kamaraj University Department of Mathematics Lady Doak College, Madurai Tamil Nadu, India, 625002

ABSTRACT

The paper introduces a new generalized closed set via semi local function. Its relationship with other existing generalized closed sets are established. It's basic properties are discussed. A new decomposition of continuity is derived.

General Terms

Ideal topological space, local function and semi-local function.

Keywords

rgI-closed, rgI-open and rgI-continuous function.

1. INTRODUCTION

Ideals play an important role in topology. Jankovic and Hamlet[2] introduced the notion of I-open sets in topological spaces. Kuratowski[5] has introduced local function of a set with respect to a topology τ and an ideal. Khan et al[3] have introduced semi-local function and derived its properties. Khan et al[4] have introduced gI-closed sets in ideal topology. Antony Rex et.al.[1] have introduced \hat{g} -closed sets in ideal topological spaces. Navaneethakrishnan et.al.[8,7] have introduced regular generalized closed sets and g-closed sets in ideal topological spaces. In this paper generalized regular closed sets is introduced in ideal topological spaces using semi-local function. Its relationship with other existing sets are established. Its basic properties are studied. A new decomposition of continuity is derived in terms of rgI-closed sets. As an application maximal rgI-closed sets are defined and their properties are discussed.

2. PRILMINARIES

We list some definitions which are useful in the following sections. The interior and the closure of a subset A of (X, τ) are denoted by Int(A) and Cl(A), respectively. Throughout the present paper (X, τ) and $(Y, \sigma)(\text{or } X \text{ and } Y)$ represent non-empty topological spaces on which no separation axiom is defined, unless otherwise mentioned.

Definition 2.1 A subset A of a space X is called

(i) a semi-open set [3] if $A \subset Cl(Int(A))$

(ii) an α -open set [9] if A \subseteq Int(Cl(Int(A)))

The complement of a semi-open (α - open) set is called a semi-closed (α -closed) set.

Definition 2.2 (3) An ideal I on a topological space (X, τ) is a non empty collection of subsets of X which satisfies the following conditions. i) $A \in I$ and $B \subseteq A$ implies $B \in I$.

ii) $A \in I$ and $B \in I$ implies $A \cup B \in I$.

An ideal topological space (X, τ) with an ideal I on X is denoted by (X, $\tau,$ I).

If Y is a subset of X then $I_Y = \{ I_0 \cap Y : I_0 \in I \}$ is an ideal on Y and (Y, τ/Y , I_Y) denote the ideal topological subspace.

Definition 2.3 (3) Let (X, τ, I) be an ideal topological space and $A \subseteq X$. $A^*(I, \tau) = \{x \in X : A \cap U \notin I \text{ for every } U \in \tau$ $(X, x)\}$ is called the local function of A with respect to I and τ For every ideal topological space (X, τ, I) there exists a topology τ^* finer than τ defined as $\tau^* = \{U \subseteq X : CI^* X - U)$ $= X-U\}$ generated by the base $\beta(I, J) = \{U - J : U \in \tau \text{ and } J \in I\}$ and $CI^*(A) = A \cup A^*$.

Definition 2.4 (3) Let (X, τ, I) be an ideal topological space and $A \subseteq X$. $A_*(I, \tau) = \{x \in X : A \cap U \notin I \text{ for every } U \in$ SO(X, x)} is called the semi-local local function of A with respect to I and τ where SO(X, x) = { $U \in$ SO(X) : x \in U} where SO(X) denotes the collection of all semi-open sets in X.

Theorem 2.5 (3) (i) $A_*(I, \tau) \subseteq A^*(I, \tau)$ for every subset A of X.

(ii) $A^*(I, \tau) = A_*(I, \tau)$ if SO(X, τ) = τ (iii) If $A \in I$ then $A_*(I, \tau) = \varphi$ (iv) $(A \cup B)_* = A_* \cup B_*$ (v) If $U \in \tau$ then $U \cap A_* \subseteq (U \cap A)_*$ (vi) $(A_*)_* \subseteq A_*$. (vii) If $A \subseteq B$ then $A_* \subseteq B_*$. (viii) $(A \cap B)_* \subseteq A_* \cap B_*$.

 $VIII) (A \cap D)_* \subseteq A_* \cap D_* .$

Theorem 2.6 (4) Let (X, τ, I) be an ideal space and $A \subseteq Y$ $\subseteq X$ where Y is α -open in X then

$$A_*(I_Y, \tau_{\backslash Y}) = A_*(I, \tau) \cap Y$$

Definition 2.7 A subset A of an ideal space (X, τ , I) is said to be

(i) *-closed if $A^* \subseteq A.[3]$

(ii) *-dense itself if $A \subseteq A^*[3]$.

(iii) semi-*-closed if $A_* \subseteq A[4]$.

Definition 2.8 A subset A of an ideal topological space (X, τ, I) is said to be

(i) I_g - closed [7] if $A^* \subseteq A$ whenever $A \subseteq U$ and U is open in X.

(ii) $I_{\hat{g}}$ -closed[1] if $A^* \subseteq A$ whenever $A \subseteq U$ and U is semiopen in X.

(iii) I_{rg} -closed[8] if if $A^* \subseteq A$ whenever $A \subseteq U$ and U is regular open in X.

(iv) gI-closed [4] if $A_* \subseteq A$ whenever $A \subseteq U$ and U is open in X.

(v) rg-closed[8] if Cl(A) \subseteq U whenever A \subseteq U and U is open in X.

3. NEW CLOSURE OPERATOR

We define a new closure operator in terms of semi local function.

Definition 3.1 For a subset A of an ideal topological space (X, τ , I),we define Cl_* (A)=A \cup A_{*}.

Theorem 3.2 Cl * satisfies Kuratowski's closure axioms. Proof.

(i) $\operatorname{Cl}_{*}(\varphi) = \varphi, A \subseteq Cl_{*}(A) \forall A \subseteq X$

(ii) $Cl_*(A \cup B) = A \cup B \cup (A \cup B)_* = A \cup B \cup (A_* \cup B_*) = Cl_*(A) \cup Cl_*(B).$

(iii) For any A \subseteq X, $Cl_* (Cl_* (A)) = Cl_* (A \cup A_*) = (A$

$$\cup A_*) \cup ((A \cup A_*)_* = A \cup A_* \cup (A_*)_* =$$

 $\mathbf{A} \cup A_* = Cl_*$ (A)(since $(A_*)_* \subseteq A_*$).

Definition 3.3 The topology generated by Cl_* is denoted by

 τ_* (I) and is defined as τ_* (I) ={U \subseteq X : Cl_* (X – U) = X –

U}. Without ambiguity it will be denoted as τ_* .

(i) $\varphi \subseteq X$, $Cl_*(X - \varphi) = Cl_*(X) = X$ and $Cl_*(X - X) = Cl_*(\varphi) = \varphi$. Hence φ , $X \in \tau_*$.

(ii)Let
$$\{U_i\}_{i \in I} \in \tau_*$$
 then $Cl_* (X - Ui) = X - Ui \forall i$.

i.e $(X - Ui) \cup (X - U_i)_* = X - Ui \quad \forall i.$

Therefore $(X - U_i)_* \subseteq X - Ui \quad \forall i.$

Claim
$$Cl_*(X - \bigcup_i U_i) = Cl_*(\bigcap_i (X - U_i)) = X - \bigcup_i U_i =$$

$$\bigcap_{i} (X-Ui). By definition Cl_* (\bigcap_{i} (X-Ui)) =$$

$$\bigcap_{i} (X - Ui) \cup \left(\bigcap_{i} (X - U_{i})\right)_{*} \implies Cl_{*} (\bigcap_{i} (X - Ui))$$
$$\supseteq \bigcap_{i} (X - Ui). Also by hypothesis \bigcap_{i} (X - Ui) \cup$$
$$\left(\bigcap_{i} (X - U_{i})\right)_{*} \subseteq \bigcap_{i} (X - Ui). Hence$$

 $Cl_* \left(\bigcap_i (X - Ui)\right) \subseteq \bigcap_i (X - Ui).$ Thus $Cl_* (X - \bigcup_i U_i) = X - \bigcup_i U_i$

(iii) Let $U_1, U_2 \in \tau$ then $Cl_* (X-U_i) = X-U_i$ for i=1,2. Cl_*

$$(X-(U_1 \cap U_2)) = Cl_* (\bigcup_{i=1}^2 (X-U_i)) = Cl_* (X-U_1) \cup$$

 $Cl_*(X-U_2)(=X-U_1) \cup (X-U_2)$. Hence $U_1 \cap U_2 \in \tau_*$ Hence τ_* is a topology. Cl_* and Int_{*} will represent the closure and interior of A in (X, τ_*).

Proposition 3.4 Every τ_* is finer than τ^* .

Proof.Since every open set is semi-open. Therefore $\tau \subseteq \tau^* \subseteq \tau_*$.

Example 3.5 Let $X = \{a, b, c, d\}, \tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}, I = \{\phi, \{b\}\}.$ $\tau^* = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c, d\}, X\}.$

 $\tau_* = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, c\}, \{b, c\}, \{b, c\}, \{a, b, c\}, \{a, b, c\}, \{a, b, c\}, \{a, b, c\}, \{a, c, d\}, \{b, c, d\}\}$

4. RGI-CLOSED SETS

A new generalized closed set called rgI-closed set is introduced and its relationship with other existing sets are established.

Definition 4.1 A subset A of an ideal topological space (X, τ, I) I) is said to be rgI-closed if $A_* \subseteq A$ whenever $A \subseteq U$ and U is regular open in X.

Proposition 4.2 Every I_{rg} -closed set is rgI-closed. **Proof.**Let A be a I_{rg} -closed set and U be a regular open set containing A. Then $A_* \subseteq A^* \subseteq U$. Hence A is rgI-closed. **Remark 4.3** The converse is not true.

Example 4.4 Let $X = \{a, b, c, d\}, \tau = \{\phi, X, \{a\}, \{b, c\}, \{a, b, c\}\}, I = \{\phi, \{b\}\}$.the rgI-closed sets are $\phi, X, \{a\}, \{b\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}$ and the I_{rg}-closed sets are $\phi, X, \{b\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{d\}, \{a, c\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}$.The set $\{a\}$ is rgI-closed but not I_{rg}-closed. **Proposition 4.5** Every closed set is rgI-closed.

Proof.Let A be a closed set and U be a regular open set containing A. Then $A_* \subseteq Cl(A) \subseteq U$. Hence A is rgI-closed. **Remark 4.6** The converse is not true.

Example 4.7 Let $X = \{a, b, c, d\}, \tau = \{\phi, X, \{a\}, \{b, c\}, \{a, b, c\}\}, I = \{\phi, \{b\}\}$. The set $\{a\}$ is rgI-closed but not closed.

Proposition 4.8 Every $I_{\hat{g}}$ closed set is rgI-closed.

Proof.Let A be a $I_{\hat{g}}$ -closed set and U be a regular open set

containing A. Since every regular open set is semi open we have Then $A_* \subseteq A^* \subseteq U$. Hence A is rgI-closed.

Proposition 4.9 Every *-closed set is rgI-closed. **Proof**.Let A be a *-closed set and U be a regular open set containing A. Then $A_* \subseteq A^* \subseteq A \subseteq U$. Hence A is rgI-closed.

Proposition 4.10 Every semi- *-closed set is rgI-closed. **Proof.**Let A be a semi- *-closed set and U be a regular open set containing A. Then $A_* \subseteq A \subseteq U$. Hence A is rgI-closed.

Proposition 4.11 Every gI-closed set is rgI-closed. **Proof**.Let A be a gI-closed set and U be a regular open set containing A. Since every regular open set is open then we have $A_* \subseteq U$. Hence A is rgI-closed.

Remark 4.12 The converse of the propositions 4.8,4.9,4.10,4.11 are not true. In Example 4.4 the *- closed sets are φ ,X, {b}, {d}, {a, d}, {b, d}, {a, b, d}, {b, c, d}, the semi-*-closed sets are φ ,X, {a}, {b}, {d}, {a, b, {a, d}, {b, c}, {b, d}, {a, b, d}, {b, c, d}, gI-closed sets are φ ,X, {a}, {b}, {d}, {a, b}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}, $I_{\hat{e}}$ sets are φ ,X, {b}, {d},{a, d},{b, d}, {c, d}, {a, c, d},

b, d}, {a, c, d}, {b, c, d}. The set {a} is rgI-closed but not $I_{\hat{g}}$

-closed. The set $\{a\}$ is rgI-closed but not *-closed. The set $\{a, c\}$ is rgI-closed but not semi-*-closed. The set $\{a, b, c\}$ is rgI-closed but not gI-closed.

Proposition 4.13 Every rgI-closed and regular open set is semi-*-closed.

Proof.Let A be a rgI-closed and regular open set then $A_* \subseteq A$. Hence A is semi-*-closed. **Proposition 4.14** Let (X, τ, I) be an ideal space. Then either $\{x\}$ is regular closed or $\{x\}^c$ is rgI-closed. for every $x \in X$. **Proof.**Suppose $\{x\}$ is not regular closed then $\{x\}^c$ is not regular open and the only regular open set containing $\{x\}^c$ is X and $(\{x\}^c)_* \subseteq X$. Hence $\{x\}^c$ is rgI-closed.

Theorem 4.15 Every subset of an ideal topological space (X, τ, I) is rgI-closed if and only if every regular open set is semi-*-closed.

Proof.Necessity. Every subset A of X is rgI-closed. If A is regular open then $A_* \subseteq A$ which implies that A is semi-*-closed.

Sufficiency. If $A \subseteq X$ and U is a regular open set containing A such that $A_* \subseteq U_* \subseteq U$. Hence A is rgI-closed.

Theorem 4.16 Union of two rgI-closed sets is rgI-closed set. **Proof**.Let A and B are two rgI-closed sets and U be a regular open set containing $A \cup B$. Then $(A \cup B)_* = A_* \cup B_* \subseteq U$. Hence $A \cup B$ is rgI-closed.

Remark 4.17 Intersection of two rgI-closed sets is need not be a rgI-closed set. In Example 4.4 the sets $\{a, c\}$ and $\{b, c\}$ are rgI-closed sets but their intersection $\{c\}$ is not rgI-closed. **Theorem 4.18** If A is a rgI-closed set in an ideal topological space then Cl_{*}(A)–A contains no non empty regular closed set.

Proof. Suppose A is rgI-closed and F be a regular closed subset of Cl_* (A) – A. Then F \subseteq X – A. Since A is rgI-

closed $A_* \subseteq X - F$. $F \subseteq X - Cl_*$ (A). Therefore $F \subseteq$

 $Cl_*(A) \cap X - Cl_*(A) = \varphi$. Hence $Cl_*(A) - A$ contains no non empty regular closed set.

Remark 4.19 The converse of the theorem 4.18 is not true. In Example 4.4 $Cl_*({c})-{c}={b, d}$ does not contain any non

empty regular closed set. But {c} is not rgI-closed. **Theorem 4.20** Let A be a rgI-closed set of an ideal topological space (X, τ , I). The following are equivalent. (i) A is a semi-*-closed set.

(ii) $Cl_*(A) - A$ is a regular closed set.

(iii) A* - A is a regular closed set.

Proof.(i) \Rightarrow (ii) If A is semi-*-closed then $Cl_*(A) = A$.

Therefore $Cl_*(A) - A = \varphi$ which is regular closed.

(ii) \Rightarrow (i) Let Cl_* (A)– A be regular closed. By the

Theorem 4.18 Cl_* (A) – A contains no non empty regular

closed set. Therefore $Cl_*(A) - A = \varphi$.i.e $(A \cup A_*) \cap A^C = \varphi$ $\Rightarrow A_* \cap A^c = \varphi \Rightarrow A_* \subset A$. Hence A is semi-*-closed.

(ii) \Leftrightarrow (iii). Let $Cl_*(A) - A$ be regular closed.

 $Cl_*(A) - A = A \cup A_* - A = A_* - A.$

Theorem 4.21 Let A be a rgI-closed set in an ideal

topological space (X, τ, I) such that $A \subseteq B \subseteq A_*$. Then B is also a rgI-closed set.

Proof.Let U be a regular open set containing B.

Then $A \subseteq B \subseteq U \Rightarrow B_* \subseteq A_* \subseteq U$. Hence B is rgI-closed.

Theorem 4.22 Let A be a rgI-closed set in an ideal topological space (X, τ , I). Then A \cup X – A $_*$ is also rgI-closed.

Proof.Let U be a regular open set containing $A \cup X - A_*$. $X - U \subseteq (X - A) \cap A_*$. Since X-U is regular closed and A is rgI-closed by theorem 4.18 $X - U = \varphi$ and so X = U. Thus X is the only regular open set containing $A \cup X - A_*$. Hence $A \cup X - A_*$ is also rgI-closed. **Theorem 4.23** Let (X, τ, I) be an ideal space and $A \subseteq Y \subseteq X$ where Y is regular open. A is rgI-closed in $(Y, \tau/Y, I_Y)$ if and only if A is rgI-closed in X. **Proof**.Let A be rgI-closed in X. Let U be a regular open subset of $(Y, \tau/Y)$ such that $A \subseteq U$. Since Y is regular open in X then U is regular open in X. A_{*}(I, $\tau) \subseteq U$. By theorem 2.6 (A_{*}(I_Y, $\tau/Y) = A_*(I, \tau) \cap Y \subseteq U \cap Y = U$. Hence A is rgIclosed in $(Y, \tau/Y, I_Y)$. Conversely let A be rgI-closed in $(Y, \tau/Y, I_Y)$. Then A_{*}(I_Y, $\tau/Y) = A_*(I, \tau) \cap Y \subseteq U \cap Y = U$ Therefore A_{*}(I, $\tau) \subseteq U$. Hence A is rgI-closed in X. **Remark 4.24** If I = { ϕ } and SO(X, $\tau) = \tau$ then A^{*} = A_{*} = Cl(A) and rgI-closed sets coincides with rg-closed sets. **Theorem 4.25** In an ideal topological space (X, τ , I) where SO(X, $\tau) = \tau$, A is a *-dense itself and rgI-closed then A is

rg-closed. **Proof.**If A is *-dense in itself and rgI-closed, U is any regular open set containing A, then $Cl_*(A) \subseteq U$. By the Lemma 2.9 $Cl(A) \subseteq U$. Hence A is rg-closed.

Remark 4.26 The following table shows the relationship of rgI-closed sets with other existing sets. The symbol "1" in a cell means that a set implies the other and the symbol "0" means that a set does not imply the other set.

sets	close d	*_ close	Semi- *-	$I_{\hat{g}}$	I _{rg}	g I	I_{g}	rg I
		d	close					
			d					
close	1	1	1	1	1	1	1	1
d								
*_	0	1	1	1	1	1	1	1
close								
d								
Semi-	0	0	1	0	0	1	0	1
*_								
close								
d								
$I_{\hat{g}}$	0	0	0	1	1	1	1	1
I _{rg}	0	0	0	0	1	0	0	1
gI	0	0	0	0	0	1	0	1
Ig	0	0	0	0	1	1	1	1
rgI	0	0	0	0	0	0	0	1

5 RGI-OPEN SETS

Definition 5.1 The complement of a rgI-closed set is said to be rgI-open.

Theorem 5.2 Let A be a subset of an ideal topological space (X, τ, I) . Then $A \cup X \neg A_*$ is rgI-closed if and only if $A_* \neg A$ is rgI-open.

Proof. It follows from the fact that $A \cup X - A_* = X - (A_* - A)$.

Theorem 5.3 A subset A of an ideal topological space (X, τ, I) is rgI-open if and only if $F \subseteq Int * (A)$ whenever F is regular closed and $F \subset A$.

Proof.Necessity. Suppose that A is rgI-open and F is a regular closed set contained in $A.X - A \subseteq X - F \Rightarrow Cl_*(X - A) = X + F \Rightarrow C$

X - F. Then $F \subseteq X - Cl_*(X - A) = Int_*(A)$.

Sufficiency. Suppose $X - A \subseteq U$ where U is regular open.

 $X - U \subseteq A$ and X - U is regular closed. $X - U \subseteq Int_*(A)$. i.e $Cl_*(X - A) \subseteq U$. X-A is rgI-closed and hence A is rgI-open.

Theorem 5.4 If A is a rgI-open subset of an ideal space (X, τ, I) and $Int_*(A) \subseteq B \subseteq A$ then B is also a rgI-open subset of X.

Proof.Let F be a regular closed set contained in B. Then $F \subseteq B \subseteq A$. Since A is rgI-open and $F \subseteq Int_*(A)$ Since $Int_*(A) \subseteq Int_*(B) \Rightarrow F \subseteq Int_*(B)$. By the theorem 5.3 B is rgI-open.

Theorem 5.5 In an ideal space (X, τ, I) if A is a rgI-open set then G = X whenever G is regular open and

 $Int_*(A) \,\cup\, (X - A) \subseteq \, G.$

Proof.Let A be a rgI-open set. If G is a regular open set such that $Int_*(A) \cup X - A) \subseteq G$. Then $X-G \subseteq (X-Int_*(A)) \cap A = (X-Int_*(A))-(X-A) = Cl_*(X-A)-(X-A)$. Since X-A is rgI-closed by theorem 4.18 X – G = φ and so X = G.

Remark 5.6 The converse of the theorem 5.5 is not true.

Example 5.7 Let $X = \{a, b, c, d\}$, $\tau = \{\phi, X, \{a\}, \{b, c\}, \{a, b, c\}\}$, $I = \{\phi, \{a\}, \{c\}, \{a, c\}\}$ The set $A = \{a, c, d\}$ satisfies the conditions of the theorem but A is not rgI-open where

$$\begin{split} \tau_* &= \{\phi, X, \,\{a\}, \,\{b\}, \,\{a, \,b\}, \,\{a, \,d\}, \,\{b, \,c\}, \,\{b, \,d\}, \,\{a, \,b, \,c\}, \\ \{a, \,b, \,d\}, \,\{b, \,c, \,d\} \} \end{split}$$

Theorem 5.8 If A is a rgI-closed set in an ideal space (X, τ, I) then $Cl_*(A)$ –A is rgI-open.

Proof.Since A is rgI-closed by the theorem 4.18 φ is the only regular closed set contained in Cl_{*}(A) – A and by the theorem 5.3 Cl_{*}(A) – A is rgI-open.

Remark 5.9 The converse of the theorem 5.8 is not true. In Example 4.4 for set $A = \{c\}$,

 $Cl_*(A) - A = \{b, d\}$ is rgI-open but A is not rgI-closed. 6 RGI-CONINUITY AND RGI-

IRRESOLUTENESS

Definition 6.1 A function $f : (X, \tau, I) \to (Y, \sigma)$ is said to be rgI-continuous if $f^{-1}(V)$ is rgI-closed in X for every closed set V in Y.

Example 6.2 Let $X = \{a, b, c\} = Y$, $\tau = \{\phi, X, \{a\}\}$, $I = \{\phi, \{a\}\}$, $\sigma = \{\phi, Y, \{a\}, \{b, c\}\}$. The function f is defined as f(a) = b, f(b) = c, f(c) = a is rgI-continuous. Here the rgI-closed sets are the power set of X.

Definition 6.3 A function $f : (X, \tau, I) \rightarrow (Y, \sigma, J)$ is said to be rgI-irresolute if $f^{-1}(V)$ is rgI-closed in X for every rgI-closed set V in Y.

 $\begin{array}{l} \mbox{Example 6.4 Let } X = \{a,b,c\} = Y, \tau = \{\phi,X,\{a,b\}\}, I = \{\phi, \{b\}\}, \sigma = \{\phi,Y,\{a,c\},\{b,c\},\{c\}\}, J = \{\phi,\{b\}\}. \mbox{ The identity} \end{array}$

function f is rgI-irresolute.

Theorem 6.5 Every rgI-irresolute function is rgI-continuous. 6

Proof.Let V be a closed in Y which is rgI-closed then $f^{-1}(V)$ is rgI-closed in X. Hence f is rgI-continuous.

Remark 6.6 The converse of the theorem 6.5 is not true.

Example 6.7 Let $X = \{a, b, c\} = Y, \tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}, I = \{\phi, \{c\}\}, \sigma = \{\phi, \{a, b\}\}, J = \{\phi, \{b\}\}.$ The

identity function is rgI-continuous but not rgI-irresolute. Since the rgI- closed sets in Y are the power set of Y and the rgIclosed sets of X are φ ,X,{c}, {a, b}, {a, c}, {b, c}}

Theorem 6.8 Let $f : (X, \tau, I_1) \rightarrow (Y, \sigma, I_2), g : (Y, \sigma, I_2) \rightarrow (Z, \eta, I_3)$ be any two functions then the following hold.

(i) gof is rgI-continuous if f is rgI-continuous and g is continuous.

(ii)gof is rgI-continuous if f is rgI-irresolute and g is rgI-continuous.

(iii)gof is rgI-irresolute if f is rgI-irresolute and g is rgI-irresolute.

Proof.(i) Let V be a closed set in Z. Since g is continuous

 $g^{-1}(V)$ is closed in Y. Since f is rgI-continuous $f^{-1}(g^{-1}(V))$ is rgI-closed in X. Hence gof is rgI-continuous.

(ii) Let V be a closed set in Z. Since g is rgI-continuous $g^{-1}(V)$ is rgI-closed in Y. Since f is rgI-irresolute

 $f^{-1}(g^{-1}(V))$ is rgI-closed in X. Hence gof is rgI-continuous. (iii) Let V be a rgI-closed set in Z. Since g is rgI-irresolute $g^{-1}(V)$ is rgI-closed in Y. Since f is rgI-irresolute

 $g^{-1}(V)$) is rgI-closed in Y. Since f is rgI-irresolute f⁻¹ (g⁻¹(V)) is rgI-closed in X. Hence gof is rgI-irresolute. **Remark 6.9** Composition of two rgI-continuous functions need not be rgI-continuous.

Example 6.10 Let $X = Y = Z = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}, I_1 = \{\phi, \{c\}\},$

 $\sigma = \{\varphi, Y, \{a, b\}\}, I_2 = \{\varphi, \{b\}\}, \eta = \{\varphi, Z, \{a, c\}, \{b, c\}, \{c\}\}.$ f is defined as f(c) =a, f(a) = b, f(b) = c and g is the identity map. The functions f and g are rgI-continuous but their composition is not rgI-continuous. Since the rgI-closed sets of are $\varphi, X, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}$ and the rgI-closed sets of Y is the power set of Y. For the closed set {b} in Z (gof)⁻¹ ({b}) = f⁻¹ ({b}) = {a} is not rgI-closed in X.

7 APPLICATIONS

Definition 7.1 A proper non empty rgI-closed subset U of an ideal space (X, τ, I) is said to be maximal rgI-closed if any rgI-closed set containing U is either X or U.

Example 7.2 In Example 4.4 the sets $\{a, b, c\}, \{a, c, d\}, \{a, b, d\}$ and $\{b, c, d\}$ are maximal rgI-closed sets.

Remark 7.3 Every maximal rgI-closed sets is rgI-closed set. But a rgI-closed set need not be a maximal rgI-closed set. In Example 4.4 {a} is rgI-closed but not maximal rgI-closed.

Theorem 7.4 The following statements hold true for any ideal space (X, τ, I) .

(i) Let F be a maximal rgI-closed set and G be a rgI-closed set. Then $F \cup G = X$ or $G \subset F$.

(ii) If F and G are maximal rgI-closed sets then $F \cup G = X$ or F = G.

Proof.(i) Let F be a maximal rgI-closed set and G be a rgIclosed set. If $F \cup G = X$ then there is nothing to prove. Assume that $F \cup G \neq X$. $F \subseteq F \cup G$. $F \cup G$ is rgI-closed.

Since F is a maximal rgI-closed set $F \cup G = X$ or $F \cup G = F$. Hence $F \cup G = X$ or $G \subset F$.

(ii) Let F and G are maximal rgI-closed sets. If $F \cup G = X$,

then there is nothing to prove. Assume that $F \cup G \neq X$. Then by (i) $F \subset G, G \subset F$ which implies that F = G.

Definition 7.5 A function $f: (X, \tau, I) \rightarrow (Y, \sigma)$ is said to be maximal rgI-continuous if $f^{-1}(V)$ is maximal rgI-closed in X for every closed set V in Y.

Theorem 7.6 Every surjective maximal rgI-continuous function is rgI-continuous.

Proof.Let $f: (X, \tau, I) \rightarrow (Y, \sigma)$ be a surjective maximal rgIcontinuous map. The inverse image of φ and Y are rgI-closed sets in X. Let V be a closed set in Y then $f^{-1}(V)$ is a maximal rgI-closed set in X which is a rgI-closed set in X. Hence f is rgI-continuous.

Remark 7.7 The converse of the theorem 7.6 is not true. Example 7.8 Let $X = \{a, b, c\} = Y, \tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}, I = \{\phi, \{c\}\}, \sigma = \{\phi, Y, \{a, b\}\}.$

The identity function from X to Y is rgI-continuous but not maximal rgI-continuous.

Remark 7.9 Composition of two maximal rgI-continuous functions need not be maximal rgI-continuous.

Example 7.10 Let $X = \{a, b, c, d\}$, $Y = Z = \{a, b, c\}$, $\tau = \{\phi, X, \{a\}, \{b, c\}, \{a, b, c\}\}$,

I = { ϕ , {b}}, σ = { ϕ , Y, {a}}, J = { ϕ , {c}}. The function f is defined as f(a) = b = f(c), f(b) = a, f(d) = c. Here f is maximal rgI-continuous where f : (X, τ , I) \rightarrow (Y, σ).

The function $g : (Y, \sigma, J) \rightarrow (Z, \eta)$ with $\eta = \{\phi, Z, \{b\}\}$ is the identity function. g is also maximal rgI-continuous. But their composition g0f is not rgI-continuous. Since for the

closed set {a, c} in Z (gof) $^{-1}$ ({a, c}) = f $^{-1}$ ({a, c}) = {b, d} is not maximal rgI-closed in X. Hence gof is not rgI-continuous. **Theorem 7.11** Let f : (X, τ , I) \rightarrow (Y, σ) be a maximal rgIcontinuous function and f :(Y, σ , I) \rightarrow (Z, η) be surjective continuous function then gof : (X, τ , I) \rightarrow (Z, η) is a maximal rgI-continuous function.

Proof.Let V be a nonempty proper closed set in Z. Since g is continuous $g^{-1}(V)$ is a proper nonempty closed set in Y. Since f is maximal rgI-continuous $f^{-1}(g^{-1}(V))$ is a maximal rgI-closed set in X.

8. REFERENCES

- [1] Antony Rex Rodrigo J,Ravi O and Nalininirmalatha A, \hat{g} -closed sets in ideal topological spaces. Methods of functional Analysis and Topology, Vol.17(2011) no3,274-280. Reasoning about naming systems.
- [2] Jankovic D and Hamlet T.R,New topologies from old via ideals, Amer. Math. Monthly,97(1990),295-310.
- [3] Khan M and Noiri T, Semi-local function in ideal topological spaces, J.Adv.Res.Pure Math., 2010, 2(1), 36-42.

- [4] Khan M and Noiri T, On gI-closed sets in ideal topological spaces, Journal of Advanced Studies in Topology, Vol.11(2010),29-33.
- [5] Kuratowski K, Topology, Vol I, Academic Press, New York, 1966.
- [6] Levine N, Semi-open sets and semi-continuity in topological spaces, Amer.Math.Monthly,(1963)(70),36-41.
- [7] Navaneethakrishnan M and Pauraj Joseph J, g-closed sets in ideal topological spaces, Acta Math Hungar, 119(4),(2008),365-371.
- [8] Navaneethakrishnan M and Sivaraj D, Regular generalized closed sets in ideal topological spaces, Journal of Advanced Research in Pure Mathematics, Vol.2 issue 3(2010),24-33.
- [9] Njastad O,On some classes of nearly open sets, Pacific J.Math., 15(1965),961-970.