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ABSTRACT 

An Optimal fuzzy logic guidance (OFLG) law for a surface to 

air homing missile is introduced. The introduced approach is 

based on the well-known proportional navigation guidance 

(PNG) law. Particle Swarm Optimization (PSO) is used to 

optimize the of the membership functions’ (MFs) parameters 

of the proposed design. The distribution of the MFs is 

obtained by minimizing a nonlinear constrained multi-

objective optimization problem where; control effort and miss 

distance are treated as competing objectives. The performance 

of the introduced guidance law is compared with classical 

fuzzy logic guidance (FLG) law as well as PNG one. The 

simulation results show that OFLG performs better than other 

guidance laws. Moreover, the introduced design is shown to 

perform well with the existence of noisy measurements. 

Keywords: 

Fuzzy Logic, Particle Swarm Optimization, Proportional 

Navigation Guidance. 

1. INTRODUCTION 

Guidance is considered the key to the successful performance 

of any missile. The conventional PNG law, which considered 

the backbone of guidance laws, becomes more difficult to 

accomplish the interception task because of the improvement 

of aircraft maneuverability. Moreover, this operation is 

hampered by the presence of large number of uncertainties 

ranging from atmospheric turbulence to variations in radar 

parameters. The presence of several other factors like sensor 

noise, inaccurate representation of missile flight control, 

system dynamics, components driven to saturation etc, forms 

the problem [1]. It is difficult to formulate what the true 

missile model is and what the behavior of the missile change. 

It is therefore obvious to design the robust controller which 

solves the problem. 

In recent years fuzzy logic controllers (FLCs) have been used 

in missile guidance wherever the system under consideration 

is not well-defined, uncertain or model free. There are, 

however, a limited number of published works available that 

discuss the subject of fuzzy guidance for aerial vehicles in a 

systematic manner [2, 3, 4, 5].  

FLCs are developed to utilize human expert knowledge in 

controlling various systems, in particular those ill-defined and 

nonlinear systems [6]. It is well known that while fuzzy rules 

are relatively easy to derive from human experts, the fuzzy 

MFs are difficult to obtain. Tuning of MFs is a time 

consuming and often frustrating exercise. To overcome these 

difficulties various techniques have been reported to automate 

the tuning process of MFs. An adaptive network based fuzzy 

inference system (ANFIS) was introduced [7], where an 

adaptive neural network was used to learn the mapping 

between the inputs and outputs and a Sugeno-type of fuzzy 

system could be generated based on the neural network. A 

quantum neural network was also used to learn the data space 

of a Tagaki-Sugeno FLC [8]. Genetic algorithm has been used 

in the automatic design of FLCs [9, 10] in the areas of mobile 

robotics. 

In the current work, we introduce a fuzzy guidance law with 

rules obtained based upon the conception of the PNG law. 

Then, the MFs’ parameters of the introduced design will be 

optimized using PSO technique. In fact, PSO is a population 

based stochastic optimization technique developed 

by Eberhart and Kennedy [11, 12]. Based on their description, 

particle swarm optimization imitates human (or insects) social 

behavior. Individuals interact with one another while learning 

from their own experience, and gradually the population 

members move into better regions of the problem space. The 

swarm of PSO can be envisioned as multiple birds (particles) 

that search for the best food source (optimum) by using their 

inertia, their knowledge, and the knowledge of the swarm. 

Single particles behave similarly because traditionally they 

share the same configuration. While searching for food, the 

birds are either scattered or go together before they locate the 

place where they can find the food. While the birds are 

searching for food from one place to another, there is always a 

bird that can smell the food very well, that is, the bird is 

perceptible of the place where the food can be found, having 

the better food resource information, Figure 1. 

 

 

 

Fig. 1: The flock swarms using PSO. 

Because they are transmitting the information, especially the 

good information at any time while searching the food from 

one place to another, conducted by the good information, the 

birds will eventually flock to the place where food can be 

found. 

http://www.engr.iupui.edu/~eberhart
http://www.particleswarm.net/JK/
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Due to its simplicity in implementation, PSO has gained 

popularities in engineering applications, such as in image 

processing [13] and in system modeling [14]. A number of 

publications have also been reported in using PSO to 

automatically tune the FLC parameters [15, 16, 17, 18]. These 

publications are focused on tuning the parameters involved in 

the TS-type fuzzy controllers. In general, the PSO is used to 

perform the learning tasks that are usually associated with the 

NN in the TS FLCs. A PSO based fuzzy MFs optimizing 

method is also introduced to a fixed point control problem, i.e. 

parking a car into a predefined garage location [19, 20]. 

Although there are research results in the area of automatic 

fuzzy MFs optimizing, most of them are in the area of TS type 

of fuzzy controllers. To the best of our knowledge, there is no 

report on using PSO for the Mamdani-type of fuzzy controller 

MFs tuning.  

In this paper, we use PSO to automatically tune MFs of the 

proposed guidance law. The OFLG then is compared with 

PNG law and FLG law which have been introduced by 

Rajasekhar and Sreenatha [21]. 

The paper is organized as follows: in Section 2 we proceed 

with a brief overview of the PNG law, whereas; OFLG is 

explained in Section 3. We provide some case-studies in 

Section 4 and the differences of all guidance laws are 

discussed. The noise affecting on the proposed design is 

discussed in chapter 5 while the conclusions are provided in 

section 6. 

2. PNG GUIDANCE LAW 

Theoretically; PNG as used in many missiles gives the 

commanded acceleration perpendicular to the instantaneous 

line-of-sight (LOS), the magnitude being proportional to the 

LOS angle rate (  ) and the closing velocity (  ) as: 

 

                                                                                         
(1) 

Figure 2 shows two-dimensions, point mass missile-target 

engagement geometry. 
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Fig. 2: Missile-target engagement geometry. 

Where,    L and HE are LOS angle, lead angle and head angle 

respectively. Whilst,                 and    are flight path 

angles, velocities, accelerations of the missile and the target 

respectively. In addition,      and      are horizontal and 

vertical relative distances and     is the relative target-

missile distance. The gravitational forces and drag effects 

have been neglected for simplicity. 

A missile that employs PNG is not fired at the exact direction 

of the target but is fired in a direction of expected interception 

point. The missile will hit target if both of missile and target 

continue to fly along a straight-line path at constant velocities. 

Anyway, PNG does not always perform well because the 

measurement of    and    are easily and frequently 

contaminated with noises. In addition   is usually set as 

constant value which leads to low performance of PNG 

against maneuvering targets. 

3. OFLG USING PSO 

Each FLC has the structure as shown in the following: 

 

 

 

Fig. 3: The structure of FLC. 

 

The important components of a FLC are the Fuzzifier, the 

Inference engine, the Fuzzy Knowledge base, and the 

Defuzzifier. According to Figure 3, the Fuzzifier converts the 

crisp input to a linguistic variable using the MFs stored in the 

fuzzy knowledge base. Using If-Then type fuzzy rules the 

Inference engine converts the fuzzy input to a fuzzy output. 

The Defuzzifier converts the fuzzy output of the inference 

engine to crisp one using MFs analogous to the ones used by 

the Fuzzifier. In our design the centre of area (CoA) method, 

which supplies defuzzified output with better continuity is 

used for defuzzification. In general, CoA method with the 

output    is calculated as: 

 

   
         

        
                                                                         

(2) 

 

Where;   is the output variable,   is the output fuzzy set 

and    is the MFs of the output fuzzy set. 

Minimum Mamdani (AND method), the most popular 

inference engine, is chosen to obtain the best possible 

conclusion. This type of inference engine allows easy and 

effective computation and it is appropriate for the real time 

control application [22]. 

The starting point of a fuzzy controller design is to choose the 

number and the shape of the MFs for input and output 

variables. 

 Our fuzzy controller is similar to PNG controller. It has two 

inputs (   and   ) and single output (  ). So that, three groups 

of MFs are chosen for the three corresponding variables       
and   . Each group has 7 triangular MFs as shown in Figure 

4. It has been found that using complex forms of MFs cannot 
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bring any advantage over the triangular ones where this kind 

of MFs gives faster response [23]. 

In fact, appropriate number and shapes of membership 

functions are usually result of different compromises among 

contradicting factors; such as accuracy, hardware and 

computation complexities. The ones, we are mostly concerned 

in this work, are relative accuracy, computation time, and 

complexity. 

 

 

 

Fig. 4: A typical set of MFs. 

Before defining the rules we normalize the input and output 

data of the controller, the normalization procedures are 

required to transform performance ratings with different data 

measurement units into a decision matrix with compatible 

unit.  So that, the variables   ,    and    are quantized and 

normalized within [-1, 1], according to the following 

Equation: 

 

      
 

    
                                                                            

(3) 

Where,    is the variable has to be normalized,      its 

maximum value. The maximum values of the controller’s 

variables can be obtained from the engineering experience 

about the missile besides helping of other classical guidance 

laws in PNG’s class. 

The maximum values those used in our design are shown in 

the following Table: 

Table 2. Maximum values used in normalization. 

                  

1300 [m/sec] 0.05 [rad/sec] 200 [m/sec2] 

 

Each normalized variable then is replaced by a set of 

linguistic values as shown in Table 3.  

Table 3: Term sets adopted. 

   ≡ LN MN SN ZE SP MP LP 

   ≡ LN MN SN ZE SP MP LP 

   ≡ LN MN SN ZE SP MP LP 

 

Where; the linguistic values {LN, MN… LP} are 

abbreviations of {Large Negative, Medium Negative … Large 

Positive} respectively as shown in Figure 3. Now, we can 

obtain the rules based upon PNG’s conception. 

3.1 Defining of the Rules 

In the classical PNG law, the acceleration command    is 

proportional to multiplication of the two variables of    and   . 

So that, it is trivial that the sign of    will be negative (N) if 

only one of (   or   )’s signs were negative and positive (P) in 

the other cases, therefore, the sign of    could simply define 

as following: 

 Table 4: Defining the sign of    

If    Is N And    is P Then    Is N 

If    Is N And    is N Then    Is P 

If    Is P And    is P Then    Is P 

If    Is P And    is N Then    Is N 

 

As it is explained erstwhile the data have to be normalized 

before feeding to the controller input, this means they have to 

be in the interval [-1, 1], and it is known that multiplication of 

any two variables in this interval would be smaller than the 

smallest one between them, also it is closer to the smaller 

value than the bigger one. In addition the output would be 

zero if any of the inputs were zero. Adopting this concept the 

linguistic value    could be defined as described in Table 5: 

 

Table 5: Defining the values of    

If    Is L And    Is L Then    Is L 

If    Is L And    Is M Then    Is M 

If    Is L And    Is S Then    Is S 

If    Is L And    Is ZE Then    Is ZE 

If    Is M And    Is L Then    Is M 

If    Is M And    Is M Then    Is M 

If    Is M And    Is S Then    Is S 

If    Is M And    Is ZE Then    Is ZE 

If    Is S And    Is L Then    Is S 

If    Is S And    Is M Then    Is S 

If    Is S And    Is S Then    Is S 

If    Is S And    Is ZE Then    Is ZE 

If    Is ZE And    Is L Then    Is ZE 

If    Is ZE And    Is M Then    Is ZE 

If    Is ZE And    Is S Then    Is ZE 

If    Is ZE And    Is ZE Then    Is ZE 

 

Taken the two previous conceptions into account, enables to 

find the entire rules of the proposed design as declared in the 

following: 
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  Table 6: The entire Rules of OFLG. 

        

 LP MP SP ZE SN MN LN 

   

LP LP MP SP ZE SN MN LN 

MP MP MP SP ZE SN MN MN 

SP SP SP SP ZE SN SN SN 

ZE ZE ZE ZE ZE ZE ZE ZE 

SN SN SN SN ZE SP SP SP 

MN MN MN SN ZE SP MP MP 

LN LN MN SN ZE SP MP LP 

 

The last remained step is to optimize the MFs helping of PSO. 

 

3.2 PSO 

The PSO is a population based stochastic optimization 

technique, consists of a swarm of particles flying through the 

search space. Every individual in the swarm contains 

parameters for position and velocity. The position of each 

particle represents a potential solution to the optimisation 

problem. The dynamic of the swarm is governed by a set of 

rules that modify the velocity of each particle according to the 

experience of the particle and that of its neighbors depending 

on the social network structure within the swarm. By adding a 

velocity to the current position, the position of each particle is 

modified. 

As the particles move around the space, different fitness 

values are given to the particles at different locations 

according to how the current positions of particles satisfy the 

objective. At the iteration each particle keeps track of its 

personal best position. Depending on the social network 

structure of the swarm, the global best position, and/or the 

local best position, is used to influence the swarm dynamic. 

After a number of iterations, the particles will eventually 

cluster around the area where fittest solutions are. 

The swarm behavior is influenced by the number of particles, 

the neighbourhood size, the inertia weight, the maximum 

velocity, and the acceleration calculation     that modifies 

the velocity. The larger the number of particles in the swarm, 

the more likely the swarm will converge on the global 

optimum, because the social information exchange is 

increased. The influence of the current velocity on the new 

velocity can be controlled by the inertia weight. The influence 

of the particle’s experience and that of its neighbor is 

governed by the acceleration calculation. The acceleration 

limits the trajectory of the particle oscillation. The new 

velocity is limited by the given maximum velocity to prevent 

particles from moving too fast in the space. 

In particular, the velocity associated with each particle in PSO 

is calculated as: 

 

                                  

                                               
                                

(4) 

Where;   is the momentum or inertia weight of the 

particle,        is the velocity of the particle   at time 

step      is the global best performing particle up to time 

step   in the entire population,   
  is the best experience 

particle   has had up to time step           is the current 

location of particle  , and   ,    are constants usually equal 

each to other,   ,    are random numbers within [0, 1] those 

represent random fiction [24]. To limit the searching 

space         is limited to be within a certain range 

of               . The new location of particle   

can be calculated as: 

 

                                                                     
(5) 

 

The evaluation of the particle performance is based on a 

problem specific objective function that decides the 

‘closeness’ of the particle to the optimal solution. With Figure 

5, the optimization process is started with random initial 

values then the object function is calculated. The first 

positions are automatically the best values. Based on 

Equations (4 and 5) the PSO updates both velocity and 

position vectors. Object function is calculated again, if the 

new value of the object function is smaller than the old one, 

the corresponding position vector is replaced by the old one, 

else it remained. The process is re-run until a termination 

criterion, such as a limit on the number of iterations or 

satisfactory results, is reached. 

 

End
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No

Yes

Evaluate the value of 

the object function

Initialize global and 

personal positions

Update velocities and positions 

according to Equations (4 and 5) 

Evaluate the new value 

of the object function

Compare the new value of the object 

function with the old one, then save the 

parameters which cause smaller value

Stopping criteria satisfied?

Get the optimal fuzzy set values

 

Fig. 5: Flowchart of PSO. 

 

3.3 Optimization of the MFs 

Each triangular MFs is determined by three parameters such 

as a, b and c, where a, c locate the "feet" of the triangle and b 
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locates the peak (see Figure 4). Anyway the triangular MF has 

the form: 

 

                

 
 
 

 
 

     
   

   
     
    

   

   
     

      
 
 

 
 

                                   

(6) 

The corresponding parameters have to satisfy the 

inequality a     . 

Since there are 14 MFs in the inputs and 7 MFs in the output, 

in addition, each MF has its three own parameters. In total we 

have 63 parameters for optimization, so that, a vector of 

dimension      particles is adopted in the optimization 

process. The population is set as       vectors, whilst the 

total searching iterations is set to be   1000. With the help 

of [24], the inertia weight   was set to be 0.9 decreased 

linearly to 0.4 and the weighting factors       were set to be 

0.5 for both, whilst       are randomized within [0, 1]. 

Therefore, it is possible to use PSO as a global optimization 

search method to find a set of such parameters that will 

produce the best control performance of the FLC. 

Throughout the optimization process we try to minimize the 

control effort and the miss distance of the FLC, the object 

function is defined as: 

 

                 
   

  

 
                                        

(7) 

 

Where;      is a vector denotes the MFs parameters,    is 

the time of flight,    and    are constants refer to the 

importance of the objectives; Miss Distance (  ) and Control 

Effort (    ). In our design we considered that both    

and      have similar significance, so that; the constants 

here are calculated as follows: 

 

   
  

        
       

   

max           
                                           

(8) 

 

For the optimization process, we assumed the following data: 

 

Table 7:  Data used for simulation. 

Target position                km. 

Missile position               km.  

Target velocity        m/sec. 

Missile velocity         m/sec. 

Missile Dynamic saturation    0 m/sec2.  

 

The target is supposed to have a changeable maneuvering as 

shown in Figure 6: 

 

Fig. 6: The target’s maneuver. 

The general arrangement of the guidance loop is illustrated in 

Figure 7. Where, a transfer function of flight control system 

(FCS) and the plant is considered as: 

 

  

  

 
               

                            
                                              

(9) 

 

 

 

Fig. 7: Homing Guidance Loop. 

 

One of the important factors in the simulation process is 

usually the integration time-step. This is normally chosen 

based on nature of the problem or experience. Here, we use a 

time step equal to 0.01 second, mainly because a typical 

missile-gyro gyrates around 100 cycles per second. 

The resulted values of the object function during the 

optimization process are declared as shown in Figure 8. As it 

can be seen, the searching can be terminated after about 600 

iterations when there is no reduction in total value of      

was observed.  

 

 

Fig. 8: The reduction of      during PSO searching 

process. 
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At the completion of the optimization, MFs of the 

inputs       and the output    are extracted and plotted in 

Figure 9. 

 

 

 

 

 

 

 

Fig. 9: Optimized MFs of   ,    and    for OFLG.  

4. RESULT AND ANALYSIS 

Engagement accuracy of PNG, FLG [21] and OFLG laws for 

many different scenarios of a maneuvering target is fully 

examined. The scenarios are: Incoming target with up-

ward/down-ward maneuvering, and Escaping target with up-

ward/down-ward maneuvering. The PNG’s navigation ratio is 

chosen as N=4. 

Figures (10, 11, 12, and 13) show the four scenarios 

respectively. In these Figures, the trajectories and the 

acceleration’s histories are plotted where the target is 

considered to maneuver in its maximum ability     or   g. 

Further scenarios are also examined when the values of    
                            . Since there is no ability to 

show all the scenarios, a Root Mean Square value (RMS) 

of    and      for the all scenarios are calculated and listed 

as shown in Table 8. 

Table 8: RMS of    and      for the all scenarios. 

RMS     m        m
  sec          

PNG 7.58 5.36 

FLG 7.21 5.14 

OFLG 6.43 4.62 

 

From Table 8 we can note that both FLG and OFLG laws 

outweigh the PNG one in terms of    and     . On the 

other hand; OFLG gives the best performance. OFLG shows 

noticeable improvements in both terms where it insures 15%, 

9% improvement in term of    and 14%, 10% increscent in 

term of      when compared with PNG and FLG 

respectively. 

 

 

 

 

Fig. 10: Trajectories and Accelerations for Incoming and 

Up-ward maneuvering Target. 
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Fig. 11: Trajectories and Accelerations for Incoming and 

Dow-ward maneuvering Target. 

 

 

 

 

 

Fig. 12: Trajectories and Accelerations for Escaping and 

Up-ward maneuvering Target. 

 

 

 

 

 

 

Fig. 13: Trajectories and Accelerations for Escaping and 

Down-ward maneuvering Target. 

 

5. NOISE AFFECTING ON OFLG: 

In fact, measuring data follows a random distribution due to 

thermal and radar noises; therefore, white noise is added to 

the measured signals to account for the disturbances. Such 

effects can be modeled as Gaussian density function      
declared as: 

 

      
 

     
  

 
      

                                                              

(11) 

Where;   is the mean value and   is the standard deviation. 

We added white Gaussian noise to the input signals (   

and   ). The results listed in Table 9 show that the proposed 

OFLG law performs well with the existence of noisy 

measurements when the noise is low, in other words, high 

signal to noise ratio (SNR). 
 

Table 9: Performance of OFLG with noise existence. 

Case RMS of    [m] RMS of       m
  sec        

SNR=100 8.92 6.07 

SNR=50 11.71 10.26 

SNR=25 1217.65 5.32 

 

It is obvious that when noise becomes very high the missile 

cannot intercept the target, actually this is because of the 

wrong information which sent to the guidance controller 

which in turn sends wrong commands to the actuator. 

6. CONCLUSION 

In the current study, we introduce an OFLG law based on the 

classical PNG conception. The MFs of the proposed design 

are optimized using PSO algorithm. Many cases are studied 

respect to different scenarios of target maneuvers. RMS 

values of miss-distance and control effort for all scenarios are 

calculated. The results show that OFLG performs better than 

FLG and PNG in all scenarios. Further investigation shows 

that the designed guidance law is a robust where it shows to 

perform well with the existence of noise measurements.  

 



International Journal of Computer Applications (0975 – 8887)  

Volume 69– No.3, May 2013 

47 

7. REFERENCES 

[1]  

 

P. Zachan, “Tactical and Strategic Missile Guidance.” 5th 

edition, AIAA, 2007. 

[2] Chun Ling Lin, “On the Design of a Fuzzy-PD Based 

Missile Guidance Law.” IEEE, The Fourth International 

Conference on Control and Automation, vol. 10, no. 12, 

pp. 7-11, 2003. 

[3] 

 

Chun Ling Lin, Tzu Chiang Kao, and Meng Tzong Wu, 

“Design of a Fuzzified Terminal Guidance Law.” 

International Journal of Fuzzy Systems, vol. 9, no. 2, pp. 

110-115, 2007 

[4] C. H. Chen, Y W Ling, D. C. Liaw, S. T. Chang, and S. 

D. Xu, “Design of Midcourse Guidance Laws via a 

Combination of Fuzzy and SMC Approaches.” 

International Journal of Control, Automation and 

Systems, vol. 8, no. 2, pp. 272-278, 2010. 

[5]  

 

Hanafy M. Omar, M. A. Abido, “Designing integrated 

guidance law for aerodynamic missiles by hybrid multi-

objective  evolutionary algorithm and tabu search.”     

Aerospace      Science     and Technology, vol. 14, no. 5, 

pp. 356-363, 2010. 

[6] Lin C.T. and Lee C.S.G. “Neural fuzzy systems.” Upper 

Saddle River, Prentice Hall, Inc.1996. 

[7]  

 

Jang, J.S.R., “ANFIS: Adaptive-Network-Based Fuzzy 

Inference System.” IEEE Transactions on Systems, Man, 

and Cybernetics, Vol. 23, No. 3, pp. 665- 685. 1993. 

[8]  

 

Lin C.J., Chen C.H., Lee C. Y. “TSK-type quantum 

neural fuzzy network for temperature control.” 

International Mathematical Forum, Vol. 1, No 18, pp. 

853 - 866. 2006. 

[9] Pratihar D.K., Deb K., Ghosh A. “A genetic-fuzzy 

approach for mobile robot navigation among moving 

obstacles.” International Journal of Approximate 

Reasoning, Vol 20, No. 2, pp. 145–172. 1999. 

[10] Mucientes M., Moreno D.L., Bugarin A., and Barro S., 

“Design of a fuzzy controller in mobile robotics using 

genetic algorithms.” Applied Soft Computing. 7, pp. 

540-546. 2007. 

[11] Kennedy, J. and Eberhart, R. “Swarm Intelligence,” San 

Francisco, CA: Morgan Kaufmann Publishers, Inc. 2001. 

[12] Clerc, M. and Kennedy, J. “The particle swarm - 

explosion, stability, and convergence in a 

multidimensional complex space.” IEEE Transactions on 

Evolutionary Computation, Vol 6, No. 1, pp. 58-73. 

2002. 

 

 

 

 

 

 

 

 

[13] Kwok, N.M., Ha, Q.P., Liu, D.K. and Fang, G. 

“Intensity-preserving contrast enhancement for gray-

level images using multi-objective particle swarm 

optimization.” IEEE Conf. on Automation Science and 

Engineering, Shanghai, P. R. China, pp. 19-24. 2006. 

[14] Kwok, N.M., Ha, Q.P., Nguyen, T.H., Li, J. and Samali, 

B. “A novel hysteretic model for magneto rheological 

fluid dampers and parameter identification using particle 

swarm optimization.” Sensors & Actuators: A. Physical, 

Vol 132, No 2, pp. 441-451. 2006. 

[15]  

 

Karakuzu C. “Fuzzy controller training using particle 

swarm optimisation for nonlinear system control.” ISA 

Transactions. Vol. 47, pp. 229 – 239. 2008. 

[16] Niu B., Zhu Y., He X., and Shen H., “A multi-swarm 

optimizer based fuzzy modeling approach for dynamic 

systems processing.” Neuro-computing. Vol 71. pp. 

1436-1448. 2008. 

[17]  

 

Mukherjee V., Ghoshal S.P. “Intelligent particle swarm 

optimized fuzzy PID controller for AVR system.” 

Electric Power Systems Research, Vol. 77, pp. 1689-

1698. 2007. 

[18]  

 

Lin C., Hong S. “The design of neuro-fuzzy networks 

using particle swarm optimisation and recursive singular 

value decomposition.” Neuro-computing, Vol 71, pp. 

271-310. 2007. 

[19] Esmin A., Aoki A., Lambert T. G. “Particle swarm 

optimisation for fuzzy membership functions 

optimisation” IEEE, International Conference on 

Systems, Man, and Cybernetics, Hammamet, Tunisia. 

2002. 

[20]  

 

Esmin A., Lambert T. G. “Fitting fuzzy membership 

functions using hybrid particle swarm optimization.” 

IEEE, International Conference on Fuzzy Systems, 

Vancouver, BC, Canada. pp. 2112 – 2119. 2006. 

[21] V. Rajasekhar and A. G. Sreenatha, “Fuzzy Logic 

Implementation of Proportional Navigation Guidance.” 

Acta Astronautica, vol. 46, no 1, pp17-24, 2000. 

[22]  

 

Werner Van Leekwijck and Etienne E. Kerre, 

“Defuzzification: criteria and classification.” Fuzzy Sets 

and Systems, vol. 108, pp. 159-178. 1999. 

[23] Chun Liang Lin, Hao Zhen Hung, Yung Yue Chen, and 

Bor Sen Chen, “Development of an Integrated Fuzzy-

logic based missile guidance law against high speed 

target.” IEEE, Transaction on Fuzzy System, vol.   , no. 

2, 2004. 

[24]  

 

Qinghai Bai, “Analysis of Particle Swarm Optimization 

Algorithm.” CCSE, computer and information science, 

vol. 3, no. 1, 2010. 

 
  
  
  
 

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DOmar,%2520Hanafy%2520M.%26authorID%3D7006098835%26md5%3D2c994abe9d1c61704b53b9ac28e641ff&_acct=C000014898&_version=1&_userid=984017&md5=f3e1b039a897036f2d4547be76c3af4a
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DAbido,%2520M.A.%26authorID%3D7004497741%26md5%3D6a491096f605addc5982188eb17027d3&_acct=C000014898&_version=1&_userid=984017&md5=acf73dfde4a8f02e7a95b0c436b53a00
http://www.sciencedirect.com/science/journal/12709638
http://www.sciencedirect.com/science/journal/12709638
http://www.sciencedirect.com/science?_ob=PublicationURL&_hubEid=1-s2.0-S1270963810X00050&_cid=271985&_pubType=JL&view=c&_auth=y&_acct=C000014898&_version=1&_urlVersion=0&_userid=984017&md5=1156ade48e5904421f65566e8e69b78b

