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ABSTRACT
In this paper, we introduce the concepts of L-fuzzy generalized
neighborhood system(f-gns for short) and L-fuzzy generalized
topology (fgt, for short)(where L is a fuzzy lattice) which are
generalizations of generalized topology and neighborhood sys-
tems defined by Csaszar[5]. We also introduce and investigate
with the help of these new concepts the concepts of L-(ψ1, ψ2)
continuity and L-fuzzy generalized continuity on f-gns. The re-
lations between these concepts are investigated and several ex-
amples are presented. ifx

Keywords: Fuzzy lattice, L-fuzzy generalized topology, L-fuzzy
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1.. INTRODUCTION
The usual notion of a set was generalized by Zadeh [21] when
he introduced the notion of a fuzzy set which has useful and in-
creasing applications in various fields.
Since many classes of information granules are lattice ordered
[2, 14], lattice theory [10] has found renewed interesting appli-
cations in diverse areas such as mathematical morphology [12],
fuzzy set theory [10, 13, 14], computational intelligence [17], au-
tomated decision making [15], and formal concept analysis [8].
Generalizing the concept of a fuzzy set, Goguen [10] in 1967 in-
troduced the concept of L-fuzzy sets, where L is a fuzzy lattice.
Recall that an L-fuzzy set is given by a mapping from a universe
X to a set L. In this setting, L has a mathematical structure that
is at least a partially ordered set. Special emphasis was given
to the case where L is a complete lattice. In 1973 Goguen[11]
introduced the concept of L-fuzzy topological space as a gener-
alization of a fuzzy topology introduced by Chang [3].
In [4, 5] Csaszar introduced the notion of generalized neighbor-
hood systems and generalized topological spaces. He also in-
troduced the notions of continuous functions and associated in-
terior and closure operators on generalized neighborhood sys-
tems and generalized topological spaces. Moreover, he studied
the simplest separation axioms for generalized topologies in [6,
7]. In [1, 16, 20,] G. Xun, J. Thomas and G. Abbaspour shall ex-
amine some topological properties such as, µ-Compactness, the
usual continuity, the net-continuity and the net-closure property
for generalized topologies.
In this paper, we introduce the notion of generalized open L-
fuzzy sets, called gamma open L-fuzzy subsets, by using mono-
tonic mappings defined on the family of L-fuzzy subsets on a
set X. We also, introduce the notions of L-fuzzy generalized
neighborhood systems(fgns, for short) and L-fuzzy generalized
topology(fgt, for short) which can be a generalization of neigh-
borhood systems and generalized topology. L-fuzzy generalized
system induces an L-fuzzy generalized neighborhood space. We
introduce the new concepts of interior and closure on fgns and fgt
on a set X and investigate some of their properties. Weaker forms
of continuity are introduced by using these notions. We introduce
the concept of L-fuzzy generalized continuity and L-(ψ1, ψ2)
continuity and we characterize some properties by the new inte-
rior and closure operators defined on fgns. We show that every

L-(ψ1, ψ2) continuous function is L-fuzzy generalized continu-
ous but the converse is not always true.

2.. PRELIMINARIES
Throughout this paper X and Y are non empty ordinary sets
and L = L(≤,∨,∧,′ ) denotes a fuzzy lattice, i.e, a complete
completely distributive lattice with a smallest element 0 and a
largest element 1(0 6= 1)and with an order reversing involution
x −→ x′(x ∈ L). We say that x́ is the complement of a in L. L
is therefore continuous and spatial[9].
We denote by LX the lattice of L-fuzzy subsets on X.

Definition 2.1[9] An element p of L is called prime iff
p 6= 1 and whenever a, b ∈ L with a ∧ b ≤ p then a ≤ p or
b ≤ p. The set of all prime elements of L will be denoted by
pr(L).

Warner[18]determined the prime elements of the fuzzy lat-
tice LX .We have pr(LX )={xp : x ∈ X and p ∈ pr(L)} where,
for each x ∈ X and each p ∈ pr(L), xp : X −→ L is the
L-fuzzy subset defined by

xp(y) =

{
p y = x
0 y 6= x

These xp are called the L-fuzzy points of X.The set of all
L-fuzzy points of X will be denoted by pt(LX).

Definition 2.2[19] For an L-fuzzy subset µ ∈ LX and an
L-fuzzy point xp of X , we say that xp belongs to µ, written
xp ∈ µ if µ(x) 6≤ p.

Proposition 2.1[19] Let λ,µ ∈ LX and xp ∈ pt(LX).
Then .

(a) If λ ≤ µ, iff (xp ∈ λ =⇒ xp ∈ µ).
(b) xp ∈ λ ∧ µ iff xp ∈ λ and xp ∈ µ
(c) xp ∈

∨
i∈I
λi iff xp ∈ λi for some i ∈ I

Proposition 2.2[18] Every L-fuzzy subset µ ∈ LX is the meet
of L-fuzzy points of X.

Proposition 2.3[19] Letf : X −→ Y ,λ ∈ LX and
µ ∈ LX . Then the L-fuzzy subset f(λ) ∈ LY is defined by
f(λ)(y) =

∨
{λ(x) : x ∈ f−1(y)}. and the L-fuzzy subset

f−1(µ) ∈ LX is defined by f−1(µ)(x) = (µ◦f)(x) for x ∈ X .
The L-fuzzy set f(λ) (resp.f−1(µ)) is called the image(resp.,
inverse image) of λ.

3.. L-FUZZY GENERALIZED TOPOLOGY
Definition 3.1 A mapping γ : LX −→ LY is a monotonic opera-
tor on X if it satisfies: For λ, µ ∈ LX , λ ≤ µ =⇒ γ(λ) ≤ γ(µ).
In what follows Γ(X) denotes the family of all monotonic
operators on X .
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Definition 3.2 Let γ be a monotonic operator on a set X.
An L- fuzzy subset λ ∈ LX is said to be γ open if λ ≤ γ(λ).
One may notice that the empty L-fuzzy subset 0 is γ-open. Also
the union of γ-open L-fuzzy subsets isγ-open L-fuzzy subset.

Definition 3.3 A family τ of L-fuzzy subset on X is said
to be L-fuzzy generalized topology on X (fgt, for short) if 0 ∈ τ
and τ is closed under arbitrary union of L-fuzzy sets.

Proposition 3.1 Let γ be a monotonic operator on a set
X.Then the family τγ of all γ-open L-fuzzy subsets is an fgt on
X. We say that τγ is the fgt on X induced by γ.

Proof: obvious.

In what follow any function γ : LX −→ LX is assumed
(otherwise stated) to be a monotonic operator on X. Also, by
=(X), we denote the collection of all fgt on a set X. .

Proposition 3.2 Let τ ∈ =(X). Then there exists a monotonic
operator γτ : LX −→ LX such that τ is the family of all
γτ -open L-fuzzy subsets. Furthermore, we have for λ ∈ LX (a)
γτ (0) = 0 (b)γτ (λ) ≤ λ (c)γτ (γτ (λ)) = γτ (λ). We
say that γτ is the monotonic operator on X induced by γ.

Proof: For λ ∈ LX , define γτ (λ) =
∨
{µ ∈ τ : µ ≤ λ}.

It is clear that γτ : LX −→ LX is a monotonic op-
erator. Also γτ (λ) ∈ τ and γτ (λ) ≤ λ .We show
that τ is the family of all γτ -open L-fuzzy subsets.
Letλ ∈ τ .Then γτ (λ) =

∨
{µ ∈ τ : µ ≤ λ} = λ.

Hence λ is γτ -open. Let λ be γτ -open L-fuzzy set . Then
λ ≤ γτ (λ) =

∨
{µ ∈ τ : µ ≤ λ} ≤ λ.Hence λ = γτ (λ) and

λ ∈ τ ; since τ is a fgt on X.Thus τ is the family of all γτ -open
L-fuzzy subsets.
One may notice that for λ ∈ LX , we have

λ ∈ τ iff λ = γτ (λ)

This proves (a) and (c) since 0, γτ (λ) ∈ τ .Also (b) follows from
the definition of γτ .

Proposition 3.3 Let τ ∈ =(X). Then (a)γτγ = γ and
(b)τγτ = τ .

Proof: This is a direct consequence of Proposition3.1.

Let us consider another way for obtaining a fgt on X.

Definition 3.4 Let ψ : pt(LX) −→ P (LX).Then ψ is called a
fuzzy generalized neighborhood operator and ψ(xp)(for x ∈ X
and p ∈ pr(L)) is called a fuzzy generalized neighborhood
system(fgns for short) for xp if it satisfies

µ ∈ ψ(xp) =⇒ xp ∈ µ.

In this case,we say that µ ∈ ψ(xp) is a fuzzy generalized
neighborhood of xp(fgn for short). By Ψ(X) we denote the
collection of all fuzzy generalized neighborhood operators on
X.

Proposition 3.4 Let ψ ∈ Ψ(X). Then there exists a fgt
τψ , on X, such that

µ ∈ τψ iff ∀xp ∈ µ ∃ λ ∈ ψ(x
P

) such that λ ≤ µ

Proof: It is clear that 0 ∈ τψ . Let µi ∈ τψ and let xp ∈
∨
µi.

Then xp ∈ µi for some i. Hence ∃ λi ∈ ψ(xp) s.t λi ≤
µi.Thus ∃ λi ∈ ψ(xp) s.t λi ≤

∨
µi. In otherwords∨

µi ∈ τψ . Consequently,τψ is a fgt on X.

Proposition 3.5 Let τ ∈ =(X). Then there exists an L-
fuzzy generalized neighborhood operator ψτ , on X, such
that

µ ∈ τ iff ∀xp ∈ µ ∃ λ ∈ ψτ (xp) such that λ ≤ µ

We say that ψτ is the L-fuzzy generalized operator induced by τ .

Proof: Define λ ∈ ψτ (xp) ⇐⇒ xp ∈ λ ∈ τ . It is
clear that ψτ is a fgn operator on X. Now, let µ ∈ τ and let
xp ∈ µ. Then ∃ µ ∈ ψτ (xp) such that µ ≤ µ.

Proposition 3.6 Let τ ∈ =(X). Then τψτ = τ .

Proof: This is a direct consequence of Propositions 3.4
and 3.5.

Definition 3.5 Let τ ∈ =(X) and λ ∈ LX . The τ -interior and
τ -closure of λ are defined and denoted respectively,by

iτ (λ) = ∨{µ ∈ τ : µ ≤ λ} and cτ (λ) = ∧{µ̀ ∈ τ : µ ≥ λ}
If τ = τγ , we write iγ for iτγ and cγ for cτγ . For a fuzzy
generalized neighborhood operator ψ, we write iψ(resp. cψ)
instead of iτψ (resp. cτψ ).

Definition 3.6 Let ψ ∈ Ψ(X) and λ ∈ LX .The two op-
erators Iψ, Iψ : LX −→ LX are defined by

(i)Iψ(λ) =
∨
{x′p ∈ LX : ∃µ ∈ ψ(xp) s.t µ ≤ λ}

(ii)γψ(λ) =
∧
{xp ∈ LX : ∃µ ∈ ψ(xp) s.t µ ≤ λ′}

Proposition 3.7 Let ψ ∈ Ψ(X) and λ ∈ LX . Then

(a) Iψ and γψ ∈ Γ(X),i.e.Iψ and γψ are monotonic operators.
(b) Iψ(λ) ≤ λ and γψ(λ) ≥ λ
(c) γψ(λ) = (Iψ(λ′))′

(d) iψ(λ) ≤ Iψ(λ) and cψ(λ) ≥ γψ(λ)

Proof:(a) Obvious. (b) Let yp1 ∈ Iψ(λ), then there exists
xp ∈ LX and µ ∈ ψ(xp) such that yp1 ∈ x́p, where
x′p(y) = {p

′ if y=x
0 if y 6=x and µ ≤ λ. Hence x′p(y) 6≤ p1, i.e

x′p(y) = p′ 6≤ p1. Thus y = x and yp1 = xp1 ∈ x′p. Since
xp ∈ µ, then µ(x) 6≤ p and hence µ′(x) ≤ p. In fact, assume
that µ′(x) 6≤ p. Since µ(x) ∧ µ′(x) = 0 ≤ p and p ∈ pr(L),
then µ(x) ≤ p or µ′(x) ≤ p, a contradiction. Therefore
µ′(x) ≤ p 6≥ p1

′ and hence µ(x) 6≤ p1. So xp1 ∈ µ ≤ λ and
xp1 ∈ λ. Consequently, Iψ(λ) ≤ λ. Similarly, we can show that
γψ(λ) ≥ λ.

(c)(Iψ(λ′))′ = (
∨
{x′p ∈ LX : ∃ µ ∈ ψ(xp) s.t µ ≤ λ′}

′

=
∧
{xp ∈ LX : ∃ µ ∈ ψ(xp) s.t µ ≤ λ′} = γψ(λ).

(d)Let yp1 ∈ iψ(λ) =
∨
{µ ∈ τψ : µ ≤ λ}. Hence ∃

µ ∈ τψ s.t yp1 ∈ µ ≤ λ. So, ∃ δ ∈ ψ(xp) s.t yp1 ∈ δ ≤ µ ≤ λ.
Since y′p1(y) = p′1 6≤ p1, then ∃ y′p1 ∈ LX s.t yp1 ∈ y′p1
and yp1 ∈ δ ≤ µ. Consequently, yp1 ∈ Iψ(λ). Hence
iψ(λ) ≤ Iψ(λ).The other part follows directly from (c).

Remark 3.1 In general, Iψ(λ) 6= iψ(λ) and γψ(λ) 6= cψ(λ).
The following example illustrates this fact.

Example 3.1 Let X = {x, y} and L = {0, a, b, c, d, e, f, 1} be
a fuzzy lattice described as Figure 1
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It is clear that pr(L) = {d, e, f}. So pt(LX) =
{x

d
, xe , xf , yd , ye , yf }. Let us define ψ : pt(LX) −→ P (LX)

by ψ(xd) = {µ6, µ7},ψ(xe) = {µ7}, ψ(xf ) = {µ8, µ5, µ6}
and ψ(yd) = ψ(ye) = ψ(yf ) = 0. Where µ1(x) = 0,
µ2(x) = a, µ3(x) = b, µ4(x) = c, µ5(x) = d, µ6(x) = e,
µ7(x) = f , µ8(x) = 1 and µi(y) = 0, i=1,2,.....,8.
Then τψ = {µ1, µ6, µ7, µ8}. It is clear that µ1 ∈ τψ . Also
µ2 6∈ τψ . In fact, µ2(x) = a 6≤ f and hence xf ∈ µ2. So, 6 ∃
λ ∈ ψ(xf ) ≤ xf . Similarly, µ3, µ4, µ5 6∈ τψ . Now, µ6 ∈ τψ . In
fact, xd, xf ∈ µ6 and ∃ λ = µ6 ∈ ψ(xd) and ψ(xf ) s.t λ ≤ µ6.
Similarly, µ7, µ8 ∈ τψ .
Now, we show that iψ(µ5) 6= Iψ(µ5). In fact,
iψ(µ5) =

∨
{λ ∈ τψ : λ ≤ µ5} = µ1. Also

Iψ(µ5) =
∨
{x́p ∈ LX : ∃λ ∈ ψ(xp) s.t λ ≤ µ5} = µ2,

since ∃ λ = µ5 ∈ ψ(xf ) s.t λ ≤ µ5. Hence
x′f ∈ Iψ(µ5) and thus µ2 = x′f = Iψ(µ5). Consequently,
Iψ(µ5) = µ2 6= µ1 = iψ(µ5).
We show that γψ(µ4) 6= cψ(µ4). Since τ ′ψ = {µ1, µ2, µ3, µ8},
then cψ(µ4) =

∧
{λ ∈ τ ′ψ : µ4 ≤ λ′} =µ8. Also,γψ(µ4) =

(́Iψ(µ′4)′) = (Iψ(µ5))′ = µ′2 = µ7 6= µ8 = cψ(µ4).

Proposition 3.8 Let τ ∈ =(X). Then Iψτ = iψτ and
γψτ = cψτ

Proof: Let yp1 ∈ Iψτ (λ). Then ∃ xp ∈ LX and µ ∈ ψτ (xp)
s.t yp1 ∈ x′p and µ ≤ λ . Hence y = x and x′p(x) = p′ 6≤ p1.
Therefore, µ ∈ τψτ = τ . Since xp ∈ µ, then µ(x) 6≤ p
and hence µ′(x) ≤ p 6≥ p′1. So µ(x) 6≤ p1 and therefore
xp1 ∈ µ ≤ λ. Consequently, xp1 ∈ iψτ (λ).The inclusion
iψτ ⊂ Iψτ follows from Proposition 3.6. The other equality
results by considering the complements.

4.. L-FUZZY GENERALIZED CONTINUITY
Definition 4.1 Let τ1 ∈ =(X1) and τ2 ∈ =(X2). Let f :
X1 −→ X2. Then f is called (τ1, τ2) continuous if

µ ∈ τ2 =⇒ f−1(µ) ∈ τ1

We obtain another (more general) kind of L-fuzzy generalized
continuity.

Definition 4.2 Let X1 and X2 be non empty sets and
f : X1 −→ X2. Let ψ1 ∈ Ψ(X1) and ψ2 ∈ Ψ(X2). Then f is
called (ψ1, ψ2) continuous if

∀ xp ∈ pt(LX) and µ ∈ ψ2(f(x))p ∃ λ ∈ ψ1(xp) s.t f(λ) ≤ µ

The following propositions give the relation between the
above two kinds of L-fuzzy generalized continuity.
Proposition 4.1 Let X1 and X2 be non empty sets and
f : X1 −→ X2. Let ψ1 ∈ Ψ(X1) and ψ2 ∈ Ψ(X2). If f is
(ψ1, ψ2) continuous , then f is (τψ1

, τψ2
) continuous.

Proof: Let µ ∈ τψ2
and xp ∈ f−1(µ). Then

µ(f(x)) = (f−1(µ))(x) 6≤ p. Hence, (f(x))p ∈ µ.
Since µ ∈ τψ2

, then ∃ λ ∈ ψ2(f(x))p s.t λ ≤ µ. Since f is
(ψ1, ψ2) continuous , then ∃ δ ∈ ψ1(xp) s.t f(δ) ≤ λ ≤ µ.
Hence δ ≤ f−1(µ) and consequently f−1(µ) ∈ τψ1

.

Remark 3.1The converse of the previous proposition is
not generally true. The following example illustrates this idea.

Example 4.1 Let X = {x, y} and L = {0, a, b, c, d, e, f, 1} be
a fuzzy lattice described as Figure 1. Let ψ1, ψ2 ∈ Ψ(X) be
defined as follows
ψ1(xd) = ψ2(xd) = {µ6, µ7},ψ1(xe) = ψ2(xe) = {µ7},
ψ1(xf ) = {µ8, µ6}, ψ2(xf ) = {µ8, µ5, µ6} and
ψi(yd) = ψi(ye) = ψi(yf ) = 0 (i=1,2).
It is clear that τψ1

= τψ2
= {µ1, µ8, µ6, µ7}. Let

f = idX i.e, f : X −→ X such that f(x) = x for
all x ∈ X . Hence f(µ) = µ for all µ ∈ LX and so
f(xf ) = (f(x))f = xf . It is clear that f is (τψ1

, τψ2
) continu-

ous. Now, µ5 ∈ ψ2(f(xf )) = ψ2(xf ), but 6 ∃ λ ∈ ψ1(xf ) s.t
f(λ) = λ ≤ µ5. Consequently, f is not (ψ1, ψ2) continuous.

Proposition 4.2 Let X1 and X2 be non empty sets and
f : X1 −→ X2. Let ψ1 ∈ Ψ(X1) and ψ2 ∈ Ψ(X2). If f is
(τψ1

, τψ2
) continuous and ψ2 = ψτ1 for some fgt τ1 on X2.

then f is (ψ1, ψ2) continuous.

Proof:Let µ ∈ ψ2(f(x)p) = ψτ1(f(x)p . Hence f(xp) ∈ µ
and µ ∈ τ1 . By Proposition 3.6, τψ2

= τψτ1 = τ1 and thus
µ ∈ τψ2

. So, xp ∈ f−1(µ) ∈ τψ1
because f is (τψ1

, τψ2
)

continuous. Therefore ∃ λ ∈ ψ1(xp) s.t λ ≤ f−1(µ) . Then
f(λ) ≤ µ and consequently, f is (ψ1, ψ2) continuous.

Proposition 4.3 Let X1 and X2 be non empty sets and
f : X1 −→ X2. Let ψ1 ∈ Ψ(X1) and ψ2 ∈ Ψ(X2). The
following statements are equivalent

(a) f is (ψ1, ψ2) continuous
(b) f(γψ1

(µ)) ≤ γψ2
(f(µ)) ∀ µ ∈ LX1

(c) γψ1
(f−1(λ)) ≤ f−1(γψ2

(λ)) ∀ λ ∈ LX2

Proof: (a) =⇒ (b) Let xp ∈ γψ1
(µ) and assume

that f(xp) 6∈ γψ2
(f(µ)) = (Iψ2

(f(µ́)))′. Hence
f(xp) ∈ Iψ2

(f(µ′)) and so ∃ λ ∈ ψ2(f(xp)) s.t λ ≤
f(µ′) = (f(µ))′. Therefore λ ∧ f(µ) = 0. Since f is
(ψ1, ψ2) continuous, then ∃ δ ∈ ψ1(xp) s.t f(δ) ≤ µ.
Hence f(δ) ∧ f(µ) ≤ λ ∧ f(µ) = 0 and therefore
f(δ ∧ µ) = 0. Thus δ ∧ µ = 0 i.e, δ ≤ µ́. Then
∃ x′p ∈ LX and δ ∈ ψ1(xp) s.t xp ∈ x′p and δ ≤ µ′.
So xp ∈ Iψ1

(µ′) and thus xp 6∈ (Iψ1
(µ′))′ = γψ1

(µ). Conse-
quently, f(xp) 6∈ f(γψ1

(µ)).

(b) =⇒ (c) Let µ = f−1(λ). Then by (b) f(γψ1
(µ)) ≤

γψ2
(f(µ)) = γψ2

(f(f−1(λ))) ≤ γψ2
(λ). Hence

γψ1
(µ) = γψ1

(f−1(λ)) ≤ f−1(γψ2
(λ)).

(c) =⇒ (a) Let λ ∈ ψ2(f(xp), then f(xp) ∈ λ.
Let µ = λ′, then f(xp) 6∈ γψ2

(µ). In fact, ∃ λ ∈
ψ2(f(xp)) s.t λ = µ′ ≤ µ′ but f(xp) 6∈ f(xp). So,
xp 6∈ f−1(γψ2

(µ)). By (c), xp 6∈ γψ1
(f−1(µ)) and hence,

∃ δ ∈ ψ1(xP ) s.t δ ≤ (f−1(µ))′. Thus δ ∧ f−1(µ) = 0 and

6
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then f(δ) ∧ µ = 0. Hence f(δ) ≤ µ′ = λ and consequently, f is
(ψ1, ψ2) continuous.

5.. REFERENCES
[1] G. Abbaspour and A. Taghavi, A note on generalized topol-

ogy, international mathematical forum, 6(1)(2011), 19-24.
[2] A. Bargiela, W. Pedrycz, Granular Computing: An Introduc-

tion. Kluwer Academic Publishers, Hingham, MA (2003).
[3] C. L. Chang, Fuzzy topological spaces, J Math. Anal. Appl.,

24(1968), 182-190.
[4] A. Csaszar, Generalized open sets, Acta Math. Hungar.,

75(1997), 65-87.
[5] A. Csaszar, Generalized continuity, Acta Math. Hungar.,

96(2002), 351-357.
[6] A. Csaszar, Separation axioms for generalized topologies,

Acta Math Hungar, 104(2004), 63-69.
[7] A. Csaszar, Extremally disconnected generalized topologies,

Annales Univ Budapest, Sectio Math, 47(2004), 151-161.
[8] B. Ganter, P. Wille, formal concept analysis, springer, Berlin,

Germany, 1999.
[9] G. Gerz et. al, A compendium of continuous lattices,

(Springer, Berlin, 1980).
[10] J. A. Goguen, L-fuzzy subsets, J Math. Anall. Appl.

,18(1967), 115-174.
[11] J. A. Goguen, The fuzzy Tychonof theorem, J Math.Anall.

Appl., 43(1973), 734-742.

[12] H. Heijmans, Morphological Image Operators. Academic
Press, New York, NY (1994).

[13] J. Jarvinen, Set operations for L-fuzzy sets. In: Rough Sets
amd Intelligent Sys- tem radigms. Volume 4585 of Lecture
Notes in Computer Science. Springer Berlin / Heidelberg
(2007), 221-229.

[14] J. Jarvinen, Lattice theory for rough sets. In: Transactions
on Rough Sets VI. Volume 4374 of Lecture Notes in Com-
puter Science. Springer Berlin / Heidelberg, (2007), 400498.

[15] Y. Raun, J. Qin, Lattice-valued logic, springer, Heidelberg,
Germany,2003.

[16] J. Thomas, S. Jacob, µ-Compactness in Generalized Topo-
logical Spaces,Journal of Advanced Studies in Topology,
3(3)(2012), 18-22.

[17] G. Urcid, N. Valdiviezo, J. Ritter, Lattice algebra approach
to color image segmentation. Journal of Mathematical Imag-
ing and Vision 42(2-3) (2012), 150-162.

[18] M. W. Warner, frame fuzzy points and membership, fuzzy
set and systems 42(1991)103-110.

[19] M. W. Warner, fuzzy topology with respect to continuous
lattices, fuzzy set and systems, 35(1990), 85-91.

[20] G. Xun and G. Ying, µ separations in generalized topologi-
cal spaces, Appl. Math. J. Chinese Univ, 25(2010), 243-252.

[21] L. A. Zadeh, fuzzy sets, Information and control, (1995),
353-383.

7


	Introduction
	Preliminaries
	L-fuzzy generalized topology
	L-fuzzy generalized continuity 
	REFERENCES

