
International Journal of Computer Applications (0975 – 8887)

Volume 69– No.3, May 2013

28

Data Replication for the Distributed Database using

Decision Support Systems

Kuppusamy, PhD.

Department Of Computer Science and
Engineering

Alagappa University ,karaikudi
Tamilnadu India

P.Elango
Department of Computer Science

Gobi Arts And Science College
Gobichettipalayam, Erode

Tamilnadu, India

ABSTRACT

Replication is a topic of interest in the distributed computing,

distributed systems, and database communities. Decision

support systems became practical with the development of

minicomputer, timeshare operating systems and distributed

computing. Replicated data may get insufficient due to system

failure, fault tolerance, and reliability. A partial Replication is

quantized in the replication system will increase the non

replicated system. Fault tolerance is the property that enables

a system (often computer-based) to continue operating

properly. Transaction Processing Replication (TP-R) and

Decision-support replication schema (DDS-R) will clear the

non replica and it is used to clear the server problems and

system error. This process is well executed in distributed

systems and it doesn’t fail to detect the system errors when

multiple access are multiplexed.

1. INTRODUCTION

Replication is the process of sharing information so as to

ensure consistency between redundant resources, such as

software or hardware components, to improve reliability,

fault-tolerance, or accessibility. It could be data replication if

the same data is stored on multiple storage devices or

computation replication if the same computing task is

executed many times. It is the process of automatically

distributing copies of data and database objects among SQL

Server instances, and keeping the distributed information

synchronized. Replication is the process of sharing

information so as to ensure consistency between

redundant resources, such as software or hardware

components, to improve reliability, fault tolerance, or

accessibility. It could be data-replication if the same data is

stored on multiple storage devices or computation

replication if the same computing task is executed many

times [10]. The secure sharing of information in this type of

environment is a complex problem. The owners of the

different data sources will have different policies on access to

and the dissemination of the data that they hold [12].There are

two main types of replication protocols: active replication, in

which all replicas processes concurrently all input messages.

Passive replication, in which only one of the replicas

processes all input messages and periodically transmits its

current state to the other replicas in order to maintain

consistency [7]

From the past years, Distributed Databases have taken

attention in the database research community. Data

distribution and replication offer opportunities for

improving performance through parallel query execution

and load balancing as well as increasing the availability of

data [2]. In a distributed database system, data are often

replicated to improve reliability and availability, thus

increasing its dependability. In addition, data are also stored

on computers where it is most frequently needed in order to

reduce the cost of expensive remote access. [3]. Decision

making involves processing or applying information and

knowledge, and the appropriate information/knowledge mix

depends on the characteristics of the decision making context.

Most decisions fall somewhere in the middle, and for those

cases human decision making capability can be supported and

enhanced by the use of a decision support system [9]. The

process of decision making depends on many factors,

including “the context in which a decision is made, the

decision maker’s way of perceiving and understanding cues,

and what the decision maker values or judges as important”

[11].

The replication or migration of shared data blocks at arbitrary

locations on chip require the use of directory or broadcast-

based mechanisms for lookup and coherence enforcement, as

each block is likely to have different placement requirements

[18]. The usability of a storage system is dependent on its

scalability in many cases. Whenever a very large amount of

data items is to be stored, or the amount of requests to the

store exceeds the capabilities of stand-alone systems, a logical

architectural choice is the distribution of the stored data over

several physical computers. If comparably few data items are

served to a large number of requests, replication is to be used

[5]. Replicating the stock and client related data at these

different locations is desirable since it provides fast access to

the local replica, and helps to survive disaster cases where all

machines of a physical location crash [6]. The Personalized

Search team originally built a client side replication

mechanism on top of big table that ensured eventual

consistency of all replicas. The current system now uses a

replication subsystem that is built into the servers [20].

The Name node maintains the file system namespace and

records any changes made to it. It also keeps track of the

number of replicas of a file that should be maintained in the

HDFS typically called the replication factor [4]. Continuous

Timestamp based Replication Management (CTRM), which

deals with the efficient storage, retrieval and updating of

replicas in DHTs. In CTRM, the replicas are maintained by

groups of peers, called replica holder groups, which are

dynamically determined using a hash function [1]. The

resources required by a user to perform an activity should be

reachable; thus, they must be locally stored through a

replication mechanism. Replication of resources increases the

users’ autonomy but it also adds inconsistency [16]. Read-

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.3, May 2013

29

only universally-shared blocks (e.g., instructions) are prime

candidates for replication across multiple tiles; replicas allow

the blocks to be placed in the physical proximity of the

requesting cores, while the blocks’ read-only nature obviates

coherence [17]

Network bandwidth is a scarce resource in a wide-area

distributed storage system. To store objects durably, there

must be enough network capacity to create copies of objects

faster than they are lost due to disk failure [8]. Increasing the

replication level does not help tolerate a higher average

permanent failure rate, but it does help cope with bursts of

failures. Reintegrating returning replicas is key to avoiding

unnecessary copying. The process of breaking the system

down into components is called partitioning. The process of

allocating the components (partitions) around the network is

called allocation. The allocation process usually has the goal

of minimizing inter process communication cost, minimizing

execution cost, load balancing, increasing system reliability

and providing scalability [13]. Range partitioning may be able

to do a better job, but this requires carefully selecting ranges

which may be difficult to do by hand. The partitioning

problem gets even harder when transactions touch multiple

tables, which need to be divided along transaction boundaries

[15].

It is a computer-based information system that supports

business or organizational decision-making activities. DSSs

serve the management, operations, and planning levels of an

organization and help to make decisions, which may be

rapidly changing and not easily specified in advance Decision

support systems (DSS) are a coherent set of instruments

used in decision-making process. Taking into account

multiple criteria simultaneously, led to the classification of

issues studied in several classes of problems, solving a class

of problems is done by using increasingly more methods

and techniques, work procedures based on data and

information processing [14]. It is thus crucial to ensure that

database systems work correctly and continuously even in the

presence of a variety of unexpected events. The key to

ensuring high availability of database systems is to use

replication. While many methods for database replication,

most of these solutions only tolerate silent crashes of replicas,

which occur when the system suffers hardware failures, power

outages, etc [19]. DDS-R is used to control the sensitivity

flow of data, it can be well utilized, and the database of high

availability can be handled by using a constant trade-off

between consistency and efficiency.

2. RELATED WORKS

Numerous researches have been proposed by researchers that

the replication for the distributed database using decision

support systems. In this section, a brief review of some

important contributions from the existing literature is

presented.

Peter A. Boncz et al [26] have proposed the P2P paradigm

was a promising approach for distributed data management,

particularly in scenarios where scalability was a major issue

or where central authority/coordinators was not aviable

solution. P2P data management had several dimensions

affecting the design, the capabilities, as well as the limitations

of the system. In that report, they have sketched a set of

important dimensions. Furthermore, based on own

experiences they discussed representative application

examples which show the potential of P2P databases. It turned

out that there were a lot of different interpretations of the

term\P2P Databases,” depending on the research context.

Also, the distinguishing characteristics against distributed and

federated databases were not always strict. In the discussion,

they strived to clarify those notions.

Recently the cloud computing paradigm has been receiving

significant excitement and attention in the media and

blogosphere. To some, cloud computing seems to be little

more than a marketing umbrella, encompassing topics such as

distributed computing, grid computing, utility computing, and

software-as-a-service, that have already received significant

research focus and commercial implementation. Nonetheless,

there exist an increasing number of large companies that are

offering cloud computing infrastructure products and services

that do not entirely resemble the visions of these individual

component topics.

Daniel J. Abadi [22] discussed the limitations and

opportunities of deploying data management issues on those

emerging cloud computing platforms. They speculate that

large scale data analysis tasks, decision support systems, and

application specific data marts were more likely to take

advantage of cloud computing platforms than operational,

transactional database systems. It present a list of features that

a DBMS designed for large scale data analysis tasks running

on an Amazon-style offering should contain. They then

discussed some currently available open source and

commercial database options that can be used to perform such

analysis tasks, and conclude that none of those options, as

presently architected, match the requisite features. They thus

expressed the need for a new DBMS, designed specifically for

cloud computing environments.

Iraj Mahdavi et al [21] described a simulation-based decision

support system (DSS) to production control of a stochastic

flexible job shop (SFJS) manufacturing system. The controller

design approach was built around the theory of supervisory

control based on discrete-event simulation with an event–

condition–action (ECA) real-time rule-based system. The

proposed controller constitutes the framework of an adaptive

controller supporting the co-ordination and co-operation

relations by integrating a real-time simulator and a rule-based

DSS. For implementing SFJS controller, DSS receives online

results from simulator and identifies opportunities for

incremental improvement of performance criteria within real-

time simulation data exchange (SDX). A bilateral method for

multi-performance criteria optimization combines a gradient

based method and the DSS to control dynamic state variables

of SFJS concurrently. The model was validated by some

benchmark test problems.

Abbe Mowshowitz et al [24] have proposed that the Classical

work on query optimization had not taken account of the

topology of distributed database networks as a cost factor in

executing standard operations in relational algebra. Here the

report research findings designed to remedy that deficiency.

In particular, they examined the relative costs of query

optimization (a) in a network whose topology (e.g., a

hypercube) was known and (b) in a network whose topology

was unknown. The critical factor in the advantage of a well

defined topology was that the cost of determining pair wise

distances between the nodes involved in a joint operation was

substantially lower than it was in a network whose topology

was unknown. What was more the cost of building and

maintaining a hypercube was comparable to the management

costs in a random network based on preferential attachment.

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.3, May 2013

30

Narasimhaiah Gorla [25] stated that Minimization of query

execution time was an important performance objective in

distributed databases design. While total time was to be

minimized for On Line Transaction Processing (OLTP)

type queries, response time have to be minimized in

Decision Support type queries. Thus different allocations of

sub queries to sites and their execution plans were optimal

based on the query type. They formulate the subquery

allocation problem and provide analytical cost models for

those two objective functions. Since the problem was NP-

hard, they solve the problem using genetic algorithm

(GA).The results indicate query execution plans with total

minimization objective were inefficient for response time

objective and vice versa The GA procedure was tested with

simulation experiments using complex queries of up to 20

joins. Comparison of results with exhaustive enumeration

indicates that GA produced optimal solutions in all cases in

much less time.

Jon Olav Hauglid et al [27] stated that in distributed database

systems, tables were frequently fragmented and replicated

over a number of sites in order to reduce network

communication costs. How to fragment, when to replicate and

how to allocate the fragments to the sites were challenging

problems that had previously been solved either by static

fragmentation, replication and allocation, or based on a priori

query analysis. Many emerging applications of distributed

database systems generate very dynamic workloads with

frequent changes in access patterns from different sites. In

such contexts, continuous refragmentation and reallocation

can significantly improve performance. In that paper they

presented a DYFRAM, a decentralized approach for dynamic

table fragmentation and allocation in distributed database

systems based on observation of the access patterns of sites to

tables. The approach performs fragmentation, replication, and

reallocation based on recent access history, aiming at

maximizing the number of local accesses compared to

accesses from remote sites. They showed through simulations

and experiments on the DASCOSA distributed database

system that the approach significantly reduces communication

costs for typical access patterns, thus demonstrating the

feasibility of their approach.

Rajinder Singh Virk and Dr. Gurvinder Singh [23] have

demonstrated that a key component of any Relational

Distributed Database Query Optimizer was to fragment

various tables and distribute fragmented Data over the sites of

network. Then find a near optimal or best possible sub query

operation allocation plan in a stipulated time period. In that

paper they have proposed a Genetic Algorithm (GA) for

finding near optimal fragmentation plan for selecting the

various nodes or sites for placing recursively the vertically

fragmented data attributes in two components for a Query

Transaction on the Database. They discussed the advantages

of using proposed Genetic Algorithm (PGA) over various

other prevalent Algorithms and unpartitioned case. An

experimental result for a simulated Distributed Database over

a Wide Area Network shows encouraging results for the use

of PGA over other techniques.

3. DATA REPLICATION

Replication” is the process of sharing information to ensure

consistency between redundant resources such as software or

hardware components to improve reliability, fault-tolerance,

or accessibility. It could be data replication if the same

data is stored on multiple storage devices, or computation

replication if the same computing task is executed many

times [29]. Replication has been studied in many areas,

especially in distributed systems (mainly for fault tolerance

purposes) and in databases (mainly for performance reasons)

[28]. Replication is one of the oldest and most important

topics in the overall area of distributed system. An important

issue in distributed systems is the replication of data. Data are

generally replicated to enhance reliability or improve

performance. Replication is the process of copying data from

a data store or file system to multiple computers to

synchronize the data. Database replication is becoming more

important role for database applications.

Fig. 1 Replication Process

Replicated data are becoming more and more of interest

lately.

Replication is a cost effective way to increase availability and

used for both performance and fault tolerant purposes thereby

introducing a constant tradeoff between consistency and

efficiency. Replication provides a backup database large

enterprises usually have sites where it is imperative to access

data continuously. If a server collapses it is important to have

access to the same data on a different server and this usually

requires administrative intervention [30]. Database replication

is quickly becoming a critical tool for providing high

availability, survivability, and high performance for database

applications. However, to provide useful replication one has

to solve the non-trivial problem of maintaining data

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.3, May 2013

31

consistency between all the replicas [31]. Replication uses the

following three servers namely Publisher, Distributor, and

Subscriber

The basic problem with data replication is that an update to

any given logical object must be propagated to all stored

copies of that object. A difficulty that arises immediately is

that some sites holding a copy of the object might be

unavailable (because of a site or network failure) at the time

of the update. The obvious strategy of propagating updates

immediately to all copies is thus probably unacceptable,

because it implies that the update and therefore the transaction

will fail if any one of those copies is currently unavailable. In

a sense, in fact, data is less available under this strategy than it

would be in the non-replicated case.

There are two primary reasons for replicating data: reliability

and performance. First, data are replicated to increase the

reliability of a system. If a file system has been replicated it

may be possible to continue working after one replica crashes

by simply switching to one of the other replicas. Also, by

maintaining multiple copies, it becomes possible to provide

better protection against corrupted data. Reliability is a vast

domain: a considerable amount of techniques allow to account

for the existence of faults, and to guarantee – to a certain

extent – the continuation of computations. A sub domain of

reliability, fault-tolerance aims at allowing a system to survive

in spite of faults, i.e. after a fault has occurred, by means of

redundancy in either hardware or software architectures [7].

The other reason for replicating data is performance.

Replication for performance is important when the distributed

system needs to scale in numbers and geographical area.

Scaling in numbers occurs, when an increasing number of

processes needs to access data that are managed by a single

server. Replication provides fast, local access to shared

data because it balances activity over multiple sites. Some

users can access one server while other users access different

servers, thereby reducing the load at all servers. Also, users

can access data from the replication site that has the lowest

access cost, which is typically the site that is geographically

closest to them [10].

A distributed system is a set of services used by server

processes and invoked by client processes. The model and the

communications abstractions used by replication protocols in

distributed systems, and present some replication techniques

that have been processed in distributed systems. The mostly

used systems are DDS-R - (Decision Supporting Replication)

and TP-R (Transaction Processing Replication).

4. ANALYTICAL MODEL FOR

PARTIAL REPLICATION

 Let us assume that a non replicated database has a processing

capacity C , that a non-replicated database can execute C

transactions per time unit. All sites have the same capacity, a

non-replicated database in which the entire processing

capacity C is used for executing local transactions, but sites

in the replicated database need to use some of its processing

capacity C for coordination with other sites. We term the

coordination work as remote work.

So, each site i in a replicated database uses a fraction of its

processing capacity for local work Li and the remaining

capacity for remote work Ri , i.e. RiLiC then, the

local work performed in a site i is

RicLi (1)

The scale out is the sum of the amount of local work executed

at each site, divided by the processing capacity of a non-

replicated database
C

iScaleout Lin 1
i.e. how

many times the capacity of a non-replicated system is

increased when it is replicated. The more local work Li each

site executes, the better the scalability of the system. The total

amount of local work Li at site is the sum of

accesses to

objects kO stored at i (Eq. 2). The objects stored

at site i

are defined by the function),(kir

nkakirCL i

K

i ...1,.),(.
0

1

(2)

Since our model uses asymmetric processing, writes on an

object ko at site i impose some (remote) work in the other

sites that also store a copy of ko .We call this fraction of

remote work the writing overhead, .10, wowo

Therefore, the amount of remote work, Ri , at site i is a

fraction wo of the writes on every object kO stored at site

i that are executed at the rest of the sites that store a copy of

that object (Eq. 3).

jkjk

k

n

ijj

i uakjrkirR .).,(.),(.
0

1,1

0

(3)

Therefore, replacing Li and Ri in Eq. 1 with the

expressions in Eq. 2 and Eq. 3 we obtain

niuakjrkircakirc jkjk

k

n

ijjk

iik ..1,.).,(.),(.).,(.
0

1,1

0

0

1

 (4)

However, maximizing the amount of local work (Li) each

site processes may lead to saturation of other sites. For

instance, let us assume that there are three sites

}3,2,1{ BBB and two objects },2,1{ oo with writing

overhead wo = 0.60. 1B Stores }1{o , 2B = }2{o and

3B = },2,1{ oo i.e. 1B and 2B are partial replicas and

3B is a full replica. Furthermore, 1B and 2B use their

entire processing capacity for local work cLioRi , at

both sites. The amount of remote work at 3B is 3R =

CC * 0.60 = 1.2C .That is, the amount of remote work at

3B surpasses its processing capacity, and therefore, that site

is saturated. In order to avoid saturation of some sites, some

of the remaining sites cannot use their entire capacity, e. g. in

the previous example, if 1B and 2B use only
3

2 of their

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.3, May 2013

32

capacity, 3R =)
3

2
3

2(cc (0 .60 = C , 3B could

process all remote work. We model this fact by reducing the

capacity of sites.)1(cioCi is the percentage of the

capacity site i uses to prevent saturation of other sites. So,

equation 4 i

niuakjrkirccakirc jkjk

k

n

ijjk

iik ..1,.).,(.),(..).,(.
0

1,1

0

0

1

 (5)

Moreover, the model must take into account the work-load

),(UA and guarantee that the amount of accesses to each

object kO corresponds with the proportion. kA So, each

kA should be equal to the fraction of accesses to kO with

respect the global number of accesses to all objects:

}0..1{,

).,(.

).,(.

0

11

1

 k

akirc

akirc

A

k

ik

n

i

n

i

ik

k

(6)

A similar expression is defined for writes ku , which are a

proportion of writes of the total number of accesses for an

object kA

}0..1{,

.).,(.

.).,(.

.
0

11

1

 k

uakirc

uakirc

UA

k

ikik

n

i

n

i

ikik

kk

(7)

Finally, the scale out is the sum of the amount of local work

executed at each site, divided by the processing capacity of

the non-replicated database (Eq. 8).

0

11

).,(.
1

_
k

ik

n

i

akirc
C

outscale

(8)

So, given a replicated database of n sites with a replication

schema r and a load),(UA we look for the values

ikik uaCi ,, that maximize the scale out solving the

optimization problem

n

i

ik

n

i

akirc
C 11

).,(.
1

max

(9)

Subject to Eq. 5, 6, 7 and the domain of variables

}....1{};...1{;10;10;10 okniuaci ikik

The analytical model is to understand the potential scalability

gains of partial replication with respect to full replication. The

model quantizes the scale out, which determines how many

times the replicated system, increases the performance of a

non replicated system. This process can able to gain the

stability of the Transaction Processing Replication (TP-R) and

Decision-support replication schema (DDS-R) by clearing the

non replica which may used to clear the server problems and

system errors.

Fault tolerance plays a vital role to deviate the errors and

enables the system (often computer-based) to continue

operating properly in the event of the failure of (or one or

more faults within) some of its components. If its operating

quality decreases at all, the decrease is proportional to the

severity of the failure, as compared to a naïvely-designed

system in which even a small failure can cause total

breakdown.

Fault tolerance is the ability of a system to perform its

function correctly even in the presence of internal faults. The

purpose of fault tolerance is to increase the dependability of a

system. A complementary but separate approach to increasing

dependability is fault prevention. This consists of techniques,

such as inspection, whose intent is to eliminate the

circumstances by which faults arise. The theory on fault-

tolerant mechanism for distributed systems is based on

different kind of networks, such as LAN, WAN. Since these

networks are providing various services over the network, it

makes communications between the users entrusted. So, the

algorithm, which provides reliable services and scalability of

the resources, is needed to be designed. In fact, scalability is

achieved by a fully decentralized algorithm, in which the

dynamically available resources are managed through a

membership protocol. On other side, fault tolerance is assured

in meaning of that the loss of up to all but one resource will

not affect the quality of the solution.

4.1. TRANSACTION PROCESSING

REPLICATION (TP-R)

Transactional replication is a type of replication that allows

data modifications to be propagated incrementally between

servers in a distributed environment. Transactional replication

can be used for many different applications, from reporting

servers and data warehousing environments to Web servers

and e-commerce applications. Transactional replication is

used at many of the predominant Web sites on the Internet

that run SQL Server, including MSN.com, Passport.com,

Barnes and Noble.com, and Buy.com. Transactional

replication is a scalable and reliable solution for distributing

data in high-performance environments. A transaction

processing replication (TP-R) approach that can maintain near

real time transaction integrity at data copy sites is essential. In

lazy replication, transactions are executed first at one replica.

Any updates are propagated to other replicas only after

transaction commits, thus providing fast response times [32].

The notion of transaction was first introduced in database

systems, with the objective of supporting the consistent

execution of concurrent operations over shared data However,

since then transactions have been applied much more broadly,

e.g., in distributed systems in many application scenarios, in

which they improve reliability and guarantee data consistency.

This is about the transaction commit for replicated databases.

There is work in this area for some years, with authors

suggesting the utilization of abstractions, commonly used to

specify reliable distributed systems (e.g., consensus, total

order multicast) to support crash fault-tolerant database

replication or, more generically, transaction processing. TP-R

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.3, May 2013

33

replication is primarily concerned with creating a single

image of a database across distributed autonomous sites

and preserving database integrity in near real-time

processing. The overall integrity of databases is preserved by

forwarding data changes resulting from single user

transactions.

4.2 TP-R REPLICATION: PEER TO

PEER & MASTER/SLAVE

APPROACHES

TP-R replication is primarily concerned with creating a single

image of a database across distributed autonomous sites and

preserving database integrity in near real time processing. The

overall integrity of databases is preserved by forwarding data

changes resulting from single user transactions.

All data replication regardless of vendors can copy data from

sources to targets. Master/slave approaches replicate data

from master to slave, requiring updates to successfully

complete at the master before the transaction is considered a

success On the other hand, updates in peer to peer approaches

can be made to any data location and then copied into other

locations. A transaction is successfully completed as soon as

anyone or combination of locations is able to update one

complete copy of the affected data. Peer to peer allows all

locations to own and manipulate any data, broadcasting

changes as required. This requirement shouldn’t significantly

reduce the scalability of the system if the rate of queries is

much higher than the rate of updates, which is commonly the

case for example in name services or knowledge base systems

[32

].

Fig. 2 Internet Based Control System

In the master/slave architecture every table or table fragment

is assigned to a primary site. If the primary table's database

server fails or access to that server from the network (where a

transaction updating that table has occurred) is denied,

replication doesn't occur and the transaction is queued. This

can present a problem for remotely generated transactions

because those processes cannot update their local or other

sites, until they are first routed synchronously through their

primary tables.

4.2.1 CASCADING REPLICATES

Cascade behavior is a Pareto improvement over behavior in

which individual’s base decisions only on their private

information, since a cascade reflects an integration of more

private information than any single individual possesses [34].

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.3, May 2013

34

Fig. 3 Cascading database replication

A common application model is one where there are 100's or

1,000's of database servers (e.g. in branch offices) fed from a

smaller number of distribution nodes, which are in turn fed

from central host source. Efficient distribution requires

support for cascading replicates where copies can be made

from other copies. For example, the central host distributes to

20 distribution nodes each of which distributes to 20 branch

offices. The replication system must distribute consistent data

across each of the 400 branches (perhaps at the end of the

business day), but at the same time, subset the data for branch

related operations.

4.3 DECISION-SUPPORT REPLICATION

SCHEMA (DDS-R)

DSS-R approaches to replication usually are built on various

technology variations of table copying. The typical decision

support application has a requirement for consistent period

data sources and not necessarily for data that is up-to-the-

minute current. DSS-R approaches, then, don't typically worry

about keeping the data current. Consistent, stable data for a

given period is the highest requirement for these types of

applications. The decision support systems are tuned for query

processing, typically by adding more indexes. In this case,

then, continuous propagation of updates would interfere with

the ability of the query tool to provide reasonable

performance.

The replication server should provide various timing options

which can create copies based on timed events (clock or

interval), on application events (e.g. end of day reconciliation

completed), or on manual request. Other important

requirements for decision support include the ability to access

legacy production system data from sources such as IMS,

RMS, VSAM, and flat files and to provide sophisticated data

manipulation/enhancement to that data.

4.3.1 DSS-R SCHEMA

The value added to the data by manipulation or enhancement

is very important in DSS-R environments. Sources are

typically legacy systems and the replication solution should

provide the ability to restructure the data from legacy formats

into the relational model. Tools should provide support for

joining data from multiple sources, for calculating new values,

for aggregating data and for transforming encoded data into

descriptive forms. An important side point to keep in mind is

that one of the principal benefits of DSS-R, aggregation of

data or de normalization, is something that should not be done

when the replicate is updatable.

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.3, May 2013

35

5. RESULTS AND DISCUSSIONS

In our proposed methodology, the data replication for decision

supporting system is described. The implementation was done

in JAVA. Here in our proposed part, the synthetic database is

used. The step by step results obtained from the proposed part

is described as follows.

Fig.4: Initial table before adding records

Fig. 5: List of tables in Server

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.3, May 2013

36

The initial database used for data replication in server is

described in the fig. 4. In the server, more than one table is

used. Based on the prioritization, the high prioritized table is

replicated in client which is shown in fig.5 and Fig. 6.

Fig. 6: Prioritized order of tables

Fig. 7: Query Processing in Client

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.3, May 2013

37

Fig. 8: Updating records after query processing in client

Based on the given query, the table is updated in the client.

When the tables are updated in the client, the database in the

server is automatically updated which is described in Fig.7,

Fig. 8, Fig.9 and Fig. 10.

Fig. 9: Table before replication in server

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.3, May 2013

38

Fig. 10: Updation of records in the table after replication in server

The final updated database in the server is shown in Fig. 10.

Hence the data replication based on decision supporting

system is performed efficiently in our proposed system.

6. CONCLUSION

Replication plays a vital role in distributed systems. Systems

failures often occur in replicated data’s due to the unwanted

scalability and fault tolerance. Decision Support systems

(DSS) is used to clear the fault occurs in the database by using

a partial replication with analytical model. It is to understand

the potential scalability gains of partial replication with

respect to full replication. It will give better performance by

using a DDS-R schema. It will eradicate the system errors and

the distributed systems with database can access with multiple

replication without any fault tolerance. Experimental Results

clearly shows the data replication for the distributed database

using decision support systems will give the better

performance by reducing the false errors.

7. REFERENCES

[1] Reza Akbarinia, Mounir Tlili, Esther Pacitti, Patrick

Valduriez and Alexandre A. B. lima," Replication in

DHTs using Dynamic Groups," Lecture Notes in

Computer Science, Vol. 6790, No.3, pp. 1-19, 2011.

[2] Reza Akbarinia, Mounir Tlili, Esther Pacitti, Patrick

Valduriez and Alexandre A. B. lima," Continuous Time

stamping for Efficient Replication Management in

DHTs," Lecture Notes in Computer Science, Vol. 6265,

pp. 38-49, 2010.

[3] Prasanna Padmanabhan, Le Gruenwald, Anita Vallur and

Mohammed Atiquzzaman," A survey of data replication

techniques for mobile ad hoc network databases,

International journal on very large database," Vol. 17, pp.

1143–1164, 2008.

[4] Dutta, H., Kamil, A., Pooleery, M., Sethumadhavan, S.,

Demme, J.: Distributed Storage of Large-Scale

Multidimensional Electroencephalogram Data Using

Hadoop and HBase,” Grid and Cloud Database

Management, pp. 331-347, 2011.

[5] Hannes Muhleisen, Tilman Walther and Robert

Tolksdorf," Data Location Optimization for a Self-

Organized Distributed Storage System," In Proc. of the

Third World Congress on Nature and Biologically

Inspired Computing (NaBIC), pp. 176 - 182, Oct 2011.

[6] Yi Lin, Bettina Kemme, Marta Patino Martinez, Ricardo

Jimenez Peris," Consistent Data Replication: Is it feasible

in WANs," Information Science and Computer

communication, 2004.

[7] Zahia Guessoum, Jean-Pierre Briot, Nora Faci and

Olivier Marin," Towards reliable multi-agent systems:

An adaptive replication mechanism," Journal of Multi

agent and Grid Systems, Vol.6, No. 1, pp. 1-24, 2010.

[8] Byung-Gon Chun, Frank Dabek, Andreas Haeberlen,

Emil Sit, Hakim Weatherspoon, M. Frans Kaashoek,

John Kubiatowicz and Robert Morris," Efficient Replica

Maintenance for Distributed Storage Systems," In Proc.

of the Symposium on Networked Systems Design and

Implementation, 2006.

[9] Michael H. Zack,” The role of decision support systems

in an indeterminate world," Decision Support Systems,

Vol. 43, No. 4, pp. 1664–1674, 2007.

[10] Sanjay Kumar Tiwari and A.K.Sharma," Management

Issues in Replicated Distributed Real Time Database,"

International Journal of Advance in Science and

Technology, Vol.3, No1, pp. 75-89, 2011.

[11] Maris G. Martinsons and Robert M. Davison," Strategic

decision making and support systems: Comparing

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.3, May 2013

39

American, Japanese and Chinese management," Decision

Support Systems, Vol. 43, pp. 284 – 300, 2007.

[12] G. Bent, D. Vyvyan, David Wood, Petros Zerfos and

Seraphin Calo," Distributed Policy Based Access to

Networked Heterogeneous ISR Data Sources," In Proc.

of the conference on International society of optics and

photonics, Vol. 7694, 2010.

[13] H. T. Barney and G. C. Low," Object Allocation with

Replication in Distributed Systems," World Academy of

Science, Engineering and Technology, Vol. 48, pp. 558-

566, 2008.

[14] Costel Ciuchi, Dan Picu and Gyorgy Todoran,"

Managing Knowledge and Data for a Better Decision in

Public Administration," Administration and Public

Management, Vol. 2011, No. 17, pp. 64-81, 2011.

[15] Carlo Curino, Evan Jones, Yang Zhang and Sam

Madden," Schism: a Workload-Driven Approach to

Database Replication and Partitioning," In Proc of the

Conference on very large database Endowment, Vol.3,

No.1, Sep 2010.

[16] Andres Neyem, Sergio F. Ochoa and Jose A. Pino," I

ntegrating Service-Oriented Mobile Units to Support

Collaboration in Ad-hoc Scenarios," Journal of Universal

Computer Science, Vol.14, No. 1, pp. 88-122, 2008.

[17] Constandinos X. Mavromoustakis and Helen D.

Karatza," A Gossip-Based Optimistic Replication for

Efficient Delay-Sensitive Streaming Using an Interactive

Middleware Support System," IEEE Systems Journal ,

Vol. 4, No. 2, pp. 253- 261, Jun 2010.

[18] Nikos Hardavellas, Michael Ferdman, Babak Falsafi and

Anastasia Ailamaki," Reactive NUCA: Near-Optimal

Block Placement and Replication in Distributed Caches,"

In Proc. of the 36th Annual International Symposium on

Computer Architecture, pp. 1- 12, Jun 2009

[19] Rui Garcia, Rodrigo Rodrigues and Nuno Preguica¸"

Efficient Middleware for Byzantine Fault Tolerant

Database Replication," In Proc. of the sixth conference

on Computer systems, 2011.

[20] Fay Chang,Jeffrey Dean,Sanjay Ghemawat,Wilson

C.Hsieh,Deborah A.Wallach Mike Burrows, Tushar

Chandra, Andrew Fikes and Robert E.Gruber," Bigtable

:A Distributed Storage System for Structured Data,"

ACM Transactions on Computer Systems, Vol. 26, No.

2,pp. 1-26, 2008.

[21] Peter A. Boncz, Angela Bonifati, Arantza Illarramendi,

Peter Janacik, Birgitta König-Ries, Wolfgang Lehner,

Pedro José Marrón, Wolfgang May, Aris M. Ouksel, Kay

Römer, Brahmananda Sapkota, Kai-Uwe Sattler, Heinz

Schweppe, Rita Steinmetz and Can Türker," Working

Group Report on Managing and Integrating Data in P2P

Databases," In Proc. of the conference on Scalable Data

Management in Evolving Networks, 2007.

[22] Daniel J. Abadi," Data Management in the Cloud:

Limitations and Opportunities," IEEE Computer Society

Technical Committee on Data Engineering, pp. 1- 10,

2009.

[23] Iraj Mahdavi, Babak Shirazi and Maghsud Solimanpur,"

Development of a simulation-based decision support

system for controlling stochastic flexible job shop

manufacturing systems," Simulation Modeling Practice

and Theory, Vol. 18, pp. 768–786, 2010.

[24] Abbe Mowshowitz, Akira Kawaguchi, Andi Toce,

Andrew Nagel, Graham Bent, Paul Stone and Patrick

Dantressangle," Query Optimization in a Distributed

Hypercube Database," Annual Conference on

International Technology Alliance, 2010.

[25] Narasimhaiah Gorla," Sub query Allocations in

Distributed Databases Using Genetic Algorithms,"

Journal of Computer Science and Technology,” Vol.10

No.1, pp.31-37, Apr 2010.

[26] Jon Olav Hauglid, Norvald H. Ryeng and Kjetil Norvag,"

Dynamic Fragmentation and Replica Management in

Distributed Database Systems," Journal of Distributed

and Parallel Databases, Vol. 28 No. 3, pp. 1- 25, Dec

2010.

[27] Rajinder Singh Virk and Dr.Gurvinder Singh,"

Optimizing Access Strategies for a Distributed Database

Design using Genetic Fragmentation," International

Journal of Computer Science and Network Security,

Vol.11 No.6, pp. 180- 183, Jun 2011.

[28] M. Wiesmann, F. Pedone, A. Schiper B. Kemme and G.

Alonso," Understanding Replication in Databases and

Distributed Systems," In Proc. of the 20th International

Conference on Distributed Computing Systems, pp. 464 -

474, Apr 2000.

[29] Marius Cristian Mazilu," Database Replication," Journal

of Database Systems, Vol. I, No. 2, pp. 33- 38, 2010.

[30] Iuliana Scorta," The Replication Mechanism in a

Romanian ERP System Environment," Journal of

information economics, Vol.1, No. 45, pp. 140- 146,

2008.

[31] Yair Amir and Ciprian Tutu," From Total Order to

Database Replication," In Proc. of the 22nd International

Conference on Distributed Computing Systems, pp. 494 -

503, 2002.

[32] Yi Lin, Bettina Kemme, Marta Patino Martınez and

Ricardo Jimenez-Peris," Enhancing Edge Computing

with Database Replication," 26th IEEE International

Symposium on Reliable Distributed Systems, pp. 45 - 54,

2007.

[33] Angela A. Hung and Charles R. Plott," Information

Cascades: Replication and an Extension to Majority Rule

and Conformity-Rewarding Institution," American

Economic Review," Vol. 91, No. 5, pp. 1508-1520, 2001.

