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ABSTRACT 

This paper proposes an effective approach to keyword query 

in relational databases. It uses a semantic graph model 

consisting of database metadata, database values, user terms, 

and their semantic connections. Keywords of a query 

determine all possible connected subgraphs of the semantic 

model. A query answer is a subgraph with the minimum 

connections. In addition, the approach proposes to rank result 

tuples of the answer subgraph using the IR-style ranking 

function. Our experiment results show that queries with 

metadata terms give more precise answers than queries 

without them.    
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1. INTRODUCTION 
Many services on the Web and advanced applications widely 

use relational databases as structured information storages. 

Accordingly, the need for information retrieving is increasing.  

Traditional relational database search systems require users to 

know database schemas and query language such as SQL. So 

keyword search systems as information retrieval systems [1] 

over relational databases have recently proposed. However, 

keyword search techniques on the Web cannot directly be 

applied to databases because data on the Internet and database 

are in different forms. In databases, the information is viewed 

as data tables and their relationships, and query results may be 

a single tuple or joining tuples. Accordingly, the challenge is 

how to apply keyword-based search to find sorted relevant 

results in databases. 

Existing systems supporting keyword search in relational 

databases (e.g., [2]–[6]) limit type of keywords to database 

value terms. In fact, users may query with metadata terms 

(e.g., attribute name or relation name) or their preferred terms. 

Consider an instance of a movie database as shown in Figure 

1, a query with keyword {Steven} obtains two relevant tuples 

r12 and r53. A query with keywords {director, Steven}, 

which {director} is an attribute name, gives only tuple r12. 

Thus, a metadata is useful for giving precise answers. Next, 

consider a query with keywords {movie, Steven, direct}, 

keywords {movie} and {direct} are ignored by most of 

systems, even these metadata terms are meaningful for 

querying. This is because they are not database values. This 

means that metadata terms in a query are the semantics of the 

answer. In addition, users often query using their preferred 

terms that are not directly matched to any objects in a 

database.  For example, users may refer to the “actor” object 

of database using a keyword {player}. Moreover, these 

systems generally assumed that the answer graphs are in 

horizontal line or instance-level. Hence, the answer graph is a 

joining tuple tree which consists of all attributes of each tuple.  

MovieId Title Year

20001 Gladiator 2000

20021 Minority Report 2002

Movies 

ActorId AName

a01 Russel Crowe

a02 Tom Cruise

a03 Steven Seagal

Actors

MovieId ActorId Character

20001 a01 Maximus

20021 a02 Chief John Anderton

Movies2Actors 

r31

r32

r41

r42

r51

r52

r53

DirectorId DName

d02 Steven Spielberg

Directors 

d01 Ridley Scottr11

r12

DirectorId MovieId

d02 20021

Movies2Directors 

d01 20001r21

r22

 

Fig 1: An example of movie database instances 

For these reasons, this paper proposes an effective system that 

allows users to query a database using database value terms, 

metadata terms, and their preferred terms. To achieve the 

purpose, it employs a metadata search approach [7], which 

uses a semantic graph of underlying database to accommodate 

these terms and database semantics. The semantic graph 

consists of database metadata, database values, user terms, 

and their semantic connections. This graph is useful for 

dealing with relation-level, attribute-level, and value-level in 

vertical line. An answer to a query is defined as a smallest 

subgraph containing all query keywords as its nodes. 

Moreover, we adopt a state-of-the-art IR ranking function to 
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rank result tuples obtained from the answer subgraph.  

The rest of this paper is organized as follows. Section 2 

briefly introduces related works. Section 3 describes how a 

relational database is modeled as a semantic graph. Section 4 

presents the system architecture. We give preliminary 

experiment results in Section 5. Section 6 concludes the paper 

and outlines future works. 

2. RELATED WORK 
Keyword search systems over relational databases have been 

extensively proposed. The earlier survey in [8] and [9] 

overviewed systems such as BANKS [10], DBXplorer [3], 

DISCOVER [4], ObjectRank [2], and EASE [11] and briefly 

summarized the key techniques from several aspects. 

DBXplorer, DISCOVER, and BANKS share a similar idea 

but differ from each other in their search algorithms and 

ranking functions. They return joining tuple trees as answers 

for a given keyword query. DBXplorer and Discover generate 

connected tuple trees through primary-key-foreign-key 

relationships that contain all query keywords called candidate 

networks (CN). Thein et al. [12] proposed candidate network 

generation algorithms for reducing the overhead that caused 

by raising the number of joining tuples for the size of minimal 

candidate network. BANKS represents all tuples in a database 

as tuple graphs and generates answer graphs by searching 

Steiner trees containing all query keywords. However, all of 

them just assume AND semantics for an answer whereas our 

approach supports both AND and OR semantics. Hristidis et 

al. [13] proposed the extension of DISCOVER that handles 

non-metadata queries with both AND and OR semantics. 

Kacholia et al. [14] presented the bidirectional strategy to 

improve backward expanding search in BANKS by allowing 

forward search strategy. However, it still works by identifying 

Steiner trees from a whole graph. Furthermore, Ding et al. 

[15] employed a dynamic programming to improve efficiency 

of identifying Steiner trees. 

DataSpot [16] is a database search system using free-form 

queries similar to our approach. It represents database content 

in form of schema-less semi-structured graph called 

hyperbase. Nodes in hyperbase represent data objects (e.g., 

relations, tuples, and attributes) and edges represent 

associations between data objects. Query results are connected 

subgraphs of hyperbase containing all query keywords. 

Goldman et al. [17] proposed a simple query language with 

two sets of keywords in form of find x near y. Two sets of 

objects in a database are found and the result set is ranked 

based on distance between these two sets. A similar system is 

proposed by Yin et al. [18]. Their concept is to find the target 

objects related to source objects with AND and OR 

semantics. The system converts a database schema to a graph. 

At the query time, it extends shortest join paths to measure the 

strengths of their relationships. Mragyati [19] is the system to 

keyword searching and browsing on relational databases. The 

system maps query keywords to a database schema using 

metadata as four-level trees and translates answer trees to 

SQL. The ranking function can be based on user-specified 

criteria but the default ranking is based on the number of 

foreign-key constraints. It is similar to our work in supporting 

synonyms and metadata. However, the implementation does 

not handle queries with more than 2 solution paths. Dissimilar 

to the other approaches, Wheeldon et al. [6] proposed a 

system to keyword search over relational databases which 

indexed a relational database as virtual documents to querying 

and navigation. Their approach indexes textual content of 

each tuple as a web page and their foreign-key constraints are 

extracted to hyperlink between virtual web pages. This is 

similar to a text object in EKSO [20] but EKSO provided 

offline indexing time to significantly reduce query time 

computation. Given a keyword query, the system in [6] 

calculates a ranked set of virtual web pages with at least one 

keyword matched. Then it uses the best trial algorithm to 

expand a rank set of navigation paths. The relevant results are 

unnecessary to the SQL translation. However, it does not 

support numerical queries. 

The original ranking of the query results is based on the size 

of the answer tuple trees [3, 4]. Given a query Q, the score 

assigned to a result tuple tree T is: 

 

 

 Tsize
QTScore

1
),(   (1) 

 

where size(T) is the number of tuples in T. More recent 

approaches have been attentively proposed ranking methods. 

ObjectRank uses an authority-based ranking strategy to 

keyword search in relational databases. It returns a set of the 

individual tuple as an answer. The ranking function is based 

on link analysis and term frequencies of query keywords. Luo 

et al. [5] proposed a new IR style method to join-tuple tree 

ranking. Liu et al. [21] improves the ranking strategy in [13] 

by identifies four normalization factors, tuple tree size, 

document length, document frequency, and inter-document 

weight. Yanwei et al. [22] studies the problem of finding the 

top-k results in relational databases for a continual keyword 

query. A set of potential top-k results is computed by 

evaluating the range of the future relevance score for every 

query result and a light-weight state is created for each 

keyword query.  

The IR-style relevance ranking function for an individual text-

attribute has two sub-functions, Score and Combine, defined 

as below: 
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where Score(ai, Q) is the relevance score with respect to the 

keyword query Q determined by an IR engine for a single text 

attribute ai which is viewed as a text document. k is a keyword 

in Q, tf is the frequency of k in ai, df is the number of tuples in 

ai’s relation with keyword k in this attribute, dl is the size of ai 

in characters, avdl is the average attribute-value size, N is the 

total number of tuples in ai’s relation, and s is a constant 

usually be 0.2. Let A be the set of all text attributes of an 

answer tuple tree T. The score assigned to T for query Q is 

calculated by aggregate among two functions as below:  

 

            ))(),,((),( TsizeQAScoreCombineQTScore     (3) 
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The most similar in objective to our approach are in [23] and 

[24]. In [23], it extends keyword search to metadata over 

relational databases but not also user-terms or synonyms. It 

designs a data model as tuple graphs that each tuple contains a 
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set of an attribute-value pairs and a new metadata attribute. 

For example, given a tuple r31 in Figure 1 (a), this tuple is 

represented in form of {(MoviedId: 20001), (Title: Gladiator), 

(Year: 2000), (N4: Movies)} where N4 is a new metadata 

attribute. Considerably, there is too redundant metadata 

information in these tuples. 

Approaches to keyword query are summarized in Table 1.  

Table 1. Representative keyword search systems  

Approach Data Model Ranking Top-k 

Processing 

Proximity Data graph Distance N/A 

DataSpot Data graph Number of 

edges 

N/A 

DBXplorer Schema graph Number of 

joins 

N/A 

BANKS Data graph Edge weight, 

node weight 

N/A 

DISCOVER Schema graph Number of 

joins 

N/A 

IR-Style  TF-IDF Sparse algorithm, 

(Global) Pipeline 

algorithm 

Effectiveness  Normalization N/A 

ObjectRank Data graph, 

Schema graph 

Authority rate Threshold 

algorithm 

Top-k-min-

cost 

Data graph  GST-k (optimal 

at top-1) 

SPARK Schema graph Number of 

joins, TF-IDF 

Skyline sweeping 

algorithm, 

Block pipeline 

algorithm 

EASE Data graph Structural 

compactness, 

TF-IDF 

N/A 

 

3. DATABASE SEMANTIC 

REPRESENTATION  
In this section, a data model and related definitions used in a 

metadata search approach are briefly presented. A database is 

considered as the semantic model including metadata terms, 

database value terms, and user terms. Metadata and database 

value terms intuitively known as relation names, attribute 

names, and attribute values. User terms are abbreviations, 

words or phrases that users use to refer to objects in the 

model. A user term is defined as (class, object), where classes 

consist of relation, attribute, and value, and objects are 

instances of these classes. 

Informally, the semantic model is viewed as a graph with 

nodes representing objects of three classes: the relation class, 

the attribute class, and the value class. Edges represent 

connections between corresponding objects: relation to 

relation, relation to its attribute, and attribute to its attribute 

value. An example of the semantic graph for a movie database 

is illustrated in Figure 2. The answer graphs should be 

connected semantic subgraphs containing query keywords. 

Because of these structures of semantic model, the answer 

graphs can be additional metadata graphs that can deal 

separately from instance-level. 

Movies

Movies2Actors

Movies2Directors

DirectorId

MovieId

MovieId

Title

Year

MovieId

ActorId

Character

20001

d01

20001

Gladiator

2000

20001

a01

Maximus

 
 

Fig 2: The semantic sub-graph 

A formalized semantic graph and necessary definitions used 

to describe a query model in the next section are showed in 

the following. 

Definition 1 Given a semantic graph G <V, E>, Node V is a 

set of metadata (M) and Database Values (D), and E is a set of 

their connections between relation-relation, relation-attribute 

and attribute-value. 

Definition 2 Given a set of user-terms U, each user term u V 

but u is referred to corresponding node V in a semantic graph 

G. 

Definition 3 A query keyword K is a set of {k1, k2, …, kn}, 

where each k is a word or phrase of query Q matching some 

objects in G or U, and n is a number of query keywords. 

Definition 4 A keyword node set of a query keyword ki, 

denoted
ikV , is a set of nodes in G that correspond to ki. 

Definition 5 Given n is a number of query keywords and n 

 0, a query image QI is a set of keyword nodes vi, where i = 

1, 2, …, n and vi 
ikV . 

Definition 6 A basic path pi of vi is a minimum set of V in G 

that connect vi to its relation node. 

Definition 7 A feasible graph FG of QI is a sub-graph of G 

that is a minimal collection of basic paths pi in QI, where i = 

1, 2, …, n. 

Definition 8 An answer graph is the shortest feasible graph 

that consists of <V, E> where V is a set of objects (relation 

nodes, attribute nodes, and value nodes) and E is a set of 

connection between them. 

4. SYSTEM ARCHITECTURE  
This section generally explains the architecture and strategies 

of the metadata search approach [7]. Figure 3 shows the 

architecture of our proposed system. It consists of two 

components, preprocessing and query processing. As 

described in the previous section, the database semantic 

representation is primarily explained in the preprocessing 
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module. It automatically indexes resources except user terms, 

which are updated by administrators. In the second module, 

the keyword matching process finds database objects in the 

semantic model corresponding to user inputs. Answer graphs 

are generated in the query graph generator process. This 

process filters all possible query graphs to answer graphs just 

be the informative answers. These answer graphs are 

translated to SQL statements in the SQL generator process. 

Finally, the result ranking process evaluates the relevant 

results with ranking functions and then gives them back to the 

user. The detail of query processing is explained in the 

following. 

 

Preprocessing

DB

Semantic ModelKeyword Matching

Query Graph 

Generator

SQL Generator

Result Ranking

User Inputs

Database Objects

Query Graphs

Relevant Results

Ranking Results

Indexing

Query Processing
 

Fig 3: The architecture of a metadata search approach 

 

4.1 Keyword Matching  
The purpose of keyword matching is to find corresponding 

objects in semantic model for each query keyword. In other 

words, this process examines a query to find query keywords 

and their nodes in graph G. There are two cases in this 

process. The first is a direct matching that a keyword directly 

matches with objects in graph G (metadata terms or database 

value terms). For example from Figure 1, a query “director 

Steven” has two query keywords, {director} and {Steven}. 

Their resources are the {Directors} relation and the value 

terms from {Directors, Actors} relations respectively. The 

second is a synonym-based matching that keyword is a 

synonym or an abbreviation of objects in semantic graph. 

Given a keyword {player} for an example for this case, it 

cannot directly match with any objects but it is a synonym of 

{Actor}. Consequently, a query keyword {player} is changed 

to {actor} and its node is a relation {Actors}.  

Keyword matching generally associates each query term with 

senses under the database semantic representation. Therefore, 

after keyword matching process, a set of resources for each 

keyword indicates kinds of elements that user wants.  

4.2 Query Graph Generator  
The purpose of query graph generator is to find semantic 

answer graphs from many candidate query graphs. To achieve 

this purpose, it begins with determining all possible query 

images containing one keyword node from each query 

keyword. The next is to find basic paths of each query image. 

The last, all feasible graphs are created. Figure 4 gives an 

algorithm to generate optimal answer graphs. Figure 5 shows 

an example of these steps with query keywords {film, Steven, 

direct}.  

 

Input: Query Q, a semantic graph G 

Output: a set of answer graphs 

 

1.  Determine a set of query keywords K and their keyword node 

sets 

  K = {k1, k2, …, kn}, where n is a number of query keywords 

 
ikV = {

1 2
, , ,

i i ijk k kv v v }, where i = 1, 2, …, n and j is a number 

of corresponding nodes in G of ki 

2.  Determine a set of query images QI 

 QIm = 
1 1 2 2

{ , , , }
j j nj nk k k k k kv V v V v V   ,  

 where m =  
1 2 nk k kV V V  

3.  Finding a set of basic paths in each QI 

 Each 
ikv  in QI, find a basic path where 

 If 
ikv  is in a value class in G, then 

ikp  = (
i

R

kv ,
i

A

kv ,
ikv ) 

where 
i

R

kv , 
i

A

kv  are relation and attribute nodes of vi 

belonging to in G  respectively 

 If 
ikv  is in an attribute class in G, then 

ikp  = (
i

R

kv ,
ikv ) 

where 
i

R

kv  is a relation node of 
ikv  belonging to 

 If 
ikv  is in a relation class in G, then 

ikp  = (
ikv ) 

4.  Find a feasible graph and determine a set of answer graphs  

 Answer graphs are feasible graphs that have the lowest cost, 

mini=1-m(cost(FGi)) where m is a number of feasible graphs and 

cost(FG) = |V| - 1 where |V| is a number of nodes in FG. 

 

Fig 4: An algorithm for answer graph generation 

 

In this process, branch and bound algorithm is used to find 

optimal solutions which have a minimum weight based on the 

number of nodes in a query graph. This is because the 

likelihood of an informative answer for keyword searching in 

relational databases based on the relational objects over the 

component facts. This means that, given two or more query 

graphs, the informative answer graph will always prefer the 

shortest graph. Because of our answer graph is a tree, its 

weight is |V| -1 where V is a set of nodes in it. For this reason, 

the optimal solution or the informative answer graph from an 

example in Figure 5 is a feasible graph from QI1.  

In summary, a query graph associates a set of objects based on 

relationships in the database semantic representation and 

indicates what kinds of collections that users want. Therefore, 

after the query graph generator process, the best informative 

answer graphs are converted to SQL in the next process.  
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4.3 SQL Generator  
To generate SQL from an answer graph, objects, 

relationships, and their joining conditions are determined as 

follows. 

1) The relation list consists of all relation nodes in answer 

graph and indicates that what relations that tuple results 

originated from. 

2) The attribute list is a selection list based on the nature of a 

semantic model. Figure 6 shows the natures of semantic 

model, relation-level (a), attribute-level (b), and value-level 

(c). If an answer graph consists of these natures, an attribute 

list contains all attributes that belong to a relation, a terminal-

attribute, and an attribute of value node respectively. 

Additionally, if an answer graph is a lonely nature (c), an 

attribute list is all attributes of relation that its value node 

belongs to. 

3) The joining condition extracts from foreign-key 

constraints of a database schema. 

4) The selection condition is determined from value nodes in 

answer graph. If value node v1 belongs to attribute node a1, v2 

belongs to a2, and vn belongs to an then the selection condition 

is AND semantics (a1 = v1 AND a2 = v2 AND … AND an = vn). 

If v1, v2, …, vn belong to the same attribute a, the selection 

condition is OR semantics (a = v1 OR a = v2 OR … OR a = 

vn). 

 

(a)

(b)

(c)

Relation ……

Attribute 

……………………..

Value 

……………………………………………….

 

Fig 6: The nature of the semantic model 

 

Consequently, we have SQL statement for each answer graph 

as follow: 

SELECT [attribute list] 

FROM  [relation list] 

WHERE [selection condition] [AND] 

[join condition] 

 

4.4 Result Ranking  
After SQL generator process, multiple consequence result 

tuples are produced. This causes the question that which top-k 

tuples are the most likely answers for the end users. The IR-

style ranking function as in [13], is applied to rank these 

tuples. Given a query Q, the ranking function is assigned to a 

tuple answer T is: 

 

 

 Tsize

QtScore
QTScore

Tt 

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where Score(t, Q) is the relevance score defined as below with 

respect to the keyword query Q and size(T) is weight of its 

answer graph. 
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where t is a result tuple that relevant to query Q, tf is the 

frequency of a keyword k appears in tuple t, df is the number 

of tuples that k appears, dl is the size of t in characters, avdl is 

the average length of T, N is the number of T, and s is a 

constant usually be 0.2. 

5. EXPERIMENTS 
To evaluate the search effectiveness of our approach, we use 

the Internet Movie Database (IMDB)1 as the datasets in our 

experiments. We converted a subset of original files into 

relational tables as showed in Table 2 and used MySQL 

v5.0.24a with its default configuration and JDBC connections. 

All experiments were run on PC with a 1.66GHz CPU and 1G 

                                                           
1 http://www.imdb.com/interfaces 

Keywords

Keyword Matching

Resources

film

Steven

direct

R: Movies

V(DName): Steven 

Spielberg, 

V(EName): Steven 

Seagal

R:Movies2Directors

Step 1: Query Image

[QI1]

R: Movies

V(DName): Steven Spielberg

R:Movies2Directors

[QI2: ]

R: Movies

V(EName): Steven Seagal

R:Movies2Directors

Step 2: Basic Path

Movies Directors

DName

Movies2

Directors

Steven Spielberg

Movies Actors

EName

Steven Seagal

Movies Directors

DName

Steven Spielberg

MoviesActors

EName

Steven Seagal

...

Step 3: Feasible Graph

Movies2

Directors

Movies2

Directors

Movies2

Directors

Fig 5: An example of query graph generator 
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RAM. The database server and the client were run on the 

same PC. 

Table 2. Internet Movie Dataset Statistics 

Relation 

Schema 

#Tuples Relation 

Schema 

#Tuples 

movies 7,485 Actors 10,025 

directors 4,296 Editors 2,572 

producers 8,556 Writers 7,130 

genres 10,030 language 8,054 

prodcompanies 8,340 releasedates 17,480 

movies2actors 15,475 movies2editors 7,956 

movies2directors 8,165 movies2producer

s 

13,768 

movies2writers 11,680   

Total number of tuples                         141,012 

 

In preliminary experiments, the influence of the system does 

with metadata terms additionally is measured by running ten 

queries with at least one metadata term in two systems, a 

metadata search and non-metadata search. Table 3 gives the 

total number of query results from: 1) all answer graphs of a 

metadata search (w/m), 2) the best answer graph of a metadata 

search (w/q), and 3) all answer graphs from non-metadata 

search (w/o). A metadata search approach gives the number of 

results much more than non-metadata search because 

metadata terms alternatively cause the semantic answer 

graphs and various tuples from each graph. 

Table 3. The Total Number of Query Results 

Query #w/m #w/q #w/o Query #w/m #w/q #w/o 

1 881 50 220 6 216 215 143 

2 157 13 89 7 334 56 118 

3 37 24 3 8 696 33 49 

4 1745 107 220 9 169 77 106 

5 2009 138 239 10 3826 1688 2288 

 

Table 4. The Number of Top-k Results 

Query Top-10 Top-20 Top-30 Top-40 Top-50 

 #w/m #w/o #w/m #w/o #w/m #w/o #w/m #w/o #w/m #w/o 

1 10 0 20 2 30 7 40 10 50 17 

2 10 1 13 2 13 4 13 6 13 11 

3 10 0 20 0 24 0 24 0 24 0 

4 10 0 20 0 30 0 40 0 50 0 

5 10 0 20 0 30 0 40 0 50 0 

6 10 0 20 0 30 0 40 0 50 0 

7 10 0 20 0 30 0 40 0 50 0 

8 10 0 20 0 30 0 33 0 33 0 

9 10 0 20 0 30 0 40 0 50 0 

10 10 0 20 0 30 0 40 0 50 0 

 

Moreover, how a metadata search approach has the influence 

on top-k results is showed in Table 4. The numbers of top-k 

results from each query are compared between two systems. 

Top-k columns of Table 4 (where k = 10, 20, 30, 40, and 50) 

show a number of top-k results obtained from metadata search 

and non-metadata search. It shows that most of all top-k 

results derive from a metadata search approach, and a little to 

zero of non-metadata search results also appear in top-k. This 

is because metadata terms change a kind of result collections 

that users want. For example in Figure 5, a query with 

keywords {film, Steven, direct} is considered and means that 

“What movies did Steven direct?” by a metadata search, but 

just one value term {Steven} is considered and not 

distinguished by non-metadata search. 

To evaluate answer accuracy, top-k precision, the ratio of the 

number of answers deemed to be relevant in the first k results 

with the highest scores of a method to k, is employed. Answer 

relevance is judged by discussion of researchers in our 

software systems engineering laboratory group. Figure 7 

illustrates the average top-50 precision on various queries and 

the average results of the top-k precision with different values 

of k are shown in Figure 8. As expected, a metadata search 

approach achieves much higher precision than non-metadata 

search. As discussed previously, this is because metadata 

terms change a kind of result collections that users want. 
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Fig 7: Top-50 precision on various queries 
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Fig 8: top-k precision with different values of k 

 
Furthermore, to analyze the best semantic answer graph, sets 

of query results are considered as shown in Figure 9. All top-k 

results were found in R(w/q) first. This means that the best 

answer graph gives the optimal answers and corresponds to 

human judgment.  All answer graphs of each query were 

shown to 29 user judges. The judges had to decide that the 

best answer graphs were relevant collections which they want. 
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Therefore, the best answer graph for a query would give 

precise answers. 

|R(w/o)|

Collections

Results from non-

metadata search

Results from a 

metadata search

|R(w/q)|

|R(w/m)|

Results from the 

best answer graph 

of metadata search

 

Fig 9: The sets of query results 

6. CONCLUSIONS  
In this paper, a metadata search approach to ranked keyword 

search in relational databases is proposed. A semantic graph 

as a data model and strategies is used to find the optimal 

solutions. Additionally, the IR-style ranking function is 

applied to rank result tuples from answer graphs. The 

experiments confirmed that metadata in a semantic 

representation are useful for giving precise answers in both 

attribute-level and relation-level. Moreover, user terms can 

solve ambiguity problem of querying. Answer graphs are 

optimal solutions and suitable for mapping to corresponding 

SQL statements. 
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