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ABSTRACT

The paper introduces a new generalized closed set via semi
local function. Its relationship with other existing generalized
closed sets are established. It’s basic properties are discussed.
A new decomposition of continuity is derived.
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1. INTRODUCTION

Ideals play an important role in topology. Jankovic and
Hamlet[2 ] introduced the notion of I-open sets in topological
spaces. Kuratowski[5] has introduced local function of a set

with respect to a topology t and an ideal. Khan et al[3] have
introduced semi-local function and derived its properties.
Khan et al[4] have introduced gl-closed sets in ideal topology.

Antony Rex et.al.[1] have introduced ¢ -closed sets in ideal

topological spaces. Navaneethakrishnan et.al.[8,7] have
introduced regular generalized closed sets and g-closed sets in
ideal topological spaces. In this paper generalized regular
closed sets is introduced in ideal topological spaces using
semi-local function. Its relationship with other existing sets
are established. Its basic properties are studied. A new
decomposition of continuity is derived in terms of rgl-closed
sets. As an application maximal rgl-closed sets are defined
and their properties are discussed.

2. PRILMINARIES

We list some definitions which are useful in the following
sections. The interior and the closure of a subset A of (X, 1)
are denoted by Int(A) and CI(A), respectively. Throughout
the present paper (X, T ) and (Y, o)(or X and Y ) represent
non-empty topological spaces on which no separation axiom

is defined, unless otherwise mentioned.

Definition 2.1 A subset A of a space X is called

(i) a semi-open set [3] if A< Cl(Int(A))

(ii) an a-open set [9] if A< Int(CI(Int(A)))

The complement of a semi-open ( - open ) set is called a
semi-closed (o-closed) set.

Definition 2.2 (3) An ideal I on a topological space (X, t) is a
non empty collection of subsets of X which satisfies the
following conditions. i)A € land B < AimpliesB € I.

ii)Ae landB € limpliessA U B € I
An ideal topological space (X, t ) with an ideal | on X is
denoted by (X, 1, I).

If Y is asubset of X then 1y ={1, NY: I, € I}isan ideal
on Y and (Y, ©/Y, |y ) denote the ideal topological
subspace.

Definition 2.3 (3) Let (X, t, I) be an ideal topological space
andAc X. A(I,7) ={x e X:ANUg IforeveryU et

(X, x)} is called the local function of A with respect to | and t
For every ideal topological space (X, t, I) there exists a

topology " finer than t defined as 7~ = {U cX:CI"X-U)
= X-U}generated by the base (1, J) ={U-J:UetandJe I}

andCI'(A) =AU A”.
Definition 2.4 (3) Let (X, 1, I) be an ideal topological space
and A < X. Ac(l,7) ={x € X:ANU ¢l forevery U e

SO(X, x)} is called the semi-local local function of A with
respect to | and 7 where SO(X, X) = {U € SO(X) : x € U}
where SO(X) denotes the collection of all semi-open sets in
X.

Theorem 2.5 (3) (i) A(l,7) < A”(1,7) for every subset
Aof X.

i) A“(1,7) = A(1,7) ifSO(X,t) =1

(iii) IFAe Ithen A(l,7) =¢

(iv) (AUB). = A. UB.

M IfU e tthenU N A (U A)

i) (A, c A..

(vii) If A < Bthen A« < B..

(viii) (AN B). € Ac N B...

Theorem 2.6 (4) Let (X,t, ) be an ideal spaceand A < Y
< Xwhere Y is a-open in X then

Definition 2.7 A subset A of an ideal space (X, t, ) is
said to be

(i) *-closed if A" = A[3]
(ii) *-dense itself if A < A"[3].
(iii) semi-*-closed if A« < A[4].

Definition 2.8 A subset A of an ideal topological space
(X, 1, 1) is said to be

(i) 14 - closed [7 ]if A" = A whenever A — Uand U is
open in X.

(i) 1 § -closed[1] if A < A whenever A < U and U is semi-
open in X.

(iii) Irg -closed[8] if if A < A whenever A c Uand U is

regular open in X.
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(iv) gl-closed [4] if A« < A whenever AC Uand U is

open in X.
(v) rg-closed[8] if CI(A) < U whenever A < U and U is
open in X.

3. NEW CLOSURE OPERATOR

We define a new closure operator in terms of semi local
function.
Definition 3.1 For a subset A of an ideal topological space

(X, 7, I),we define Cl. (A)=AU A..

Theorem 3.2 Cl « satisfies Kuratowski’s closure axioms.
Proof.

(i) Cl(p) =9, Ac Cl.(A) VAC X

(i) Cl.(A UB)=A UB U (AUB). =A UBU(A.
u B.) = Cl(A) U Cl.(B).

(i) Forany A < X, CL (Cl.(A)=ClL. (AU A.)=(A
U A)U ((AUA) =AU Ac U (A)x =

AU A, =Cl. (A)(since (A)» < A).

Definition 3.3 The topology generated by Cl.. is denoted by
7. (1) and is defined as 7. (1) ={U < X: CLL,(X-U)=X-
U}. Without ambiguity it will be denoted as 7+ .

(D)o < X, Cle (X —¢)= Cl. (X) =X and Cl. (X - X) =
Cl. (9) = 9. Hence ¢, Xe¢ 7x .

(iijLet {U;};_, €7~ then Cl. (X - Ui)=X - Ui Vi.
ie(X—Ui) U (X-U;)=X-Ui Vi

Therefore (X —U;)» < X-Ui Vi.

Claim Cl. (X ~|_JU;)=Cl ([")(X ~U;) )=x- Ju; =

ﬂ (X- Ui). By definition CI*(ﬂ (X- Ui))=

ﬂ (X-Ui)u[ﬂ(X—Ui)J :>CI*(ﬂ (X- Ui))

) ﬂ (X- Ui). Also by hypothesis ﬂ X-Ui) v
I I

[ﬂ(x —Ui)] c ﬂ (X- Ui). Hence

CI*(ﬂ (X- Ui)) = ﬂ (X- Ui).

Thus Cl (x = Ju;)=x- Ju;

(iiii) Let U,U, € T then Cl. (X- U; )=X-U; for i=1,2. Cl.

2
(UL AU)= Cl (J(X U =Cll (x-up) U
i=1

Cls (X-Up)(=X-Uy) U (X-U,). Hence U; ~ U,¢ 7« Hence
7. is atopology. Cl.. and Int. will represent the closure and
interior of A'in (X, 7).

Proposition 3.4 Every 1. is finer than 7.
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Proof.Since every open set is semi-open. Thereforet< 1" <
T,

Example 3.5 Let X = {a, b, ¢, d}, t = {0, {a}, {b}, {a, b}, X},
= {o. {b}}.

© ={¢,{a}, {b}, {a, b}, {a, c, d} X}.

© = {0, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b,, c},
{b,d}{c,d},{a,b,c}{a,b,d},{ac,d}.{b,c,d}}

4. RGI-CLOSED SETS

A new generalized closed set called rgl-closed set is
introduced and its relationship with other existing sets are
established.

Definition 4.1 A subset A of an ideal topological space

(X, 1,1) ) is said to be rgl-closed if A« A whenever Ac U
and U is regular open in X.

Proposition 4.2 Every |4 -closed set is rgl-closed.

Proof.Let A be a |4 -closed set and U be a regular open set
containing A. Then A« A" < U. Hence A is rgl-closed.
Remark 4.3 The converse is not true.

Example 4.4 Let X ={a, b, ¢, d}, 1 = {9,X, {a}, {b, c}, {a, b,
c}} 1 ={o, {b}}.the rgl-closed sets are ¢,X, {a}, {b}, {d},
{a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d},
{a, ¢, d}, {b, ¢, d} and the I,4- closed sets are ¢,X, {b}, {d},
{a, b}, {a, c}, {a, d}, {b, d}, {c, d}, {a, b, c}, {a, b, d},

{a, ¢, d}, {b, c, d}.The set {a} is rgl-closed but not 1,4 -closed.
Proposition 4.5 Every closed set is rgl-closed.

Proof.Let A be a closed set and U be a regular open set
containing A. Then A< CI(A) < U. Hence A is rgl-closed.
Remark 4.6 The converse is not true.

Example 4.7 Let X = {a, b, ¢, d}, 1 = {0,X, {a}, {b, c},

{a, b, c}}, I = {o, {b}}. The set {a} is rgl-closed but not
closed.

Proposition 4.8 Every Ig closed set is rgl-closed.

Proof.Let Abea | § -closed set and U be a regular open set

containing A. Since every regular open set is semi open we
have Then A« < A" < U. Hence A is rgl-closed.
Proposition 4.9 Every *-closed set is rgl-closed.

Proof.Let A be a *-closed set and U be a regular open set
containing A. Then A« c A" A < U. Hence Aisrgl-
closed.

Proposition 4.10 Every semi- *-closed set is rgl-closed.
Proof.Let A be a semi- *-closed set and U be a regular open
set containing A. Then A« A< U. Hence A is rgl-closed.
Proposition 4.11 Every gl-closed set is rgl-closed.
Proof.Let A be a gl-closed set and U be a regular open set
containing A. Since every regular open set is open then we
have A- < U. Hence A is rgl-closed.

Remark 4.12 The converse of the propositions
4.8,4.9,4.10,4.11 are not true. In Example 4.4 the *- closed
sets are ¢,X, {b}, {d}, {a, d}, {b, d}, {a, b, d}, {b, ¢, d}, the
semi-*-closed sets are ¢, X, {a}, {b}, {d}, {a, b}, {a, d}, {b,
c}, {b, d}, {a, b, d}, {b, c, d}, gl-closed sets are ¢,X, {a}, {b},
{d}, {a, b}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, d}, {a, c, d},
{b, c,d}, IQ sets are 9, X, {b}, {d}.{a, d}{b, d}, {c, d}, {a,

b, d}, {a, c, d}, {b, c, d}. The set {a} is rgl-closed but not IQ

-closed. The set {a} is rgl-closed but not *-closed. The set

{a, c} is rgl-closed but not semi-*-closed. The set {a, b, c} is
rgl-closed but not gl-closed.

Proposition 4.13 Every rgl-closed and regular open set is
semi-*-closed.

Proof.Let A be a rgl-closed and regular open set then A= A.

Hence A is semi-*-closed.
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Proposition 4.14 Let (X, t, I) be an ideal space. Then either
{x} is regular closed or {x}°is rgl-closed. for every x € X.
Proof.Suppose {x} is not regular closed then {x}° is not
regular open and the only regular open set containing {x}° is
Xand ({x}°)~ < X. Hence {x}° is rgl-closed.

Theorem 4.15 Every subset of an ideal topological space

(X, 1, 1) is rgl-closed if and only if every regular open set is
semi-*-closed.

Proof.Necessity. Every subset A of X is rgl-closed. If A is
regular open then A~ < A which implies that A is semi-*-
closed.

Sufficiency. If A< Xand U is a regular open set containing
A such that A- < U.< U. Hence A is rgl-closed.

Theorem 4.16 Union of two rgl-closed sets is rgl-closed set.
Proof.Let A and B are two rgl-closed sets and U be a regular
open set containing AU B. Then (AU B)x=A« U Bx C
U. Hence A U B is rgl-closed.

Remark 4.17 Intersection of two rgl-closed sets is need not
be a rgl-closed set. In Example 4.4 the sets {a, c} and {b, c}
are rgl-closed sets but their intersection {c} is not rgl-closed.
Theorem 4.18 If A'is a rgl-closed set in an ideal topological
space then Cl«(A)—A contains no non empty regular closed
set.

Proof.Suppose A is rgl-closed and F be a regular closed

subset of Cl.. (A) — A. Then F< X — A. Since A is rgl-
closed A« X—F. Fc X—Cl.« (A). Therefore F

Cl. (A) N X =Cl. (A) = ¢. Hence Cl. (A) — A contains no
non empty regular closed set.

Remark 4.19 The converse of the theorem 4.18 is not true. In
Example 4.4 Cl. ({c})-{c}= {b, d} does not contain any non
empty regular closed set. But {c} is not rgl-closed.

Theorem 4.20 Let A be a rgl-closed set of an ideal
topological space (X, t, I). The following are equivalent.

(i) A'is a semi-*-closed set.

(ii) Cl. (A) — Alis aregular closed set.
(iii) A« — Alis aregular closed set.
Proof.(i) = (ii) If A is semi-*-closed then Cl.. (A) = A.

Therefore Cl. (A) — A = ¢ which is regular closed.

(ii) = (i) Let Cl.. (A)— A be regular closed. By the
Theorem 4.18 Cl.. (A) — A contains no non empty regular
closed set. Therefore Cl. (A) —A=¢.i.e (A U A.)N A =¢
= A.NA°=p = A. C A. Hence A is semi-*-closed.

(ii) < (iii). Let Cl. (A) — A be regular closed.

CL(A -A=AUA.-A=A.-A

Theorem 4.21 Let A be a rgl-closed set in an ideal

topological space (X, 1, I) suchthat A = B< A« Then B is

also a rgl-closed set.
Proof.Let U be a regular open set containing B.
Then A € B U= B« < A- < U. Hence B is rgl-closed.

Theorem 4.22 Let A be a rgl-closed set in an ideal
topological space (X, 7, I). Then A U X — A«isalso rgl-
closed.

Proof.Let U be a regular open set containing AU X — A..
X—-U c (X—A) N A. Since X-U is regular closed and A is
rgl-closed by theorem 4.18 X — U = ¢ and so X = U. Thus

X is the only regular open set containing A L X — A«. Hence
A U X - A«isalso rgl-closed.
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Theorem 4.23 Let (X, 7, I) be an ideal spaceand A < Y <
X where Y is regular open. A is rgl-closed in (Y, 1/Y, Iy) if
and only if A is rgl-closed in X.

Proof.Let A be rgl-closed in X. Let U be a regular open
subset of (Y, ©/Y ) such that A < U. Since Y is regular open
in X then U is regular open in X. A«(I, t) < U. By theorem
2.6 (A«(ly , /Y ) =A«I,t)NY < UNY =U. Hence Aisrgl-
closed in (Y, /Y, Iy ). Conversely let A be rgl-closed in

(Y, v/Y,1Iy). Then A(ly , /Y )=A(Lt)NYSc UNY=U
Therefore A«(I, t) < U. Hence Ais rgl-closed in X.
Remark 4.24 If 1 = {¢} and SO(X, t) = t then A" = A =
CI(A) and rgl-closed sets coincides with rg-closed sets.
Theorem 4.25 In an ideal topological space (X, t, I) where
SO(X,t)=1,Alisa *-dense itself and rgl-closed then A is
rg-closed.

Proof.If A is *-dense in itself and rgl-closed, U is any regular
open set containing A, then Cl. (A) < U. By the Lemma 2.9
CI(A) < U. Hence A is rg-closed.

Remark 4.26 The following table shows the relationship of
rgl-closed sets with other existing sets. The symbol ”1” in a
cell means that a set implies the other and the symbol ”0”
means that a set does not imply the other set.

sets close | *- Semi- | |. | | g |1 rg

d close | *- 9 9 9

d close
d

close |1 1 1 1 1 111 1
d
*- 0 1 1 1 1 111 1
close
d
Semi- | 0 0 1 0 0 110 1
*_
close
d
|g 0 0 0 1 1 111 1
| 0 0 0 0 1 0|0 1
rg
gl 0 0 0 0 0 110 1
|g 0 0 0 0 1 1)1 1
rgl 0 0 0 0 0 0|0 1

5 RGI-OPEN SETS

Definition 5.1 The complement of a rgl-closed set is said to
be rgl-open.
Theorem 5.2 Let A be a subset of an ideal topological space
(X, 1, I). Then AU X —A- is rgl-closed if and only if Ax— A

is rgl-open.
Proof.It follows from the fact that A U X — A« =X — (A~
—A).

Theorem 5.3 A subset A of an ideal topological space (X, 1,
1) is rgl-open if and only if F < Int « (A) whenever F is
regular closed and F < A.

Proof.Necessity. Suppose that A is rgl-open and F is a regular
closed set contained in AX-A € X-F = Cl(X-A) <

X —F.ThenF< X —Cl(X—A) = Int«(A).

Sufficiency. Suppose X —A < U where U is regular open.

X -Uc Aand X —U isregular closed. X —U < Int«(A). i.e
Cl(X -A) < U. X-Alisrgl-closed and hence A is rgl-open.
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Theorem 5.4 If A is a rgl-open subset of an ideal space (X, t,
1) and Int-(A) < B < Athen B is also a rgl-open subset of

X.

Proof.Let F be a regular closed set contained in B. Then F <
B < A. Since Aisrgl-open and F < Int«(A) Since Int«(A)

c Int«(B) )= F < Int«(B). By the theorem 5.3 B is rgl-
open.

Theorem 5.5 In an ideal space (X, 1, I) if Ais a rgl-open set
then G = X whenever G is regular open and

Int(A) U (X-A) c G.

Proof.Let A be a rgl-open set. If G is a regular open set such
that Int-(A) U X —A) < G. Then X—-G < (X-Int«(A))NA =
(X—=Int«(A))—(X—A) = Cl«(X-A)—(X-A).Since X-Ais rgl-
closed by theorem 4.18 X -G =¢ and so X = G.

Remark 5.6 The converse of the theorem 5.5 is not true.
Example 5.7 Let X = {a, b, ¢, d}, T = {0.X, {a}, {b, c}, {a, b,
c}} 1= {o, {a}, {c}, {a, c}} The set A = {a, c, d} satisfies the
conditions of the theorem but A is not rgl-open where
= {¢.X, {a}, {b}, {a, b}, {a, d}, {b, c}, {b, d} {a, b, c},
{a, b, d}, {b, c, d}}

Theorem 5.8 If A'is a rgl-closed set in an ideal space (X, 1, I)
then CL.(A)-A is rgl-open.

Proof.Since A is rgl-closed by the theorem 4.18 ¢ is the only
regular closed set contained in Cl<(A) — A and by the theorem
5.3 Cl«(A) — A is rgl-open.

Remark 5.9 The converse of the theorem 5.8 is not true. In
Example 4.4 for set A = {c},

Cl«(A) — A = {b, d} is rgl-open but A is not rgl-closed.

6 RGI-CONINUITY AND RGI-

IRRESOLUTENESS

Definition 6.1 A function f: (X, 7, I) — (Y, o) is said to be
rgl-continuous if £ (V) is rgl-closed in X for every closed
setVin.

Example 6.2 Let X ={a, b, c} =Y, 1= {o.X, {a}}, | = {o,
{a}}, o ={o, Y, {a}, {b, c}}. The function f is defined as f(a)
=b, f(b) = c, f(c) = a is rgl-continuous. Here the rgl-closed
sets are the power set of X.

Definition 6.3 A function f: (X, 1, I) — (Y, o, J) is said to be
rgl-irresolute if f * (V) is rgl-closed in X for every rgl-closed
setVin.

Example 6.4 Let X ={a, b, c} =Y, 1= {0.X, {a, b}}, | ={o,
{b}}, 0={e, Y, {a c}, {b, c}, {c}}.J={o, {b}}. The identity

function f is rgl-irresolute.

Theorem 6.5 Every rgl-irresolute function is rgl-continuous.
6

Proof.Let V be a closed in Y which is rgl-closed then ™ (V)
is rgl-closed in X. Hence f is rgl-continuous.

Remark 6.6 The converse of the theorem 6.5 is not true.
Example 6.7 Let X ={a, b, c} =Y, = {0.X, {a}, {b},

{a, b}}, I={9,{c}}, 0 = {9, {a b}}.J = {o, {b}}. The
identity function is rgl-continuous but not rgl-irresolute. Since
the rgl- closed sets in Y are the power set of Y and the rgl-
closed sets of X are ¢,X,{c}, {a, b}, {a, c}, {b, c}}

Theorem 6.8 Letf: (X, 1, I1) = (Y, 0,12),9: (Y, 0,1) — (Z,
n, I3) be any two functions then the following hold.

(i) gof is rgl-continuous if f is rgl-continuous and g is
continuous.

(ii)gof is rgl-continuous if f is rgl-irresolute and g is rgl-
continuous.

(iii)gof is rgl-irresolute if f is rgl-irresolute and g is rgl-
irresolute.

Proof.(i) Let V be a closed set in Z. Since g is continuous

g (V) isclosed in Y. Since f is rgl-continuous f * (g (V)
is rgl-closed in X. Hence gof is rgl-continuous.
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(ii) Let V be a closed set in Z. Since g is rgl-continuous

g (V) isrgl-closed in Y. Since fis rgl-irresolute

f (g }(V)) is rgl-closed in X. Hence gof is rgl-continuous.
(iii) Let V be a rgl-closed set in Z. Since g is rgl-irresolute
g (V) )is rgl-closed in Y. Since f is rgl-irresolute
f1(g(V)))isrgl-closed in X. Hence gof is rgl-irresolute.
Remark 6.9 Composition of two rgl-continuous functions
need not be rgl-continuous.

Example 6.10 Let X =Y =Z = {a, b, c}, T = {0.X, {a}, {b},
{a, b}}, I1 = {(pa {C}}v

o={p, Y, {a b}} I ={o, {b}},n={0,Z {a c} {b, c},
{c}}. fis defined as f(c) =a, f(a) = b, f(b) = c and g is the
identity map . The functions f and g are rgl-continuous but
their composition is not rgl-continuous. Since the rgl-closed
sets of are ¢,X, {c}, {a, b}, {a, c}, {b, c} and the rgl-closed
sets of Y is the power set of Y. For the closed set {b} in Z
(g0f) " ({b}) =f " ({b}) = {a} is not rgl-closed in X.

7 APPLICATIONS

Definition 7.1 A proper non empty rgl-closed subset U of an
ideal space (X, t, I) is said to be maximal rgl-closed if any
rgl-closed set containing U is either X or U.

Example 7.2 In Example 4.4 the sets {a, b, c}.{a, ¢, d},{a, b,
d} and {b, c, d} are maximal rgl-closed sets.

Remark 7.3 Every maximal rgl-closed sets is rgl-closed set.
But a rgl-closed set need not be a maximal rgl-closed set. In
Example 4.4 {a} is rgl-closed but not maximal rgl-closed.
Theorem 7.4 The following statements hold true for any ideal
space (X, 1, I).

(i) Let F be a maximal rgl-closed set and G be a rgl-closed
set. ThenFUG=XorGc F.

(i) If F and G are maximal rgl-closed sets then F W G = X or
F=G.

Proof.(i) Let F be a maximal rgl-closed set and G be a rgl-
closed set. If F \U G = X then there is nothing to prove.
Assumethat FU G# X.F < F U G. FuU Gisrgl-closed.
Since F is a maximal rgl-closed set F\ G=XorFuU G =F.
Hence FUG=XorG c F.

(ii) Let F and G are maximal rgl-closed sets. If F U G = X,

then there is nothing to prove. Assume that F\U G X. Then

by (i) Fc G,G < F which implies that F = G.

Definition 7.5 A function f: (X, 1, I) — (Y, o) is said to be
maximal rgl-continuous if f ™ (V) is maximal rgl-closed in X
for every closed set V in Y.

Theorem 7.6 Every surjective maximal rgl-continuous
function is rgl-continuous.

Proof.Let f: (X, 1, I) — (Y, o) be a surjective maximal rgl-
continuous map. The inverse image of ¢ and Y are rgl-closed
setsin X. Let V be aclosed setin Y then 1 (V) isa
maximal rgl-closed set in X which is a rgl-closed set in X.
Hence f is rgl-continuous.

Remark 7.7 The converse of the theorem 7.6 is not true.
Example 7.8 Let X ={a, b, c} =Y, 1 = {o,X, {a}, {b},
{a,b}}, I ={9.{c}}. 0 ={o, Y, {a b}}.

The identity function from X to Y is rgl-continuous but not
maximal rgl-continuous.

Remark 7.9 Composition of two maximal rgl-continuous
functions need not be maximal rgl-continuous.

Example 7.10 Let X ={a, b,c,d}, Y=Z={a,b,c}, t =
{9.X,{a}, {b, ¢}, {a, b, c}},

1 ={o, {b}}, o ={o, Y, {a}}, I ={o, {c}}. The function fis
defined as f(a) = b =f(c), f(b) = a, f(d) = c. Here f is maximal
rgl-continuous where f: (X, 1, I) — (Y, o).

The function g : (Y, o, J) — (Z, n) with n = {o,Z, {b}} is the
identity function. g is also maximal rgl-continuous. But their
composition gOf is not rgl-continuous. Since for the
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closed set {a, ¢} in Z (gof) * ({a, c}) =f * ({a, c}) = {b, d} is
not maximal rgl-closed in X. Hence gof is not rgl-continuous.
Theorem 7.11 Let f: (X, 7, I) — (Y, o) be a maximal rgl-
continuous function and f :(Y, o, I) — (Z, n) be surjective
continuous function then gof : (X, 1, I) — (Z, n) is a maximal
rgl-continuous function.

Proof.Let V be a nonempty proper closed set in Z. Since g is
continuous g™ (V) is a proper nonempty closed set in Y. Since
f is maximal rgl-continuous f (g (V) is a maximal rgl-
closed set in X.
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