
International Journal of Computer Applications (0975 – 8887)

Volume 69– No.28, May 2013

35

Proposal for Portable Approach in Advance Encryption
Standard

Ankit Sharma

Department of Computer
Science & Engineering,

Lovely Professional University,
Jalandhar, Punjab

Shashank Gupta
Department of Computer
Science & Engineering,

Lovely Professional University,
Jalandhar, Punjab

Shashi Kant Rathore
Department of Computer
Science & Engineering,

Lovely Professional University,
Jalandhar, Punjab

ABSTRACT
Cryptography is dealing with a lot of different algorithms which are

much secure in various aspects but there are two major problems

coming in the cryptographic algorithms, first the portability of

algorithm from heavy applications to light applications and second the

current Method of Formal Coding-Side Channel Attack (MFCSCA)

which are targeting XOR function of the algorithms. To resolve these

two problems we propose a new algorithm by using AES algorithm

with lattice concept of multidimensionality. In this paper, we propose a

new algorithm by combining the concepts of mathematics and

multidimensionality concept of physics which solve both the problems

of the encryption algorithms.

Keywords

 Lattice based transpose, Feistel structure, S-Box, Key Permutation,

Kirchhoff’s principle, MFCSCA.

1. INTRODUCTION
As ubiquitous computing becomes a reality, sensitive information is

increasingly processed and transmitted by smart cards, mobile devices

and various types of embedded systems. This has led to the requirement

of a new class of lightweight cryptographic algorithm to ensure security

in these resource constrained environments. In January 2012, the

International Organization for Standardization (ISO) has standardized

two low-cost block ciphers for this purpose ,CLEFFIA and PRESENT

[1], but the security of these algorithms are restricted to small

applications only but for large applications again Advanced Encryption

Standard (AES) and Data Encryption Standard (DES) are preferred.

The National Institute of Standards and Technology (NIST) selected

the RJINDAEL algorithm as the new Advanced Encryption Standard

(AES) in 2001. Numerous FPGA and ASIC implementations of the

AES were previously proposed and evaluated. To date, most

implementations feature high speeds and high costs suitable for high-

end applications only. The need for secure electronic data exchange

will become increasingly more important. Therefore, the AES must be

extended to low-end customer products, such as PDAs, wireless

devices, and many other embedded applications. In order to achieve

this goal, the AES implementations must become very inexpensive [2]

but so far slow.

In this paper, we propose method which is light weight and secure; and

can be used by light as well as heavy applications this is achieved by

combining the concepts of mathematics and physics which provide

complex but fast method of encryption. The basic idea is to remove the

XOR function from the algorithm which make the algorithm fast and

because of the lattice based transposition and RJINDAEL algorithm [8]

for substitution security is maintained. We focused on the various

factors to maintain the secrecy of message and at what level security

are needed, i.e. light application or heavy application, so on the basis of

that factors key length is decided and algorithm will dynamically

change its few factors which maintain the security. The minimum key

length would be 128 bits which is much secure and does not easily

captured by intruder. The reason behind removing XOR function is it

decreases the implementation speed and recently intruders using

Method of Formal Coding-Side Channel Attack(MFCSCA) to resolve

XOR-sum [3][10][22], i.e. algebraic normal form (ANF), which result

in XOR as an unsecure mode of operation for encryption.

Our method resolves the Method of Formal Coding-Side Channel

Attack (MFCSCA) and without compromising the security and

complexity of the encryption yet providing the much faster

implementation than the AES and DES.

2. PRAPOSED PORTABLE ENCRYPTION

ALGORITHM
As Feistel structure is one of the most widely used and best studied

structures for the design of block ciphers. It was proposed by H. Feistel

in the early 1970s; subsequently the structure was adopted in the well-

known block cipher DES. During the 30-year of modern block cipher

research history, extensive studies have been made on Feistel structure.

Currently, many well-known Block ciphers employ the design of

Feistel structures. On the other hand, an optimal diffusion which is a

linear function with the maximum branch number is widely regarded in

the recent block cipher research; the concept is used in the design of

AES/RJINDAEL and many other cryptographic primitives[4][5][6].

Therefore, we also prefer Feistel structure in our designing concept.

There are two inputs for the algorithm one is plain text to encrypt and

secret key which size would be dynamic and change from one

implementation to another but it will static for a particular

implementation, the size of key would decide number of rounds and

many other security factors of the algorithm, which would be discussed

in next section. So our algorithm can be explained under following

sections:

A. Key size and key generation

B. Basic structure and organization of operations

C. Decryption.

2.1 Key Size and Key Generation
The key size would be greater than or equal to 128 bits (keylen ≥ 128

bits). The initial key sequence would decide various factors for the

algorithm:

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.28, May 2013

36

a. The number of columns of the matrix of the message

block would be keylen/8 .

b. Number of rounds would be keylen/4 .

c. The key sequence would decide the shift pattern which

is used to generate keys for all the rounds.

d. The key sequence of every round would decide the

column indexing of the matrix of the message by using

hash indexing technique.

2.1.1 Key Generation

 The key for every round would be generated by the left shifting of the

previous round key, the shift would be decided by initial pattern of the

key (figure 2), the basic structure for key generation is given in (figure

1:

 Fig 1. Basic structure of key generation

2.1.2 Shift pattern.

The shift pattern would be done by converting the binary numbers into

decimal numbers, taking 4 bits for one decimal number, but due to the

dynamic nature of the key sometimes it required padding, so shift

pattern is done in two steps (figure 2):

 Fig 2. Finding the shift pattern for Key Generation

1. Padding (optional):- Adding zeros (0) at the end of the key

to make it even, shown in table 1.

Key length (bits) Number of bits

128 0 bits

129 3 bits (000)

130 2 bits (00)

131 1 bit (0)

132 0 bits

2. Decimal conversion: - Taking 4 bits for a decimal number.

Table 2. Showing decimal numbers for various bit sequence

The key for the next round is generated by the circular left shift of the

key of the previous round (figure 3).

Bit sequence Equivalent decimal number

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 4

1000 8

1001 9

1010 10

1011 11

1100 12

1101 13

1110 14

1111 15

 Initial key (≥ 128 bits)

 Shift pattern for Key Generation

Initial

Key

Shift

Pattern

Column Indexing

of i
th

 round

Key

Generation

Number

of Rounds

>i

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.28, May 2013

37

<<Xi

Fig 3. Key generation for the next round

The “y” shift is decided by the shift pattern which is generated by the

initial key given by the user (shown in figure 2).

2.2 Basic Structure of Algorithm

The basic structure of algorithm is like the structure of AES, Advanced

Encryption Standard; it contains four operations which are repeated in

each round (figure 4).

 Yes

 No

Single Round

 Fig 4. Basic Structure of the algorithm

a) Matrix formation and message padding
 Matrix formation is also dynamic in nature it depends on the key

length as explained in section A, the number of columns in the matrix

would bekeylen/8, and in each column there would be 8 bits, i.e. 2

bytes, of the message which is filled row wise in the matrix. For

example, let us take a keylen=128 bits , so 128/8=16 , therefore the

number of columns in the matrix would be 16 so the message is filled

in the matrix as:

1 2 3 16

0C 12 97 DD

Fig 5. Sample Matrix for 128 bit key

Padding: As the message length is dynamic because of the

portability of the algorithm to the light weight and heavy weight

application, hence the block size of the algorithm is to be

maintained, if the message size is; n*(8* number of columns)

where n=1, 2, 3……., i.e. n ≥ 1,then the message is filled in the

matrix row wise where n is the number of rows, else message

padding is required. We choose the message padding technique

used in SHA, Secure Hash Algorithm, [7]The purpose of this

padding in SHA is to ensure that the padded message is a multiple

of 512 or 1024 bits, depending on the algorithm. Padding can be

inserted before hash computation begins on a message, or at any

other time during the hash computation prior to processing the

block(s) that will contain the padding. In the same way our

purpose of the padding is to make the message block in the

multiple of key length so if the message length is less than

(n*keylen) we add padding bits to make it even, the padding

consists of single 1 bit followed by necessary number of 0 bits.

L

MESSAGE 1000000000………..

 Fig 6. Message with padding

Column Indexing. After the pad is inserted to the message the

message will be inserted into the matrix row wise, 8 bits in each

column, and the indexing of the column would be done by finding

decimal sequence of the key of that round, (table 2), as we done

for finding the shift pattern for the key generation.

Ii=Di

Where,

Ii=Index for ith column.

Di=Decimal Equivalent of the key for ith column.

b) Our method has four modes of operations carrying out in every

round:

1. Not Of Bit(~): As every column of the matrix has 8 bits so our

algorithm flip the bit at :

 Ii mod 8, where Ii is the index of the ith column.

2. Circular left shift(<<): Now in this step the circular left shit is

done on the bits of the whole row by x times

Where, Xi=value (column with index of largest prime number in

the ith round key).

 Keyi

Keyi+

1

Key << y (circular

left shift)

Message

Padding

Matrix Formation

 NOT of Bit (~)

Circular Left Shift (<<)

Substitution(S-Box)

Transpose (Lattice

Based)

Initial
Key

Shift Pattern

Column Indexing

Key

Generation

Number of

rounds<

keylen/4

Insert Flag

Cipher

N * KEYLEN

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.28, May 2013

38

3. S-Box Substitution: In the next step we substitute the bits with the

help of RJINDAEL S-Box shown in figure 7.

 Fig 7. Substitute byte Transformation [8]

There are different S-Boxes for encryption (figure 8(a)) and decryption

(figure 8(b)).

 Fig 8(a). S-Box[8]

Fig 8(b). Inverse S-Box [8]

4. Lattice Transpose: This is the last operation of a round in this

transposition of the bits is done but instead of using any

matrix or array algorithm uses the multidimensional lattice

structure[20] (figure 9), transpose is done as:

1) Divide the message bits into Message Length/Xi parts,

Where, Xi=value (column with index of largest prime number in

the ith round key). i.e., each part contains Xi bits.

2) Now apply circular left shift to each part separately to Xi times

(<<Xi).

3) Then recombine all the parts and apply a circular right shift to

whole message to Xi times (>>Xi).

Fig 9. Multidimensional structure for transposition

Fig 10. Steps Showing Lattice Based Transposition

c) Insert Flag: It is the extra bit which is added to the cipher after all

the rounds are completed, flag shows whether the padding is done

in the message or not, If padding is done in the message then flag

would be “1” else “0”.

It is added at the beginning of the cipher.

Divide (Message Length/Xi parts)

 Left shift (<<Xi) to each part

 Right shift (>>Xi) to whole

message

 Combine all parts as one

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.28, May 2013

39

2.3 Decryption
It is just the reverse process of the encryption (figure 11) but the key

generation section is changed (section a)

Fig 11. Structure for Decryption

a) Key Generation: Key generation of decryption is same as

encryption (section 2.1) with some changes in shifting as:

1. The first round key would be (<<Y), where Y is the sum of

all the values of the shift pattern array.

2. Key for next rounds would be (>>Zj) , where Zj is the

value at the j position of the shift pattern array and j would be

keylen/8 ,-1,….1.

3. CONCLUSION
Our proposed algorithm is resolving Method of Formal Coding-Side

Channel Attack (MFCSCA) as well as the problem of portability of the

algorithm to different applications. According to Kerckhoff [9], key is

the only thing which is needed to be kept hidden hence we make key

length a great importance and its length would be a great preference

and though our algorithm not using XOR in any of its operation hence

time complexity and problem of Method of Formal Coding-Side

Channel Attack (MFCSCA) is resolved.

This algorithm is very useful for distributed networks and mobile

applications as both of them have light weight applications but require

high security. So, it is would be very useful if ASPE implemented on

distributed environment like cloud, grid or mobile applications like

android.

4. REFERENCES
[1] Changyong Peng , Chuangying Zhu , Yuefei Zhu ,Fei Kang;

”Symbolic computation in block cipher with application to

PRESENT”;

[2] Pawe_l Chodowiec and Kris Gaj;” Very Compact FPGA

Implementation of the AES Algorithm”.

[3] Changyong Peng, Chuangying Zhu, Yuefei Zhu, Fei Kang ;”

Improved side channel attack on the block cipher NOEKEON”.

[4] P. S. L. M. Barreto and V. Rijmen, "The Whirlpool hashing

function.”;Primitive submitted to NESSIE, Sept. 2000.

[5] J. Daemen and V. Rijmen, “The Design of Rijndael: AES - The

Advanced Encryption Standard”; (Information Security and

Cryptography). Springer, 2002.

[6] Taizo Shirai and Kyoji Shibutani” ;On Feistel Structures Using a

Di_usion Switching Mechanism”.

[7] FIPSPUB 180-4, FEDERAL INFORMATION PROCESSING

STANDARDS PUBLICATION: Secure Hash Standard (SHS);

Information Technology Laboratory National Institute of

Standards and Technology Gaithersburg, MD 20899-8900,March

2012

[8] William Stallings;” Cryptography and Network Security Principles

and Practice, 5th Edition”; Copyright © 2011, 2006 Pearson

Education, Inc., publishing as Prentice Hall.

[9] J. Daemen and V. Rijmen. AES proposal: Rijndael, September

2001. http://csrc.nist.gov/CryptoToolkit/aes/rijndael/Rijndael.pdf.

[10] John Kelsey, Bruce Schneier, and David Wagner, “Related-Key

Cryptanalysis of 3-WAY, Biham- DES, CAST, DES-X, NewDES,

RC2, and TEA”. In Information and Communications Security—

Proceedings of ICICS 1997, Lecture Notes in Computer Science

1334, Springer-Verlag, 1997.

[11] Yang, L., Wang, M., Qiao, S.: Side Channel Cube Attack on

PRESENT. In: Garay, J.A., Miyaji, A., Otsuka, A. (Eds.) CANS

2009. LNCS, vol. 5888, pp. 379-391. Springer, Heidelberg (2009).

[12] Sumio Morioka and Akashi Satoh. A 10 Gbps full-AES crypto

design with a twisted-BDD S-box architecture. In IEEE

International Conference on Computer Design. IEEE, 2002.

[13] Vincent Rijmen. Efficient implementation of the RJINDAELS-

box. available at

http://www.esat.kuleuven.ac.be/~rijmen/rijndael/sbox.pdf, 2001.

[14] Atri Rudra, Pradeep K. Dubey, Charanjit S. Jutla, Vijay Kumar,

Josyula R. Rao, and Pankaj Rohatgi. Efficient

RJINDAELencryption implementation with composite field

arithmetic. In CHES2001, volume 2162 of Lecture Notes in

Computer Science, pages 171–184. Springer, 2001.

[15] A. Satoh, S. Morioka, K. Takano, and Seiji Munetoh. A compact

RJINDAELhardware architecture with S-box optimization. In

Advances in Cryptology – ASIACRYPT 2001, volume 2248 of

Lecture Notes in Computer Science, pages 239–254. Springer,

2001.

Remove Padding

Message

Matrix Formation

Initial

Key

Column Indexing Key

Generation

Number of
rounds<

keylen/4

Separate Flag

Cipher

 Inverse Transpose

 Inverse Substitution

 Inverse Shift (>>)

 NOT of Bit (~)

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.28, May 2013

40

[16] I.J. Cox, M.L. Miller and A.L. McKellips, Watermarking as

Communication with Side Information, in Proc. IEEE, vol. 87, No.

7, pp. 1127–1141, 1999.

[17] M.L. Miller, G.J. Do¨err and I.J. Cox, Applying Informed Coding

and Embedding to Design a Robust High-Capacity Watermark,

IEEE Trans. Image Processing, vol. 13, No. 6, pp. 792–807, 2004.

[18] A. Abrardo and M. Barni, Informed Watermarking by Means of

Orthogonal and Quasi-Orthogonal Dirty Paper Coding, IEEE

Trans. Signal Processing, vol. 53, No. 2, pp. 824–833, 2005.

[19] I.J. Cox, J. Kilian, F.T. Leighton and T. Shamoon, Secure Spread

Spectrum Watermarking for Multimedia, IEEE Trans. Image

Processing, vol. 6, Issue 12, pp. 1673–1687, dec. 1997.

[20] M.L. Miller, I.J. Cox and J. Bloom, Informed Embedding

Exploiting Image and Detector Information during Watermark

Insertion, in Proc. IEEE Intl. Conference on Image Processing,

ICIP’00, vol. III, pp. 1–4, 2000.

[21] S. Arora, L. Babai, J. Stern, and Z. Sweedyk. The hardness of

approximate optima in lattices, codes, and systems of linear

equations. In Proceedings of the 1993 IEEE 34th Annual

Foundations of Computer Science, pages 724{733. IEEE

Computer Society, 1993.

[22] E Biham, A Biryukov, \An Improvement of Davies' Attack on

DES", in Journal of Cryptology v 10 no 3 (Summer 97) pp

195{205

[23] E Biham, How to Forge DES-Encrypted Messages in 228 Steps,

Technical Report CS884, Technion, August 1996

IJCATM : www.ijcaonline.org

