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ABSTRACT 
Cryptography is dealing with a lot of different algorithms which are 

much secure in various aspects but there are two major problems 

coming in the cryptographic algorithms, first the portability of 

algorithm from heavy applications to light applications and second the 

current Method of Formal Coding-Side Channel Attack (MFCSCA) 

which are targeting XOR function of the algorithms. To resolve these 

two problems we propose a new algorithm by using AES algorithm 

with lattice concept of multidimensionality. In this paper, we propose a 

new algorithm by combining the concepts of mathematics and 

multidimensionality concept of physics which solve both the problems 

of the encryption algorithms. 
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1. INTRODUCTION 
As ubiquitous computing becomes a reality, sensitive information is 

increasingly processed and transmitted by smart cards, mobile devices 

and various types of embedded systems. This has led to the requirement 

of a new class of lightweight cryptographic algorithm to ensure security 

in these resource constrained environments. In January 2012, the 

International Organization for Standardization (ISO) has standardized 

two low-cost block ciphers for this purpose ,CLEFFIA and PRESENT 

[1], but the security of these algorithms are restricted to small 

applications only but for large applications again Advanced Encryption 

Standard (AES) and Data Encryption Standard (DES) are preferred. 

The National Institute of Standards and Technology (NIST) selected 

the RJINDAEL algorithm as the new Advanced Encryption Standard 

(AES) in 2001. Numerous FPGA and ASIC implementations of the 

AES were previously proposed and evaluated. To date, most 

implementations feature high speeds and high costs suitable for high-

end applications only. The need for secure electronic data exchange 

will become increasingly more important. Therefore, the AES must be 

extended to low-end customer products, such as PDAs, wireless 

devices, and many other embedded applications. In order to achieve 

this goal, the AES implementations must become very inexpensive [2] 

but so far slow.  

In this paper, we propose method which is light weight and secure; and 

can be used by light as well as heavy applications this is achieved by 

combining the concepts of mathematics and physics which provide 

complex but fast method of encryption. The basic idea is to remove the 

XOR function from the algorithm which make the algorithm fast and 

because of the lattice based transposition and RJINDAEL algorithm [8] 

for substitution security is maintained. We focused on the various 

factors to maintain the secrecy of message and at what level security 

are needed, i.e. light application or heavy application, so on the basis of 

that factors key length is decided and algorithm will dynamically 

change its few factors which maintain the security. The minimum key 

length would be 128 bits which is much secure and does not easily 

captured by intruder. The reason behind removing XOR function is it 

decreases the implementation speed and recently intruders using 

Method of Formal Coding-Side Channel Attack(MFCSCA) to resolve 

XOR-sum [3][10][22], i.e. algebraic normal form (ANF), which result 

in XOR as an unsecure mode of operation for encryption. 

Our method resolves the Method of Formal Coding-Side Channel 

Attack (MFCSCA) and without compromising the security and 

complexity of the encryption yet providing the much faster 

implementation than the AES and DES. 

2. PRAPOSED PORTABLE ENCRYPTION 

ALGORITHM 
As Feistel structure is one of the most widely used and best studied 

structures for the design of block ciphers. It was proposed by H. Feistel 

in the early 1970s; subsequently the structure was adopted in the well-

known block cipher DES. During the 30-year of modern block cipher 

research history, extensive studies have been made on Feistel structure. 

Currently, many well-known Block ciphers employ the design of 

Feistel structures. On the other hand, an optimal diffusion which is a 

linear function with the maximum branch number is widely regarded in 

the recent block cipher research; the concept is used in the design of 

AES/RJINDAEL and many other cryptographic primitives[4][5][6]. 

Therefore, we also prefer Feistel structure in our designing concept. 

There are two inputs for the algorithm one is plain text to encrypt and 

secret key which size would be dynamic and change from one 

implementation to another but it will static for a particular 

implementation, the size of key would decide number of rounds and 

many other security factors of the algorithm, which would be discussed 

in next section. So our algorithm can be explained under following 

sections: 

A. Key size and key generation 

B. Basic structure and organization of operations 

C. Decryption. 

2.1 Key Size and Key Generation 
The key size would be greater than or equal to 128 bits (keylen ≥ 128 

bits). The initial key sequence would decide various factors for the 

algorithm: 
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a.  The number of columns of the matrix of the message 

block would be keylen/8 . 

b. Number of rounds would be keylen/4 . 

c. The key sequence would decide the shift pattern which 

is used to generate keys for all the rounds. 

d. The key sequence of every round would decide the 

column indexing of the matrix of the message by using 

hash indexing technique. 

 

2.1.1 Key Generation 

 The key for every round would be generated by the left shifting of the 

previous round key, the shift would be decided by initial pattern of the 

key (figure 2), the basic structure for key generation is given in (figure 

1: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                          Fig 1. Basic structure of key generation 

 

2.1.2 Shift pattern.  

The shift pattern would be done by converting the binary numbers into 

decimal numbers, taking 4 bits for one decimal number, but due to the 

dynamic nature of the key sometimes it required padding, so shift 

pattern is done in two steps (figure 2): 

 

 

 

 

        
                                            

 

 

 

 

     

    Fig 2. Finding the shift pattern for Key Generation 

 

 

1.  Padding (optional):- Adding zeros (0) at the end of the key 

to make it even, shown in table 1.  

Key length (bits) Number of bits  

128  0 bits 

129 3 bits (000) 

130 2 bits (00) 

131 1 bit (0) 

132 0 bits 

 

 

2. Decimal conversion: - Taking 4 bits for a decimal number. 

 

Table 2. Showing decimal numbers for various bit sequence 

 

The key for the next round is generated by the circular left shift of the 

key of the previous round (figure 3). 

 

 

 

Bit sequence Equivalent decimal number 

0000 0 

0001 1 

0010 2 

0011 3 

0100 4 

0101 5 

0110 6 

0111 4 

1000 8 

1001 9 

1010 10 

1011 11 

1100 12 

1101 13 

1110 14 

1111 15 
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Fig 3. Key generation for the next round 

 

The “y” shift is decided by the shift pattern which is generated by the 

initial key given by the user (shown in figure 2). 

2.2 Basic Structure of Algorithm 

The basic structure of algorithm is like the structure of AES, Advanced 

Encryption Standard; it contains four operations which are repeated in 

each round (figure 4). 
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                            Fig 4.  Basic Structure of the algorithm 

 

 

a) Matrix formation and message padding 
 Matrix formation is also dynamic in nature it depends on the key 

length as explained in section A, the number of columns in the matrix 

would bekeylen/8, and in each column there would be 8 bits, i.e. 2 

bytes, of the message which is filled row wise in the matrix. For 

example, let us take a keylen=128 bits , so 128/8=16 , therefore the 

number of columns in the matrix would be 16 so the message is filled 

in the matrix as:  

 

1                    2           3                                                                   16 

0C  12 97 . . . . . . DD 

 

Fig 5.  Sample Matrix for 128 bit key 

 

Padding: As the message length is dynamic because of the 

portability of the algorithm to the light weight and heavy weight 

application, hence the block size of the algorithm is to be 

maintained, if the message size is; n*(8* number of columns) 

where n=1, 2, 3……., i.e.   n ≥ 1,then the message is filled in the 

matrix row wise where n is the number  of rows, else message 

padding is required. We choose the message padding technique 

used in SHA, Secure Hash Algorithm, [7]The purpose of this 

padding in SHA is to ensure that the padded message is a multiple 

of 512 or 1024 bits, depending on the algorithm. Padding can be 

inserted before hash computation begins on a message, or at any 

other time during the hash computation prior to processing the 

block(s) that will contain the padding. In the same way our 

purpose of the padding is to make the message block in the 

multiple of key length so if the message length is less than 

(n*keylen) we add padding bits to make it even, the padding 

consists of single 1 bit followed by necessary number of 0 bits. 

 

 

 

 

L 

MESSAGE 1000000000……….. 

        

                Fig 6.  Message with padding 

 

Column Indexing. After the pad is inserted to the message the 

message will be inserted into the matrix row wise, 8 bits in each 

column, and the indexing of the column would be done by finding 

decimal sequence of the key of that round, (table 2), as we done 

for finding the shift pattern for the key generation. 

Ii=Di 

Where, 

Ii=Index for ith column. 

Di=Decimal Equivalent of the key for ith column.  

 

b) Our method has four modes of operations carrying out in every 

round: 

1. Not Of Bit(~): As every column of the matrix has 8 bits so our 

algorithm flip the bit at : 

 Ii mod 8, where Ii is the index of the ith column. 

      

2. Circular left shift(<<): Now in this step the circular left shit is 

done on the bits of the whole row by x times 

 
   

 

Where, Xi=value (column with index of largest prime number in 

the ith round key). 
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3. S-Box Substitution: In the next step we substitute the bits with the 

help of RJINDAEL S-Box shown in figure 7. 

 
                              Fig 7. Substitute byte Transformation [8] 

 

 

There are different S-Boxes for encryption (figure 8(a)) and decryption 

(figure 8(b)). 

           
                      Fig 8(a). S-Box[8] 

 

 
Fig 8(b). Inverse S-Box [8] 

 

4. Lattice Transpose: This is the last operation of a round in this 

transposition of the bits is done but instead of using any  

 

matrix or array algorithm uses the multidimensional lattice 

structure[20] (figure 9), transpose is done as:  

1) Divide the message bits into Message Length/Xi parts, 

Where, Xi=value (column with index of largest prime number in 

the ith round key). i.e., each part contains Xi bits. 

2) Now apply circular left shift to each part separately to Xi times 

(<<Xi). 

3) Then recombine all the parts and apply a circular right shift to 

whole message to Xi times (>>Xi). 

 

 

 

 
Fig 9. Multidimensional structure for transposition 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 10. Steps Showing Lattice Based Transposition 

 

 

c) Insert Flag: It is the extra bit which is added to the cipher after all 

the rounds are completed, flag shows whether the padding is done 

in the message or not, If padding is done in the message then flag 

would be “1” else “0”. 

It is added at the beginning of the cipher. 

  

 

 

Divide (Message Length/Xi parts) 

            Left shift (<<Xi) to each part 

            Right shift (>>Xi) to whole 

message 

            Combine all parts as one 
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2.3 Decryption   
It is just the reverse process of the encryption (figure 11) but the key 

generation section is changed (section a)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 11. Structure for Decryption 

 

 

a) Key Generation: Key generation of decryption is same as 

encryption (section 2.1) with some changes in shifting as: 

1. The first round key would be (<<Y), where Y is the sum of 

all the values of the shift pattern array. 

2. Key for next rounds would be (>>Zj) , where Zj is the 

value at the j position of the shift pattern array and j would be 

keylen/8 ,-1,….1. 

 

3. CONCLUSION 
Our proposed algorithm is resolving Method of Formal Coding-Side 

Channel Attack (MFCSCA) as well as the problem of portability of the 

algorithm to different applications. According to Kerckhoff [9], key is 

the only thing which is needed to be kept hidden hence we make key 

length a great importance and its length would be a great preference 

and though our algorithm not using XOR in any of its operation hence 

time complexity and problem of Method of Formal Coding-Side 

Channel Attack (MFCSCA) is resolved. 

This algorithm is very useful for distributed networks and mobile 

applications as both of them have light weight applications but require 

high security. So, it is would be very useful if ASPE implemented on 

distributed environment like cloud, grid or mobile applications like 

android. 
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