
International Journal of Computer Applications (0975 – 8887)

Volume 69– No.3, May 2013

1

A Metadata Search Approach to Keyword Query in

Relational Databases

Jarunee Saelee

Software Systems Engineering Laboratory,
Department of Computer Science, Faculty of

Science, King Mongkut’s Institute of Technology
Ladkrabang, Bangkok, Thailand 10520

Veera Boonjing
Software Systems Engineering Laboratory,
Department of Computer Science, Faculty of

Science, King Mongkut’s Institute of Technology
Ladkrabang, Bangkok, Thailand 10520

ABSTRACT

This paper proposes an effective approach to keyword query

in relational databases. It uses a semantic graph model

consisting of database metadata, database values, user terms,

and their semantic connections. Keywords of a query

determine all possible connected subgraphs of the semantic

model. A query answer is a subgraph with the minimum

connections. In addition, the approach proposes to rank result

tuples of the answer subgraph using the IR-style ranking

function. Our experiment results show that queries with

metadata terms give more precise answers than queries

without them.

General Terms

Database and Information Systems, Information Retrieval,

Relational Databases, Keyword-based Search.

Keywords

Keyword Search, Metadata Search, Database Query, Keyword

Query, Relational Database.

1. INTRODUCTION
Many services on the Web and advanced applications widely

use relational databases as structured information storages.

Accordingly, the need for information retrieving is increasing.

Traditional relational database search systems require users to

know database schemas and query language such as SQL. So

keyword search systems as information retrieval systems [1]

over relational databases have recently proposed. However,

keyword search techniques on the Web cannot directly be

applied to databases because data on the Internet and database

are in different forms. In databases, the information is viewed

as data tables and their relationships, and query results may be

a single tuple or joining tuples. Accordingly, the challenge is

how to apply keyword-based search to find sorted relevant

results in databases.

Existing systems supporting keyword search in relational

databases (e.g., [2]–[6]) limit type of keywords to database

value terms. In fact, users may query with metadata terms

(e.g., attribute name or relation name) or their preferred terms.

Consider an instance of a movie database as shown in Figure

1, a query with keyword {Steven} obtains two relevant tuples

r12 and r53. A query with keywords {director, Steven},

which {director} is an attribute name, gives only tuple r12.

Thus, a metadata is useful for giving precise answers. Next,

consider a query with keywords {movie, Steven, direct},

keywords {movie} and {direct} are ignored by most of

systems, even these metadata terms are meaningful for

querying. This is because they are not database values. This

means that metadata terms in a query are the semantics of the

answer. In addition, users often query using their preferred

terms that are not directly matched to any objects in a

database. For example, users may refer to the “actor” object

of database using a keyword {player}. Moreover, these

systems generally assumed that the answer graphs are in

horizontal line or instance-level. Hence, the answer graph is a

joining tuple tree which consists of all attributes of each tuple.

MovieId Title Year

20001 Gladiator 2000

20021 Minority Report 2002

Movies

ActorId AName

a01 Russel Crowe

a02 Tom Cruise

a03 Steven Seagal

Actors

MovieId ActorId Character

20001 a01 Maximus

20021 a02 Chief John Anderton

Movies2Actors

r31

r32

r41

r42

r51

r52

r53

DirectorId DName

d02 Steven Spielberg

Directors

d01 Ridley Scottr11

r12

DirectorId MovieId

d02 20021

Movies2Directors

d01 20001r21

r22

Fig 1: An example of movie database instances

For these reasons, this paper proposes an effective system that

allows users to query a database using database value terms,

metadata terms, and their preferred terms. To achieve the

purpose, it employs a metadata search approach [7], which

uses a semantic graph of underlying database to accommodate

these terms and database semantics. The semantic graph

consists of database metadata, database values, user terms,

and their semantic connections. This graph is useful for

dealing with relation-level, attribute-level, and value-level in

vertical line. An answer to a query is defined as a smallest

subgraph containing all query keywords as its nodes.

Moreover, we adopt a state-of-the-art IR ranking function to

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.3, May 2013

2

rank result tuples obtained from the answer subgraph.

The rest of this paper is organized as follows. Section 2

briefly introduces related works. Section 3 describes how a

relational database is modeled as a semantic graph. Section 4

presents the system architecture. We give preliminary

experiment results in Section 5. Section 6 concludes the paper

and outlines future works.

2. RELATED WORK
Keyword search systems over relational databases have been

extensively proposed. The earlier survey in [8] and [9]

overviewed systems such as BANKS [10], DBXplorer [3],

DISCOVER [4], ObjectRank [2], and EASE [11] and briefly

summarized the key techniques from several aspects.

DBXplorer, DISCOVER, and BANKS share a similar idea

but differ from each other in their search algorithms and

ranking functions. They return joining tuple trees as answers

for a given keyword query. DBXplorer and Discover generate

connected tuple trees through primary-key-foreign-key

relationships that contain all query keywords called candidate

networks (CN). Thein et al. [12] proposed candidate network

generation algorithms for reducing the overhead that caused

by raising the number of joining tuples for the size of minimal

candidate network. BANKS represents all tuples in a database

as tuple graphs and generates answer graphs by searching

Steiner trees containing all query keywords. However, all of

them just assume AND semantics for an answer whereas our

approach supports both AND and OR semantics. Hristidis et

al. [13] proposed the extension of DISCOVER that handles

non-metadata queries with both AND and OR semantics.

Kacholia et al. [14] presented the bidirectional strategy to

improve backward expanding search in BANKS by allowing

forward search strategy. However, it still works by identifying

Steiner trees from a whole graph. Furthermore, Ding et al.

[15] employed a dynamic programming to improve efficiency

of identifying Steiner trees.

DataSpot [16] is a database search system using free-form

queries similar to our approach. It represents database content

in form of schema-less semi-structured graph called

hyperbase. Nodes in hyperbase represent data objects (e.g.,

relations, tuples, and attributes) and edges represent

associations between data objects. Query results are connected

subgraphs of hyperbase containing all query keywords.

Goldman et al. [17] proposed a simple query language with

two sets of keywords in form of find x near y. Two sets of

objects in a database are found and the result set is ranked

based on distance between these two sets. A similar system is

proposed by Yin et al. [18]. Their concept is to find the target

objects related to source objects with AND and OR

semantics. The system converts a database schema to a graph.

At the query time, it extends shortest join paths to measure the

strengths of their relationships. Mragyati [19] is the system to

keyword searching and browsing on relational databases. The

system maps query keywords to a database schema using

metadata as four-level trees and translates answer trees to

SQL. The ranking function can be based on user-specified

criteria but the default ranking is based on the number of

foreign-key constraints. It is similar to our work in supporting

synonyms and metadata. However, the implementation does

not handle queries with more than 2 solution paths. Dissimilar

to the other approaches, Wheeldon et al. [6] proposed a

system to keyword search over relational databases which

indexed a relational database as virtual documents to querying

and navigation. Their approach indexes textual content of

each tuple as a web page and their foreign-key constraints are

extracted to hyperlink between virtual web pages. This is

similar to a text object in EKSO [20] but EKSO provided

offline indexing time to significantly reduce query time

computation. Given a keyword query, the system in [6]

calculates a ranked set of virtual web pages with at least one

keyword matched. Then it uses the best trial algorithm to

expand a rank set of navigation paths. The relevant results are

unnecessary to the SQL translation. However, it does not

support numerical queries.

The original ranking of the query results is based on the size

of the answer tuple trees [3, 4]. Given a query Q, the score

assigned to a result tuple tree T is:

 Tsize
QTScore

1
),( (1)

where size(T) is the number of tuples in T. More recent

approaches have been attentively proposed ranking methods.

ObjectRank uses an authority-based ranking strategy to

keyword search in relational databases. It returns a set of the

individual tuple as an answer. The ranking function is based

on link analysis and term frequencies of query keywords. Luo

et al. [5] proposed a new IR style method to join-tuple tree

ranking. Liu et al. [21] improves the ranking strategy in [13]

by identifies four normalization factors, tuple tree size,

document length, document frequency, and inter-document

weight. Yanwei et al. [22] studies the problem of finding the

top-k results in relational databases for a continual keyword

query. A set of potential top-k results is computed by

evaluating the range of the future relevance score for every

query result and a light-weight state is created for each

keyword query.

The IR-style relevance ranking function for an individual text-

attribute has two sub-functions, Score and Combine, defined

as below:

 








iaQk avdl
dli

df

N

ss

tf
QaScore ln

)1(

))ln(1ln(1
),((2)

where Score(ai, Q) is the relevance score with respect to the

keyword query Q determined by an IR engine for a single text

attribute ai which is viewed as a text document. k is a keyword

in Q, tf is the frequency of k in ai, df is the number of tuples in

ai’s relation with keyword k in this attribute, dl is the size of ai

in characters, avdl is the average attribute-value size, N is the

total number of tuples in ai’s relation, and s is a constant

usually be 0.2. Let A be the set of all text attributes of an

answer tuple tree T. The score assigned to T for query Q is

calculated by aggregate among two functions as below:

))(),,((),(TsizeQAScoreCombineQTScore  (3)

)(

),(

Tsize

QacoreS iAai 


The most similar in objective to our approach are in [23] and

[24]. In [23], it extends keyword search to metadata over

relational databases but not also user-terms or synonyms. It

designs a data model as tuple graphs that each tuple contains a

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.3, May 2013

3

set of an attribute-value pairs and a new metadata attribute.

For example, given a tuple r31 in Figure 1 (a), this tuple is

represented in form of {(MoviedId: 20001), (Title: Gladiator),

(Year: 2000), (N4: Movies)} where N4 is a new metadata

attribute. Considerably, there is too redundant metadata

information in these tuples.

Approaches to keyword query are summarized in Table 1.

Table 1. Representative keyword search systems

Approach Data Model Ranking Top-k

Processing

Proximity Data graph Distance N/A

DataSpot Data graph Number of

edges

N/A

DBXplorer Schema graph Number of

joins

N/A

BANKS Data graph Edge weight,

node weight

N/A

DISCOVER Schema graph Number of

joins

N/A

IR-Style TF-IDF Sparse algorithm,

(Global) Pipeline

algorithm

Effectiveness Normalization N/A

ObjectRank Data graph,

Schema graph

Authority rate Threshold

algorithm

Top-k-min-

cost

Data graph GST-k (optimal

at top-1)

SPARK Schema graph Number of

joins, TF-IDF

Skyline sweeping

algorithm,

Block pipeline

algorithm

EASE Data graph Structural

compactness,

TF-IDF

N/A

3. DATABASE SEMANTIC

REPRESENTATION
In this section, a data model and related definitions used in a

metadata search approach are briefly presented. A database is

considered as the semantic model including metadata terms,

database value terms, and user terms. Metadata and database

value terms intuitively known as relation names, attribute

names, and attribute values. User terms are abbreviations,

words or phrases that users use to refer to objects in the

model. A user term is defined as (class, object), where classes

consist of relation, attribute, and value, and objects are

instances of these classes.

Informally, the semantic model is viewed as a graph with

nodes representing objects of three classes: the relation class,

the attribute class, and the value class. Edges represent

connections between corresponding objects: relation to

relation, relation to its attribute, and attribute to its attribute

value. An example of the semantic graph for a movie database

is illustrated in Figure 2. The answer graphs should be

connected semantic subgraphs containing query keywords.

Because of these structures of semantic model, the answer

graphs can be additional metadata graphs that can deal

separately from instance-level.

Movies

Movies2Actors

Movies2Directors

DirectorId

MovieId

MovieId

Title

Year

MovieId

ActorId

Character

20001

d01

20001

Gladiator

2000

20001

a01

Maximus

Fig 2: The semantic sub-graph

A formalized semantic graph and necessary definitions used

to describe a query model in the next section are showed in

the following.

Definition 1 Given a semantic graph G <V, E>, Node V is a

set of metadata (M) and Database Values (D), and E is a set of

their connections between relation-relation, relation-attribute

and attribute-value.

Definition 2 Given a set of user-terms U, each user term u V

but u is referred to corresponding node V in a semantic graph

G.

Definition 3 A query keyword K is a set of {k1, k2, …, kn},

where each k is a word or phrase of query Q matching some

objects in G or U, and n is a number of query keywords.

Definition 4 A keyword node set of a query keyword ki,

denoted
ikV , is a set of nodes in G that correspond to ki.

Definition 5 Given n is a number of query keywords and n

 0, a query image QI is a set of keyword nodes vi, where i =

1, 2, …, n and vi 
ikV .

Definition 6 A basic path pi of vi is a minimum set of V in G

that connect vi to its relation node.

Definition 7 A feasible graph FG of QI is a sub-graph of G

that is a minimal collection of basic paths pi in QI, where i =

1, 2, …, n.

Definition 8 An answer graph is the shortest feasible graph

that consists of <V, E> where V is a set of objects (relation

nodes, attribute nodes, and value nodes) and E is a set of

connection between them.

4. SYSTEM ARCHITECTURE
This section generally explains the architecture and strategies

of the metadata search approach [7]. Figure 3 shows the

architecture of our proposed system. It consists of two

components, preprocessing and query processing. As

described in the previous section, the database semantic

representation is primarily explained in the preprocessing

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.3, May 2013

4

module. It automatically indexes resources except user terms,

which are updated by administrators. In the second module,

the keyword matching process finds database objects in the

semantic model corresponding to user inputs. Answer graphs

are generated in the query graph generator process. This

process filters all possible query graphs to answer graphs just

be the informative answers. These answer graphs are

translated to SQL statements in the SQL generator process.

Finally, the result ranking process evaluates the relevant

results with ranking functions and then gives them back to the

user. The detail of query processing is explained in the

following.

Preprocessing

DB

Semantic ModelKeyword Matching

Query Graph

Generator

SQL Generator

Result Ranking

User Inputs

Database Objects

Query Graphs

Relevant Results

Ranking Results

Indexing

Query Processing

Fig 3: The architecture of a metadata search approach

4.1 Keyword Matching
The purpose of keyword matching is to find corresponding

objects in semantic model for each query keyword. In other

words, this process examines a query to find query keywords

and their nodes in graph G. There are two cases in this

process. The first is a direct matching that a keyword directly

matches with objects in graph G (metadata terms or database

value terms). For example from Figure 1, a query “director

Steven” has two query keywords, {director} and {Steven}.

Their resources are the {Directors} relation and the value

terms from {Directors, Actors} relations respectively. The

second is a synonym-based matching that keyword is a

synonym or an abbreviation of objects in semantic graph.

Given a keyword {player} for an example for this case, it

cannot directly match with any objects but it is a synonym of

{Actor}. Consequently, a query keyword {player} is changed

to {actor} and its node is a relation {Actors}.

Keyword matching generally associates each query term with

senses under the database semantic representation. Therefore,

after keyword matching process, a set of resources for each

keyword indicates kinds of elements that user wants.

4.2 Query Graph Generator
The purpose of query graph generator is to find semantic

answer graphs from many candidate query graphs. To achieve

this purpose, it begins with determining all possible query

images containing one keyword node from each query

keyword. The next is to find basic paths of each query image.

The last, all feasible graphs are created. Figure 4 gives an

algorithm to generate optimal answer graphs. Figure 5 shows

an example of these steps with query keywords {film, Steven,

direct}.

Input: Query Q, a semantic graph G

Output: a set of answer graphs

1. Determine a set of query keywords K and their keyword node

sets

 K = {k1, k2, …, kn}, where n is a number of query keywords

ikV = {

1 2
, , ,

i i ijk k kv v v }, where i = 1, 2, …, n and j is a number

of corresponding nodes in G of ki

2. Determine a set of query images QI

 QIm =
1 1 2 2

{ , , , }
j j nj nk k k k k kv V v V v V   ,

 where m =
1 2 nk k kV V V

3. Finding a set of basic paths in each QI

 Each
ikv in QI, find a basic path where

 If
ikv is in a value class in G, then

ikp = (
i

R

kv ,
i

A

kv ,
ikv)

where
i

R

kv ,
i

A

kv are relation and attribute nodes of vi

belonging to in G respectively

 If
ikv is in an attribute class in G, then

ikp = (
i

R

kv ,
ikv)

where
i

R

kv is a relation node of
ikv belonging to

 If
ikv is in a relation class in G, then

ikp = (
ikv)

4. Find a feasible graph and determine a set of answer graphs

 Answer graphs are feasible graphs that have the lowest cost,

mini=1-m(cost(FGi)) where m is a number of feasible graphs and

cost(FG) = |V| - 1 where |V| is a number of nodes in FG.

Fig 4: An algorithm for answer graph generation

In this process, branch and bound algorithm is used to find

optimal solutions which have a minimum weight based on the

number of nodes in a query graph. This is because the

likelihood of an informative answer for keyword searching in

relational databases based on the relational objects over the

component facts. This means that, given two or more query

graphs, the informative answer graph will always prefer the

shortest graph. Because of our answer graph is a tree, its

weight is |V| -1 where V is a set of nodes in it. For this reason,

the optimal solution or the informative answer graph from an

example in Figure 5 is a feasible graph from QI1.

In summary, a query graph associates a set of objects based on

relationships in the database semantic representation and

indicates what kinds of collections that users want. Therefore,

after the query graph generator process, the best informative

answer graphs are converted to SQL in the next process.

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.3, May 2013

5

4.3 SQL Generator
To generate SQL from an answer graph, objects,

relationships, and their joining conditions are determined as

follows.

1) The relation list consists of all relation nodes in answer

graph and indicates that what relations that tuple results

originated from.

2) The attribute list is a selection list based on the nature of a

semantic model. Figure 6 shows the natures of semantic

model, relation-level (a), attribute-level (b), and value-level

(c). If an answer graph consists of these natures, an attribute

list contains all attributes that belong to a relation, a terminal-

attribute, and an attribute of value node respectively.

Additionally, if an answer graph is a lonely nature (c), an

attribute list is all attributes of relation that its value node

belongs to.

3) The joining condition extracts from foreign-key

constraints of a database schema.

4) The selection condition is determined from value nodes in

answer graph. If value node v1 belongs to attribute node a1, v2

belongs to a2, and vn belongs to an then the selection condition

is AND semantics (a1 = v1 AND a2 = v2 AND … AND an = vn).

If v1, v2, …, vn belong to the same attribute a, the selection

condition is OR semantics (a = v1 OR a = v2 OR … OR a =

vn).

(a)

(b)

(c)

Relation ……

Attribute

……………………..

Value

……………………………………………….

Fig 6: The nature of the semantic model

Consequently, we have SQL statement for each answer graph

as follow:

SELECT [attribute list]

FROM [relation list]

WHERE [selection condition] [AND]

[join condition]

4.4 Result Ranking
After SQL generator process, multiple consequence result

tuples are produced. This causes the question that which top-k

tuples are the most likely answers for the end users. The IR-

style ranking function as in [13], is applied to rank these

tuples. Given a query Q, the ranking function is assigned to a

tuple answer T is:

 Tsize

QtScore
QTScore

Tt 


),(
),((4)

where Score(t, Q) is the relevance score defined as below with

respect to the keyword query Q and size(T) is weight of its

answer graph.

 










TQk avdl
dl df

N

ss

tf
QtScore

1
ln

)1(

))ln(1ln(1
),((5)

where t is a result tuple that relevant to query Q, tf is the

frequency of a keyword k appears in tuple t, df is the number

of tuples that k appears, dl is the size of t in characters, avdl is

the average length of T, N is the number of T, and s is a

constant usually be 0.2.

5. EXPERIMENTS
To evaluate the search effectiveness of our approach, we use

the Internet Movie Database (IMDB)1 as the datasets in our

experiments. We converted a subset of original files into

relational tables as showed in Table 2 and used MySQL

v5.0.24a with its default configuration and JDBC connections.

All experiments were run on PC with a 1.66GHz CPU and 1G

1 http://www.imdb.com/interfaces

Keywords

Keyword Matching

Resources

film

Steven

direct

R: Movies

V(DName): Steven

Spielberg,

V(EName): Steven

Seagal

R:Movies2Directors

Step 1: Query Image

[QI1]

R: Movies

V(DName): Steven Spielberg

R:Movies2Directors

[QI2:]

R: Movies

V(EName): Steven Seagal

R:Movies2Directors

Step 2: Basic Path

Movies Directors

DName

Movies2

Directors

Steven Spielberg

Movies Actors

EName

Steven Seagal

Movies Directors

DName

Steven Spielberg

MoviesActors

EName

Steven Seagal

...

Step 3: Feasible Graph

Movies2

Directors

Movies2

Directors

Movies2

Directors

Fig 5: An example of query graph generator

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.3, May 2013

6

RAM. The database server and the client were run on the

same PC.

Table 2. Internet Movie Dataset Statistics

Relation

Schema

#Tuples Relation

Schema

#Tuples

movies 7,485 Actors 10,025

directors 4,296 Editors 2,572

producers 8,556 Writers 7,130

genres 10,030 language 8,054

prodcompanies 8,340 releasedates 17,480

movies2actors 15,475 movies2editors 7,956

movies2directors 8,165 movies2producer

s

13,768

movies2writers 11,680

Total number of tuples 141,012

In preliminary experiments, the influence of the system does

with metadata terms additionally is measured by running ten

queries with at least one metadata term in two systems, a

metadata search and non-metadata search. Table 3 gives the

total number of query results from: 1) all answer graphs of a

metadata search (w/m), 2) the best answer graph of a metadata

search (w/q), and 3) all answer graphs from non-metadata

search (w/o). A metadata search approach gives the number of

results much more than non-metadata search because

metadata terms alternatively cause the semantic answer

graphs and various tuples from each graph.

Table 3. The Total Number of Query Results

Query #w/m #w/q #w/o Query #w/m #w/q #w/o

1 881 50 220 6 216 215 143

2 157 13 89 7 334 56 118

3 37 24 3 8 696 33 49

4 1745 107 220 9 169 77 106

5 2009 138 239 10 3826 1688 2288

Table 4. The Number of Top-k Results

Query Top-10 Top-20 Top-30 Top-40 Top-50

 #w/m #w/o #w/m #w/o #w/m #w/o #w/m #w/o #w/m #w/o

1 10 0 20 2 30 7 40 10 50 17

2 10 1 13 2 13 4 13 6 13 11

3 10 0 20 0 24 0 24 0 24 0

4 10 0 20 0 30 0 40 0 50 0

5 10 0 20 0 30 0 40 0 50 0

6 10 0 20 0 30 0 40 0 50 0

7 10 0 20 0 30 0 40 0 50 0

8 10 0 20 0 30 0 33 0 33 0

9 10 0 20 0 30 0 40 0 50 0

10 10 0 20 0 30 0 40 0 50 0

Moreover, how a metadata search approach has the influence

on top-k results is showed in Table 4. The numbers of top-k

results from each query are compared between two systems.

Top-k columns of Table 4 (where k = 10, 20, 30, 40, and 50)

show a number of top-k results obtained from metadata search

and non-metadata search. It shows that most of all top-k

results derive from a metadata search approach, and a little to

zero of non-metadata search results also appear in top-k. This

is because metadata terms change a kind of result collections

that users want. For example in Figure 5, a query with

keywords {film, Steven, direct} is considered and means that

“What movies did Steven direct?” by a metadata search, but

just one value term {Steven} is considered and not

distinguished by non-metadata search.

To evaluate answer accuracy, top-k precision, the ratio of the

number of answers deemed to be relevant in the first k results

with the highest scores of a method to k, is employed. Answer

relevance is judged by discussion of researchers in our

software systems engineering laboratory group. Figure 7

illustrates the average top-50 precision on various queries and

the average results of the top-k precision with different values

of k are shown in Figure 8. As expected, a metadata search

approach achieves much higher precision than non-metadata

search. As discussed previously, this is because metadata

terms change a kind of result collections that users want.

0

10

20

30

40

50

60

70

80

90

100

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

T
o
p

-5
0
 p

re
ci

si
o
n

 (
%

)

metadata non-metadata

Fig 7: Top-50 precision on various queries

0

20

40

60

80

100

120

top-1 top-10 top-20 top-30 top-40 top-50

T
o

p
-k

 p
re

ci
si

o
n

 (
%

)

metadata

non-metadata

Fig 8: top-k precision with different values of k

Furthermore, to analyze the best semantic answer graph, sets

of query results are considered as shown in Figure 9. All top-k

results were found in R(w/q) first. This means that the best

answer graph gives the optimal answers and corresponds to

human judgment. All answer graphs of each query were

shown to 29 user judges. The judges had to decide that the

best answer graphs were relevant collections which they want.

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.3, May 2013

7

Therefore, the best answer graph for a query would give

precise answers.

|R(w/o)|

Collections

Results from non-

metadata search

Results from a

metadata search

|R(w/q)|

|R(w/m)|

Results from the

best answer graph

of metadata search

Fig 9: The sets of query results

6. CONCLUSIONS
In this paper, a metadata search approach to ranked keyword

search in relational databases is proposed. A semantic graph

as a data model and strategies is used to find the optimal

solutions. Additionally, the IR-style ranking function is

applied to rank result tuples from answer graphs. The

experiments confirmed that metadata in a semantic

representation are useful for giving precise answers in both

attribute-level and relation-level. Moreover, user terms can

solve ambiguity problem of querying. Answer graphs are

optimal solutions and suitable for mapping to corresponding

SQL statements.

7. ACKNOWLEDGMENTS

This research was supported by the grant of the National

Centre of Excellence in Mathematics, PERDO, Bangkok,

Thailand. The authors also would like to thank Commission

on Higher Education, Thailand. This support is very gratefully

acknowledged.

8. REFERENCES
[1] B. Yates, and R. Neto, Modern Information Retrieval,

ACM Press Series/Addison Wesley, New York, 1999.

[2] A. Balmin, V. Hristidis, and Y. Papakonstantinou,

“ObjectRank: Authority-Based Keyword Search in

Databases”, In VLDB, 2004, pp. 564-575.

[3] S. Agrawal, S. Chaudhuri, and G. Das, “DBXplorer: A

System for Keyword-Based Search over Relational

Databases”, In ICDE, 2002, pp. 5-16.

[4] V. Hristidis and Y. Papakonstantinou, “Discover:

Keyword Search in Relational Databases”, In VLDB,

2002, pp. 670-681.

[5] Y. Luo, C. Yu, W. Wang, and X. Zhou, “SPARK: Top-k

Keyword Query in Relational Databases”, In SIGMOD,

2007, pp. 115-126.

[6] R. Wheeldon, M. Levene, and K. Keenoy, “DbSurfer: A

Search and Navigation Tool for Relational Databases”,

LNCS, Springer, Heidelberg, 2004, pp. 144-149.

[7] J. Saelee and V. Boonjing, “A Metadata Search

Approach to Keyword Search in Relational Databases”,

In ICCIT, 2008, pp. 571-576.

[8] S. Wang and K. Zhang, “Searching Databases with

Keywords”, J. Computer Science and Technology, 2005,

pp. 55-62.

[9] J. Park and S. G. Lee, “Keyword Search in Relational

Databases”, J. Knowledge and Information Systems, vol.

26, 2011, pp. 175-193.

[10] G. Bhalotia, A. Hulgeri, C. Nakhe, and S. Chakrabarti,

“Keyword Searching and Browsing in Databases using

BANKS”, In ICDE, 2002, pp. 431-440.

[11] G. Li, B.C. Ooi, J. Feng, J. Wang, and L. Zhou. “EASE:

An Effective 3-in-1 Keyword Search Method for

Unstructured, Semi-structured and Structured Data”,

SIGMOD, Canada, 2008.

[12] M. M. Thein and M. M. S. Thwin, “Efficient Schema

Based Keyword Search in Relational Databases”, J.

Computer Science, Engineering and Information

Technology, vol. 2, no. 6, Dec. 2012, pp. 13-32.

[13] V. Hristidis, L. Gravano, and Y. Papakonstantinou,

“Efficient IR-Style Keyword Search Over Relational

Databases”, In VLDB, 2003, pp. 850-861.

[14] V. Kacholia, S. Pandit, A. Chakrabarti, S. Sudarhan, R.

Desai, and H. Karambelkar, “Biderectional Expansion

for Keyword Search on Graph Databases”, In VLDB,

2005, pp. 505-516.

[15] B. Ding, J.X. Yu, S. Wang, L. Qin, X. Zhang, and X.

Lin, “Finding Top-k-Min-Cost Connected trees in

Databases”, In ICDE, 2007, pp. 836-845.

[16] S. Dar, G. Entin, S. Geva, and E. Palmon, “DTL's

DataSpot: Database Exploration Using Plain Language”,

In VLDB, 1998, pp. 645-649.

[17] R. Goldman, N. Shivakumar, S. Venkatasubramanian,

and H.G. Molina, “Proximity Search in Databases”, In

VLDB, 1998, pp. 26-37.

[18] X. Yin, J. Han, and J. Yang, “Searching for Related

Objects in Relational Databases”, In SSDBM, 2005, pp.

227-236.

[19] N.L. Sarda, and A. Jain, “Mragyati: A System for

Keyword-based Searching in Databases”, TR CoRR

cs.DB, 2001.

[20] Q. Su, and J. Widom, “Indexing Relational Database

Content Offline for Efficient Keyword-Based Search”, In

IDEAS, 2005, pp. 297-306.

[21] F. Liu, C. Yu, W. Meng, and A. Chowdhury, “Effective

Keyword Search in Relational Databases”, In SIGMOD,

2006, pp. 563-574.

[22] Y. Xu, Y. Ishikawa, and J. Guan, “Efficient Continual

Top-k Keyword Search in Relational Databases”, J.

Information Processing, vol. 20, no. 1, Jan. 2012, pp.

114-127.

[23] J. Gu, and H. Kitagawa, “Extending Keyword Search to

Metadata on Relational Databases”, In INGS, 2008.

[24] S. Bergamaschi, E. Domnori, F. Guerra, R. T. Lado, and

Y. Velegrakis, “Keyword Search over Relational

Databases: A Metadata Approach”, In SIGMOD, 2011,

pp. 565-576.

