
International Journal of Computer Applications (0975 – 8887)

Volume 69– No.28, May 2013

24

A Parallelized Matrix-Multiplication Implementation of

Neural Network for Collision Free Robot Path Planning

Abhishek Kumar

Department of Computer Engineering
Indian Institute of Technology – (BHU)

Varanasi, India

Ravi Bhushan Mishra
Department of Computer Engineering
Indian Institute of Technology - (BHU)

Varanasi, India

ABSTRACT

This paper covers the problem of Collision Free Path Planning

for an autonomous robot and proposes a solution to it through

the Back Propagation Neural Network. The solution is

transformed into a composition of matrix-multiplication

operations, which is a classic example of problems that can be

efficiently parallelized. This paper finally proposes a parallel

implementation of this matrix-multiplication method which,

in itself, encapsulates the neural network that implements the

collision free path planning for an autonomous robot.

General Terms

Robot Path Planning, Back Propagation Neural Networks,

Parallel Neural Networks

Keywords

Robot Path Planning, Back Propagation Neural Networks,

Parallelism, Matrix-Multiplication

1. INTRODUCTION
Collision free path planning of an autonomous robot is a

classic problem in the realm of robotics. It is mainly

concerned with equipping the robot with a technology that

allows it to get from a source to a destination safely, while

avoiding any obstacles in its path, without any external aid.

As highlighted in [3], the problem of collision free path

planning of an autonomous robot can be decomposed into two

sub-problems -

1. Findspace Problem

2. Findpath Problem

The Findspace problem deals with mapping the problem

space, in this case, the physical structure of the area that

contains the robot's current position, its destination and the

probable intermediate locations, with a way to specify the

obstacles.

The Findspace problem involves scanning the area in the

vicinity of the robot to ascertain the locations of various

obstacles that might obstruct the robot's path from the source

to the destination. This is usually done by a sensor mounted

on the robot which more generally uses some kind of waves

and their reflections from nearby obstacles to form a map of

the surrounding area (much like sonar). There can be

alternative means for space mapping which may involve

capturing an image of the surrounding region to find the

locations of obstacles.

The Findpath problem is finding a safe, collision free route

from the source to the destination. It is involved with using

the information obtained through the solution of the Findspace

problem to find a trajectory for the robot to follow, which will

ensure a collision free motion of the robot from the source to

destination.

Various approaches to the Findpath problem has been

discussed and implemented over time, highlighting the

various approaches that can be used to solve the problem,

although each such method has its own advantages and

shortcomings based on accuracy, efficiency(time) and the

difficulty of implementation.

As discussed in [4] Genetic Algorithm and Ant Colony

Optimization are the two algorithms that can be used to solve

the Findpath problem efficiently and accurately.

The Genetic Algorithm for solving the Findpath problem

involves mutating the genes (which correspond to

intermediate points of a path) to form new set of

chromosomes (collection of genes that specify a solution),

evaluating the fitness of the chromosomes (using some kind

of fitness function) and taking the fitter chromosomes to the

next generation while eliminating the less fitter ones. The Ant

Colony Optimization approach to the Findpath problem

performs a number of iterations to update the paths and

associate with them a degree of goodness (pheromones).

The Neural Network approach has been used in this paper to

solve the Findpath problem. A Neural Network is a collection

of several computing units – neurons, connected in a graph

topology through weighted connections (edges). The Neural

Network approach to solve the Findpath problem can be

broadly classified into two categories -

1. Supervised Neural Network

2. Unsupervised Neural Network

The Unsupervised learning methodology for neural networks

does not have a pre-classified set of input – output patterns to

train the network and instead use the Hebbian learning rule to

update the weights.

In contrast, the supervised learning methods have a set of

input – output patterns to train the network. The Findpath

problem is handled in this paper and a Parallel

implementation of a Back-Propagation Neural Network is

used to solve it. The network is trained under supervised

learning methodology.

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.28, May 2013

25

2. ORGANIZATION OF THE PAPER
Section 1 of this paper describes the general problem of

Collision Free Path Planning of Autonomous Robot. Section 3

gives a brief overview of some research papers that propose

various solutions to the path planning problem. Section 4

describes accurately our problem space and our set up towards

its solution. Section 5 describes the theoretical aspect of our

implementation and the methodology involved in solving the

Findpath problem in detail. Section 6 covers an overview of

the implementation details and results. Section 7 covers the

conclusion and the future wok possible followed by

acknowledgment and references in section 8 and 9

respectively.

3. RELATED WORK AND RESOURCES
[1] proposes a method of path planning based on neural

network and genetic algorithm. The neural network model is

used to construct the workspace for a robot and this model is

used to establish the relationship between a collision free path

and the output of the model. Then the two-dimensional coding

for the path via-points was converted to one-dimensional and

the fitness of both the collision avoidance path and the

shortest distance are integrated into a fitness function to be

used in the Genetic Algorithm.

[2] specifically addresses the problem of collision free path

planning in an autonomous space robot. The paper uses a

back-propagation neural network and three layers – input

layer with 2 neurons, hidden layer with 3 neurons and output

layer with 2 neurons to implement a solution. The activation

function for the hidden layer is sigmoid function and that for

output layer is the identity function.

[4] uses genetic algorithm and ant colony optimization to

provide a solution to the general path planning problem as

well as discuss the benefits and the limitations associated with

each of them.

[3] again deals with path planning and intelligent control of an

autonomous robot which should move safely in partially

structured environment. However, it addresses both the

problems – Findspace problem and Findpath problem and

uses two neural networks – one to map the space and hence

solve the Findspace problem and the other to deal with the

construction of a collision free path through the partially

structured space to avoid the nearest obstacles.

4. THE PROBLEM SETUP
The space through which a robot has to reach its destination is

envisioned as an N x M (N being number of rows and M

number of columns) grid of 0.1 unit x 0.1 unit squares. Each

of the squares is marked with 1 – specifying the location of an

obstacle over that square, or 0 – specifying the lack of it.

This grid map is imposed over the space to facilitate a

quantitative view of the problem space.

Moving on to our neural network, the neural network has

three layers -

1. Input layer – Input layer has 2 neurons – to be fed the 2 co-

ordinates – row co-ordinate and column co-ordinate – of the

current position of robot.

2. Hidden Layer – Experiments were carried out with a

variable number of neurons in the hidden layer – from 3 to

100 to 1000 – and a good result for medium sized input was

obtained for 1000 neurons in the hidden layer.

3. Output Layer – It has two output neurons, to output the row

and column co-ordinate where the robot should move to in the

next step for the input row and column co-ordinate.

In addition to the above mentioned neurons, there are two

biases – one each in the input and the hidden layer, each fed

with an input of 1.

Two sets of weights can be identified for our setup – W(i,j)
(1) ,

which is the weight of synapse between the ith neuron in the

input layer and the jthin the hidden layer and W(i,j)
(2), the

weight of the synapse between the ith neuron in the hidden

layer and the jthneuron in the output layer.

The weights are initially randomly initialized with a small

value between 0.001 to 0.1 and updated thorough multiple

training passes.

The learning rate was chosen to be 0.25.

The operation of the network involves two phase -

1. Training phase, over which a number of (input, output)

patterns are presented to the network and the weights are

appropriately updated by comparing the obtained output with

the expected output.

2. Operation phase, in which an input is presented to the

network and the obtained output is used to decide the next

step of motion.

The number of training patterns varies with the complexity of

the problem space and the accuracy desired.

5. THE PROPOSED MODEL

5.1 The Back-Propagation Algorithm
First, the error function is defined as the function that

measures the squared difference between the expected and the

obtained output in each iteration. The back-propagation

algorithm aims at finding the optimal combination of weights

of the synapse that minimizes this error function. For this we

follow a method of gradient decent. The weight of a synapse

is moved in the direction that aims to minimize the error.

More formally, the weight of a synapse is shifted in a

direction opposite to the gradient of the error with respect to

the weight.

The ability of being able to calculate the gradient of the error

function at each step requires the error function, and hence the

activation function for each of the neuron (in the hidden and

the output layer) to be differentiable. Let the activation

function be f for both – the hidden and the output neurons.

Let the input to the two input neurons are x and y respectively

and 1 to the bias, which they pass on as their output.

The activation for the jthhidden neuron as such can be given

as,

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.28, May 2013

26

Aj
(1)

 = Σ W(i,j)
(1)

. Oi

where, Oi is the output from the ithinput neuron, W(i,j)
(1) is the

weight between the ith input neuron and the jthhidden neuron

and i varies in summation from 1 to 3 (signifying 3 input

neurons including the bias).

If the activation function for the hidden neurons is f, then the

output from the jth hidden neuron is

Oj
(1)

= f(Aj
(1)

)

Similarly, The activation for the jthoutput neuron as such can

be given as,

Aj
(2)

 = Σ W(i,j)
(2)

. Oi
(1)

where, Oi
(1) is the output from the ithhidden neuron, W(i,j)

(2) is

the weight between the ith hidden neuron and the jthoutput

neuron and i varies in summation from 1 to k (signifying k

hidden neurons including the bias).

If the activation function for the output neurons is f, then the

output from the jth output neuron is

Oj
(2)

= f(Aj
(2)

)

During the operation phase, the collection of all outputs (from

the 1st and the 2nd output neuron) specifies the next step for

the robot.

During the training phase, if the expected output from the jth

output neuron is Pj, then the error from the jth neuron is

calculated as

Ej=0.5 .(Oj
(2)

- Pj)
2

As such, the overall error is the collection of errors from all

outputs and is given as

E=Σ 0.5 .(Oj
(2)

- Pj)
2

where summation is calculated for j from 1 to 2 (due to two

output neurons).

The steps discussed so far constitute the forward pass of the

back-propagation algorithm.

During the error back-propagation phase, for each weighted

synapse with weight w, the gradient with respect to the weight

is calculated and the weight is moved in the direction opposite

to this gradient. Mathematically, after the tth iteration, the

weight Wtof any synapse, with weight Wt- 1 before the

iteration, is given as

Wt=Wt – 1 –η . ∂E / ∂Wt – 1

where, η is the learning rate, E is the total error as defined

above and ∂ E / ∂ Wi – 1 is the partial derivative of E with

respect to Wi – 1.

Applying the above formula to the weights between the

hidden and the output layer gives

W(i,j)
(2)

t =W(i,j)
(2)

t – 1 –η . δj
(2)

. Oi
(1)

...(1)

where symbols have predefined meanings and,

δj
(2)

= ∂Oj
(2)

 / ∂Aj
(2)

 .(Oj
(2)

-Pj) …(2)

where symbols have predefined meanings.

Similarly for the weights between the input and the hidden

layer we have

W(i,j)
(1)

t =W(i,j)
(1)

t – 1 –η . δj
(1)

. Oi...(3)

where symbols have predefined meanings and,

δj
(1)

= ∂Oj
(1)

 / ∂Aj
(1)

 . Σ(W(j,q)
(2)

.δj
(2)

) ...(4)

where symbols have predefined meanings and the summation

is carried for q varying from 1 to 2 (signifying two output

neurons).

The weights are updated during the back-propagation step as

explained. This process continues for various training

iterations after which the network becomes sufficiently

trained for operations.

During the operation phase only the forward pass is executed

to obtain the outputs.

5.2 Parallel Matrix Multiplication

Implementation of Back-Propagation

Algorithm
The computations described previously can be gathered into a

few operations of matrix-multiplication. Matrix-multiplication

being a classical problem that can be parallelized, the

reduction of all the above described computations into one or

more matrix-multiplication provides an opportunity to

parallelize the overall neural network operations. Before

describing the reduction of computations into a few operations

of matrix-multiplication, a few matrices need to be defined

that will be used in the discussion that follows.

Ô is defined as a 1 x 3 matrix (a vector) of the outputs of the

input neurons (including bias)

Ô = O1, O2, O3

Similarly, Ô(1) is defined as the 1 x k matrix of the outputs

from the hidden neurons (including the bias)

Ô
(1)

= O1
(1)

, O2
(1)

, … , Ok
(1)

D1 is defined as a (k – 1) x (k – 1) diagonal matrix, as

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.28, May 2013

27

 ∂O1
(1)

/∂A1
(1)

0 0 … 0

D1= 0 ∂O2
(1)

/∂A2
(1)

0 … 0

 … … … … … …

 0 0 0 … ∂Ok-1
(1)

/∂Ak-1
(1)

where symbols have the same meanings as defined previously

and k - 1 is the number of hidden neurons excluding the bias.

Similarly is defined D2, a 2 x 2 matrix, as

D2 = ∂O1
(2)

/∂A1
(2)

0

 0 ∂O2
(2)

/∂A2
(2)

where the symbols have the same meanings as defined

previously.

Another 2 x 1 matrix E is defined as

E = O1
(2)

-P1

O2
(2)

-P2

with symbols holding the same meanings as before.

The weight matrix Ŵ1 is a 3 x k matrix for weights between

the input and the hidden layer, such that ŵ1(i, j) is the weight

of the synapse from the ith input neuron to the jthhidden

neuron.

Similarly is defined the k x 2 matrix Ŵ2 for the weights

between the hidden and the output neuron.

W1 is the 3 x (k – 1) weight matrix formed from the matrix

Ŵ1 by removing the column corresponding to the bias in the

hidden layer.

Similarly is formed the matrix W2 from Ŵ2.

After having all the terminologies in place, the operations

defined previously are transformed and grouped together as

matrix-multiplication operations.

Beginning with the feed-forward operation, the outputs from

the hidden neurons can be collected into a 1 x (k – 1) matrix

O(1) (excluding the bias) which is given as

O
(1)

= f(Ô x Ŵ1)

where f is the activation function to be applied on each

element of the obtained product matrix.

Similarly, the outputs from the output layer can be gathered

into a 1 x 2 matrix O(2) as

O
(2)

= f(Ô
(1)

 x Ŵ2)

Now moving towards the back-propagation the following

reductions are needed as cited below.

Equation (2) for all j's can be transformed into

δ
(2)

 = D2 x E

Similarly, equation (4) for all j and q can be transformed into

δ
(1)

 = D1 x W2 x δ
(2)

As such equation 1 for all i, j becomes,

Ŵ2(t)
(T)

=Ŵ2(t – 1)
(T)

–η . δ
(2)

. Ô
(1)

where, (T) stands for the transpose of the matrix.

Similarly, the updating of weights between the input and the

hidden layer is done for all i,j by,

Ŵ1(t)
(T)

= Ŵ1(t – 1)
(T)

–η . δ
(1)

. Ô

which is the reduced form of the equation (3).

To sum up, each iteration during training requires four matrix-

multiplications and two matrix subtraction, whereas during

the operation phase only two matrix-multiplications are

required.

6. IMPLEMENTATION AND RESULTS
The methodology discussed above was implemented in C++.

The OpenMpapi was used for implementing thread level

parallelism.

The overall algorithm was broken down into steps of matrix-

multiplication and these matrix-multiplications were

parallelized using the directives and constructs of OpenMp.

To begin with finer-level details – the neural network was

constructed and tested with 3 hidden neurons, 100 hidden

neurons and 1000 hidden neurons. The best result was

obtained with 1000 hidden neurons. A neural network with

1000 hidden neurons could deal with versatile problem

scenarios for small to medium scale problem space and yet

provide a sufficiently accurate result. The activation function f

was chosen to be the identity function (f(x) = x). Hence the

partial derivative, ∂f/∂x = 1.

The parallel program was tested on a uniprocessor system, a

two-processor system and a four processor system and a near

optimal speed-up was obtained. A twp processor system

yielded a speed-up about 1.9, while for a four processor

system it was about 3.7.

The input size also had an effect on the speed-up obtained.

For small input sizes, the speed-up was suboptimal due to the

inefficient / incomplete utilization of the available processors.

With medium to large sized input a near-optimal speed-up

was obtained.

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.28, May 2013

28

Fig 1: Change in the run-time with change in the number

of processors

The change in the run-time of the program with the change in

the number of processors is graphically depicted above.

As can be seen, the speed up obtained is proportional (and

very nearly equal) to the number of processors. For a medium

sized input, the program took 18 ms to execute on a uni-

processor system. While for the same input it took 9 ms on a

2-processor system and 5 ms on a 4-processor system.

The overall variation of the run-time (r) on an input with the

number of processors (p) can be approximately represented as

rp = k

for some constant k.

Considering the operation of the neural network, the

implemented neural network was experimented with various

problem and space and in each of those the robot could safely

avoid any obstacles and reach the destination using a

sufficiently good path. In each of the cases, the robot would

stop moving when it has reached close enough to the

destination.

For instance, when the network was trained on a square grid

with the area in the vicinity of the center of the square filled

with obstacles and the robot released from the top left corner

with the destination being the bottom right corner, the robot

could safely avoid the obstacles and reach the desired

destination as depicted below. The constructed path in this

case consists of four intermediate points between the starting

and the destination point.

Fig 2: Trajectory of the robot for an obstacle-filled

problem space

7. CONCLUSION AND FUTURE WORK
This paper presented a neural network approach to the

problem of collision free path-planning of an autonomous

robot, and thereafter transformed it into a sequence of matrix-

multiplications which were parallelized on a multiprocessor

system. Thread level parallelism was used for parallelization.

The speed-up obtained was near-optimal. The robot was

successfully able to move from a starting source position to a

destination while avoiding obstacles.

As a future endeavor, further research can be made to specify

and outline the architectural design so as to achieve a higher

degree of parallelism as well as make the program even more

efficient. Such a design shall remove the limitations that come

with implementing parallelism at the application level such as

context switch overheads, synchronization etc.

8. ACKNOWLEDGMENT
We are thankful to all who helped in this project’s execution.

9. REFERENCES
[1] DU Xin 1, CHEN Hua-hua 2, GU Wei-kang1/ Neural

network and genetic algorithm based global path

planning in a static environment,

(1 Department of Information Science and Electronics

Engineering, Zhejiang University, Hangzhou 310027,

China)(2 School of Communication Engineering,

Hangzhou Dianzi University, Hangzhou 310018, China)

[2] Youssef Bassil / Neural Network Model for Path-

Planning Of Robotic Rover Systems,

International Journal of Science and Technology (IJST),

E-ISSN: 2224-3577, Vol. 2, No. 2, February, 2012

[3] Janglová, D. / Neural Networks in Mobile Robot Motion,

pp. 15-22, Inernational Journal of Advanced Robotic

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.28, May 2013

29

Systems, Volume 1 Number 1 (2004), ISSN 1729-8806.

[4] Kyung Min Han, Collision Free Path Planning

Algorithms for Robot Navigation Problems, A Thesis

presented to the faculty of the Graduate School

University of Missouri-Columbia, 2007

[5] R. Glasius, A. Komoda, S. Gielen / Neural Network

Dynamics for Path-planning and Obstacle Avoidance,

Department of Medical Physics and Biophysics,

University of Nijmegen, Geert GrootepleinNoord 21,

6525 EZ Nijmegen, The Netherlands

IJCATM : www.ijcaonline.org

