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ABSTRACT

In this paper, we introduce the concepts of L-fuzzy generalized
neighborhood system(f-gns for short) and L-fuzzy generalized
topology (fgt, for short)(where L is a fuzzy lattice) which are
generalizations of generalized topology and neighborhood sys-
tems defined by Csaszar[5]. We also introduce and investigate
with the help of these new concepts the concepts of L-(1)1, 1)2)
continuity and L-fuzzy generalized continuity on f-gns. The re-
lations between these concepts are investigated and several ex-
amples are presented. mifx
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1.. INTRODUCTION

The usual notion of a set was generalized by Zadeh [21] when
he introduced the notion of a fuzzy set which has useful and in-
creasing applications in various fields.

Since many classes of information granules are lattice ordered
[2, 14], lattice theory [10] has found renewed interesting appli-
cations in diverse areas such as mathematical morphology [12],
fuzzy set theory [10, 13, 14], computational intelligence [17], au-
tomated decision making [15], and formal concept analysis [8].

Generalizing the concept of a fuzzy set, Goguen [10] in 1967 in-
troduced the concept of L-fuzzy sets, where L is a fuzzy lattice.
Recall that an L-fuzzy set is given by a mapping from a universe
X to a set L. In this setting, L has a mathematical structure that
is at least a partially ordered set. Special emphasis was given
to the case where L is a complete lattice. In 1973 Goguen[11]
introduced the concept of L-fuzzy topological space as a gener-
alization of a fuzzy topology introduced by Chang [3].

In [4, 5] Csaszar introduced the notion of generalized neighbor-
hood systems and generalized topological spaces. He also in-
troduced the notions of continuous functions and associated in-
terior and closure operators on generalized neighborhood sys-
tems and generalized topological spaces. Moreover, he studied
the simplest separation axioms for generalized topologies in [6,
7]. In [1, 16, 20,] G. Xun, J. Thomas and G. Abbaspour shall ex-
amine some topological properties such as, p-Compactness, the
usual continuity, the net-continuity and the net-closure property
for generalized topologies.

In this paper, we introduce the notion of generalized open L-
fuzzy sets, called gamma open L-fuzzy subsets, by using mono-
tonic mappings defined on the family of L-fuzzy subsets on a
set X. We also, introduce the notions of L-fuzzy generalized
neighborhood systems(fgns, for short) and L-fuzzy generalized
topology(fgt, for short) which can be a generalization of neigh-
borhood systems and generalized topology. L-fuzzy generalized
system induces an L-fuzzy generalized neighborhood space. We
introduce the new concepts of interior and closure on fgns and fgt
on a set X and investigate some of their properties. Weaker forms
of continuity are introduced by using these notions. We introduce
the concept of L-fuzzy generalized continuity and L-(t)1, )
continuity and we characterize some properties by the new inte-
rior and closure operators defined on fgns. We show that every

L-(v1,12) continuous function is L-fuzzy generalized continu-
ous but the converse is not always true.

2.. PRELIMINARIES

Throughout this paper X and Y are non empty ordinary sets
and L = L(<,V,A,) denotes a fuzzy lattice, i.e, a complete
completely distributive lattice with a smallest element 0 and a
largest element 1(0 # 1)and with an order reversing involution
x — &'(xz € L). We say that £ is the complement of a in L. L
is therefore continuous and spatial[9].

We denote by LX the lattice of L-fuzzy subsets on X.

Definition 2.1[9] An element p of L is called prime iff
p # 1 and whenever a,b € L witha Ab < pthen a < p or
b < p. The set of all prime elements of L will be denoted by

pr(L).

Warner[18]determined the prime elements of the fuzzy lat-
tice LX.We have pr(LX)={z,, : € X and p € pr(L)} where,
for each x € X and each p € pr(L), x, : X — L is the
L-fuzzy subset defined by

w={ 471

These x,, are called the L-fuzzy points of X.The set of all
L-fuzzy points of X will be denoted by pt(L%X).

Definition 2.2[19] For an L-fuzzy subset 1 € L% and an
L-fuzzy point z,, of X , we say that x, belongs to p, written
xp € pif p(x) £ p.

Proposition 2.1[19] Let Ap € LX and z, € pt(L¥).
Then .

(a) X < p,iff (xp, € X = 2, € ).
(b) z, c AN piffx, € Xandx, € u
(c) z, € \/M)\i iff z,, € \; for some i € 1

Proposition 2.2[18] Every L-fuzzy subset 1 € L is the meet
of L-fuzzy points of X.

Proposition 2.3[19] Letf X — Y X € L¥ and
u € L. Then the L-fuzzy subset f(\) € LY is defined by
F)w) = V{X(z) : = € f'(y)}. and the L-fuzzy subset
F () € L¥ is defined by f~(u)(z) = (o f)(z) forz € X.
The L-fuzzy set f(A) (resp.f~1(u)) is called the image(resp.,
inverse image) of \.

3.. L-FUZZY GENERALIZED TOPOLOGY

Definition 3.1 A mapping v : LX — LY is a monotonic opera-
tor on X if it satisfies: For A\, p € LX, X\ < pp = vy(\) < y(u).
In what follows I'(X) denotes the family of all monotonic
operators on X .



Definition 3.2 Let v be a monotonic operator on a set X.
An L- fuzzy subset A € LX is said to be v open if A < ().
One may notice that the empty L-fuzzy subset 0 is y-open. Also
the union of y-open L-fuzzy subsets isy-open L-fuzzy subset.

Definition 3.3 A family 7 of L-fuzzy subset on X is said
to be L-fuzzy generalized topology on X (fgt, for short) if 0 € 7
and 7 is closed under arbitrary union of L-fuzzy sets.

Proposition 3.1 Let v be a monotonic operator on a set
X.Then the family 7., of all y-open L-fuzzy subsets is an fgt on
X. We say that 7 is the fgt on X induced by .

Proof: obvious.

In what follow any function v : LX — L¥ is assumed
(otherwise stated) to be a monotonic operator on X. Also, by
(X)), we denote the collection of all fgt on a set X. .

Proposition 3.2 Let 7 € I(X). Then there exists a monotonic
operator v, : LX — L* such that 7 is the family of all
~.-open L-fuzzy subsets. Furthermore, we have for A € L¥ (a)
@=0 BN <A (@O (1, (0N) =7, (V). We
say that y_ is the monotonic operator on X induced by +.

Proof: For A € LX, define v,(\) = \/{per:pu<A}
It is clear that ~_ LX — LX is a monotonic op-
erator. Also v (A\) € 7 and 7. (A\) < X .We show
that 7 is the family of all ~v_-open L-fuzzy subsets.
LetA\ € 7 .Then v,(\) = V{per:p<A} = A\
Hence A is vy_-open. Let A be _-open L-fuzzy set . Then
A<y, (AN) =V{per:p<A} < AHence A = v, () and
A € 7; since 7 is a fgt on X.Thus 7 is the family of all v_-open
L-fuzzy subsets.

One may notice that for A € LX, we have

rxer  aff A=~v.(N)

This proves (a) and (c) since 0,7, () € 7.Also (b) follows from
the definition of y_ .

Proposition 3.3 Let 7 € S(X). Then (a)y,, = v and
)r, =7.

v

Proof: This is a direct consequence of Proposition3.1.
Let us consider another way for obtaining a fgt on X.

Definition 3.4 Let ¢ : pt(LX) — P(L*).Then 1 is called a
fuzzy generalized neighborhood operator and v (z,)(for z € X
and p € pr(L)) is called a fuzzy generalized neighborhood
system(fgns for short) for z,, if it satisfies

e P(x,) = x, € .

In this case,we say that 1 € (x,) is a fuzzy generalized
neighborhood of x,(fgn for short). By ¥(X) we denote the
collection of all fuzzy generalized neighborhood operators on
X.

Proposition 3.4 Let ¢y € W(X). Then there exists a fgt
Ty, on X, such that

pweTy iff Ve, ep 3 Ae(x,) such that A< pu

Proof: It is clear that 0 € 7. Let y; € 7y and let z, € \/ p;.
Then x, € pu; for some i. Hence 3 \; € (z,) st A <

piThus 3 X € Y(z,) st A < \/ ;. In otherwords
\/ 1i € 7. Consequently, T, is a fgt on X.
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Proposition 3.5 Let 7 € S$(X). Then there exists an L-
fuzzy generalized neighborhood operator 7. , on X, such
that

peT iff Vepep 3 A€y (x,) such that A<
We say that ¢_ is the L-fuzzy generalized operator induced by 7.

Proof: Define A € ¢ _(z,) <= =z, € A € 7. 1Itis
clear that +)_ is a fgn operator on X. Now, let 1 € 7 and let
xp € . Then 3 p € ¢ (x,) such that g1 < pu.

Proposition 3.6 Let 7 € $(X). Then 7y, =7

Proof: This is a direct consequence of Propositions 3.4
and 3.5.

Definition 3.5 Let 7 € 3(X) and A € LX. The 7-interior and
7-closure of A are defined and denoted respectively,by

AN =V{per:u<A} and c;(N) =A{peT:pn> N}

If - = 7,, we write 7, for ir, and c, for ¢,,. For a fuzzy
generalized neighborhood operator i, we write 4, (resp. cy)
instead of iw (resp. Cry, ).

Definition 3.6 Let ¢y € U(X) and A € LX.The two op-
erators I, I, : LX — LX are defined by

@)\ = \/{z), € L¥: Fuey(z,) st p<A)

(i1)7(N) = Nlwp € L¥: Fuev(z,) st p<N}

Proposition 3.7 Let ¢ € ¥(X) and A € L. Then

(a) I, and~, € I'(X),i.e.l, and 7, are monotonic operators.
(b) Ipy(X\) < Xandy,(A) > A

(©) (A = (Lp(N))'

(d) iy (N) < Ip(A) and ¢y (A) = 75 (A)

Proof:(a) Obvious. (b) Let y,, € I,(\), then there exists

z, € L* and pp € v(xp) such that y,, € 1, where
x(y) = {g/ i’ffyy;; and ;1 < A Hence #',(y) £ p1, i.e
x(y) = p £ p1. Thusy = z and y,, = x,, € /. Since
x, € p, then p(x) £ p and hence p/(z) < p. In fact, assume
that /() ﬁ p. Since p(z) A p/(z) = 0 < pand p € pr(L),
then p(z) < p or w(z) < p, a contradiction. Therefore
w(z) <p Z p1’ and hence p(z) € p1. Sox,, € p < X and
Zp, € A. Consequently, I,(A) < A. Similarly, we can show that
> A

Y (A)

©LN) = (Via), e L¥: Fpedla,) stp< XY
Nz, € X : 3pev(a,) st < X} =7,(N).

(d)Let y,, € iy(A) = V{p € 74 + p < A}. Hence 3
HE Ty Styp, €pn<ASo,IdeP(xy)sty, €06 < pu<A
Since y, (y) = py £ p1,then Iy, € L~ sty, €y,
and y,, € 6 < p. Consequently, y, € I,(\). Hence
1 (A) < I, (X).The other part follows directly from (c).

Remark 3.1 In general, I,,(A) # iy (A) and vy (X) # ¢y ().
The following example illustrates this fact.

Example 3.1 Let X = {z,y} and L = {0,a,b,¢,d,e, f,1} be
a fuzzy lattice described as Figure 1



\VZ
X

<>

figure 1
It is clear that pr(L) = {d,e, f}. So pt(L¥X) =
{z,,z, f,yd,ye,yf} Let us define v : pt(L¥) — P(LX)

by w(ﬂfd) = {pe, pr}p(xe) = {pr}, lxy) = {us, s, e}
and ¢(ya) = P(ye) = (ys) = 0. Where py(z) = 0,
(@) =, 15(2) = by ja(2) = , s (@) = d, po(z) = e
ur(x) = f, ps(z) = 1and p;(y) =0,i=1,2,.....,8.

Then 7, = {p1, 6, b7, pis }- It is clear that pq € 7. Also
po & Ty Infact, po(z) = a £ f and hence x5 € po. So, A
X € Y(zy) < xy. Similarly, ps, pa, s & 7. Now, pg € 7. In
fact, zg, x5 € g and I X = pg € P(xq) and Y(xy) st A < pg.
Similarly, p7, g € Ty

Now, we show that 4y(us) #  ILy(ps). In fact,

iw(ﬂs) = Vix € 7 A< psp = . Also
1y (ps) =\V{2p, € LX: INey(z,) st A< pus} = po,
since 3 A = pus € P(xy) st A < pus. Hence

oy € Iy(ps) and thu.s pe = a’; = I;(ps). Consequently,
Lp(,u5) =g F = W(%)' )

We show that vy (11a) # ¢y (pa). Since 7, = {p1, p2, 3, s},
then cy(pa) = A{A €T 1 pa <N} =ps. Also,yy(pa) =

(I (1)) = Ty () = ply = pir # s = cypaa)-

Proposition 3.8 Let 7 € (X). Then I, = i, and
Vpr = Coyr

Proof: Let y,, € I, (A). Then 3z, € LX and p € ¥, (xp)
styp, € x, and p < A.Hencey = z and x,(z) = p’ £ p1.
Therefore, 4 € 74, = 7. Since ©, € p, then p(z) £ p
and hence p'(z) < p ? pi. So u(z) £ p; and therefore
Zp, € p < A Consequently, ,, € iy, (). The inclusion
1y, C Iy, follows from Proposition 3.6. The other equality
results by considering the complements.

4.. L-FUZZY GENERALIZED CONTINUITY

Definition 4.1 Let 7, € (X)) and o € $(X3). Let f
X1 — X,. Then fis called (71, 72) continuous if

pem = ftuen

We obtain another (more general) kind of L-fuzzy generalized
continuity.

Definition 4.2 Let X; and X, be non empty sets and
f : X1 — XQ. Let ’ll)l S W(Xl) and wg < \I/(XQ) Then f is
called (1)1, 1) continuous if

Yz, € pt(LX) and p € a(f(z)), I N € Pr(mp) 5.t fF(N) < p
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The following propositions give the relation between the
above two kinds of L-fuzzy generalized continuity.

Proposition 4.1 Let X; and X, be non empty sets and
f : X1 — Xz. Let ’l/)l (S ‘I/(Xl) and 1/}2 (S \I/(Xg) If fis
(31, 12) continuous , then fis (7, , Ty, ) continuous.

Proof: Let 4 € 7y, and z, € f~'(u). Then

p(f(x)) = (fH(w)(x) £ p. Hence, (f(z)), € p.
Since p1 € Ty,, then 3 X € Po(f(x)), st A < p. Since fis

(11,%2) continuous , then 3 6 € 1 (zp) s.t f(§) < A < p.
Hence § < f~*(u) and consequently f~1(p) € Ty, -

Remark 3.1The converse of the previous proposition is
not generally true. The following example illustrates this idea.

Example 4.1 Let X = {z,y} and L = {0,a,b,c,d,e, f,1} be
a fuzzy lattice described as Figure 1. Let ¢q,1y € U(X) be
defined as follows

Vi(za) = a(za) = {pe, prtihr(ze) = a(xe) = {ur},

Vi(xy) = {ps,peh. a(xy) = {ps,ps,p6} and
wi(yd) = wi(ye) = wi(yf) = 0 (i=1,2).
It is clear that Twl = Ty, = {m,Hs, e, 7} Let

f = idx ie, f : X — X such that f(z) = =z for
all z € X. Hence f(p) = p for all p € LX and so
flzg) = (f(z))f = zy. Itis clear that f is (7, , Ty, ) continu-

ous. Now, ps € ¥a(f(xy)) = o(xs), but A X € ¢1(xy) st
f(A) = X\ < us. Consequently, f is not (1, 12) continuous.

Proposition 4.2 Let X; and X, be non empty sets and
X1 — Xo.Lety) € U(Xy) and ¢ € U(Xo). If fis
(T, Ty, ) continuous and o = )., for some fgt 7 on Xo.
then fis (¢1, 12) continuous.

ProofiLet i € 1o (f(2),) = tm, (f(2), . Hence f(z,) € p
and p € 71 . By Proposition 3.6, 7y, = Ty, = 71 and thus
U E Ty, S0, T, € fH(w) € Ty, because fis (Ty,, Ty,)
continuous. Therefore 3 A € ¥ (z,) st A < f71(u) . Then
F(X) < p and consequently, f is (11, 12) continuous.

Proposition 4.3 Let X; and X, be non empty sets and
f : Xl — .X2. Let ’(pl € \I/(Xl) and 1/J2 S \II(XQ) The
following statements are equivalent

(a) fis (¥1,1)2) continuous

(b) (v, (1) < vy (fF()) ¥V € L*1
(€) Yo, (FTN) < fH (V) V A e LX2

Proof: (a) =— (b) Let z, € ~y, (1) and assume

1 (p

(o) £ qall00) T = (il Henee
F(e) € I, (f() and 503 X € alf(e ) 5 A
fW) = (f(w)). Therefore A A f(u) = Since f is
(11,%2) continuous, then 3 6 € ¢y (zp) s.t f(5) < pu.
Hence f(O)Af(p) < AAf(p) = 0 and therefore
f@O A ) = 0. Thus 6 A p = 01.e,5 < fi. Then
3 a, € LY and § € ¢i(xy) s‘t z, € ), and § < .
So xp, € Iy, (1) and thus z;, & (Iy, (1'))" = 7y, (). Conse-
quently, f(x,) & (v, (1))

(b) = (c) Let p = [~ 1( ). Then by (b) f(7vy, (k) <
Yoo (f(1) = wz(f(f 'A) < 7, (N). Hence
VY1 (:u) = VY1 (f71(>\)) <f (’W&( ))-

(¢) = (a) Let X € Yo(f(wp), then f(z,) € A

Let 4 = X, then f( p) & Ve, (p). In fact, 3 A €
Yo (f(xp)) st A = ' < y but f(zp) & f(xp). So
7o @ J (W) By ©, 2, & 7, (" () and hence,
3 5 epi(zp) st § < (f (). Thusd A f~*(u) = 0 and



then f(J) A pp = 0. Hence f(6) < u/ = A and consequently, f is
(1p1,2) continuous.
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