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ABSTRACT 

This paper covers the problem of Collision Free Path Planning 

for an autonomous robot and proposes a solution to it through 

the Back Propagation Neural Network. The solution is 

transformed into a composition of matrix-multiplication 

operations, which is a classic example of problems that can be 

efficiently parallelized. This paper finally proposes a parallel 

implementation of this matrix-multiplication method which, 

in itself, encapsulates the neural network that implements the 

collision free path planning for an autonomous robot. 
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1. INTRODUCTION 
Collision free path planning of an autonomous robot is a 

classic problem in the realm of robotics. It is mainly 

concerned with equipping the robot with a technology that 

allows it to get from a source to a destination safely, while 

avoiding any obstacles in its path, without any external aid. 

 

As highlighted in [3], the problem of collision free path 

planning of an autonomous robot can be decomposed into two 

sub-problems - 

 

1. Findspace Problem 

2. Findpath Problem 

 

The Findspace problem deals with mapping the problem 

space, in this case, the physical structure of the area that 

contains the robot's current position, its destination and the 

probable intermediate locations, with a way to specify the 

obstacles. 

 

The Findspace problem involves scanning the area in the 

vicinity of the robot to ascertain the locations of various 

obstacles that might obstruct the robot's path from the source 

to the destination. This is usually done by a sensor mounted 

on the robot which more generally uses some kind of waves 

and their reflections from nearby obstacles to form a map of 

the surrounding area (much like sonar). There can be 

alternative means for space mapping which may involve 

capturing an image of the surrounding region to find the 

locations of obstacles. 

 

The Findpath problem is finding a safe, collision free route 

from the source to the destination. It is involved with using 

the information obtained through the solution of the Findspace 

problem to find a trajectory for the robot to follow, which will 

ensure a collision free motion of the robot from the source to 

destination. 

 

Various approaches to the Findpath problem has been 

discussed and implemented over time, highlighting the 

various approaches that can be used to solve the problem, 

although each such method has its own advantages and 

shortcomings based on accuracy, efficiency(time) and the 

difficulty of implementation. 

 

As discussed in [4] Genetic Algorithm and Ant Colony 

Optimization are the two algorithms that can be used to solve 

the Findpath problem efficiently and accurately.   

 

The Genetic Algorithm for solving the Findpath problem 

involves mutating the genes (which correspond to 

intermediate points of a path) to form new set of 

chromosomes (collection of genes that specify a solution), 

evaluating the fitness of the chromosomes (using some kind 

of fitness function) and taking the fitter chromosomes to the 

next generation while eliminating the less fitter ones. The Ant 

Colony Optimization approach to the Findpath problem 

performs a number of iterations to update the paths and 

associate with them a degree of goodness (pheromones). 

 

The Neural Network approach has been used in this paper to 

solve the Findpath problem. A Neural Network is a collection 

of several computing units – neurons, connected in a graph 

topology through weighted connections (edges). The Neural 

Network approach to solve the Findpath problem can be 

broadly classified into two categories - 

 

1. Supervised Neural Network 

2. Unsupervised Neural Network 

 

The Unsupervised learning methodology for neural networks 

does not have a pre-classified set of input – output patterns to 

train the network and instead use the Hebbian learning rule to 

update the weights.  

 

In contrast, the supervised learning methods have a set of 

input – output patterns to train the network. The Findpath 

problem is handled in this paper and a Parallel 

implementation of a Back-Propagation Neural Network is 

used to solve it. The network is trained under supervised 

learning methodology. 
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2. ORGANIZATION OF THE PAPER 
Section 1 of this paper describes the general problem of 

Collision Free Path Planning of Autonomous Robot. Section 3 

gives a brief overview of some research papers that propose 

various solutions to the path planning problem. Section 4 

describes accurately our problem space and our set up towards 

its solution. Section 5 describes the theoretical aspect of our 

implementation and the methodology involved in solving the 

Findpath problem in detail. Section 6 covers an overview of 

the implementation details and results. Section 7 covers the 

conclusion and the future wok possible followed by 

acknowledgment and references in section 8 and 9 

respectively. 

3. RELATED WORK AND RESOURCES 
[1] proposes a method of path planning based on neural 

network and genetic algorithm. The neural network model is 

used to construct the workspace for a robot and this model is 

used to establish the relationship between a collision free path 

and the output of the model. Then the two-dimensional coding 

for the path via-points was converted to one-dimensional and 

the fitness of both the collision avoidance path and the 

shortest distance are integrated into a fitness function to be 

used in the Genetic Algorithm. 

[2] specifically addresses the problem of collision free path 

planning in an autonomous space robot. The paper uses a 

back-propagation neural network and three layers – input 

layer with 2 neurons, hidden layer with 3 neurons and output 

layer with 2 neurons to implement a solution. The activation 

function for the hidden layer is sigmoid function and that for 

output layer is the identity function. 

 

[4] uses genetic algorithm and ant colony optimization to 

provide a solution to the general path planning problem as 

well as discuss the benefits and the limitations associated with 

each of them. 
 

[3] again deals with path planning and intelligent control of an 

autonomous robot which should move safely in partially 

structured environment. However, it addresses both the 

problems – Findspace problem and Findpath problem and 

uses two neural networks – one to map the space and hence 

solve the Findspace problem and the other to deal with the 

construction of a collision free path through the partially 

structured space to avoid the nearest obstacles. 

4. THE PROBLEM SETUP 
The space through which a robot has to reach its destination is 

envisioned as an N x M (N being number of rows and M 

number of columns) grid of 0.1 unit x 0.1 unit squares. Each 

of the squares is marked with 1 – specifying the location of an 

obstacle over that square, or 0 – specifying the lack of it. 

 

This grid map is imposed over the space to facilitate a 

quantitative view of the problem space. 

 

Moving on to our neural network, the neural network has 

three layers - 

 

1. Input layer – Input layer has 2 neurons – to be fed the 2 co-

ordinates – row co-ordinate and column co-ordinate – of the 

current position of robot.  

 

2. Hidden Layer – Experiments were carried out with a 

variable number of neurons in the hidden layer – from 3 to 

100 to 1000 – and a good result for medium sized input was 

obtained for 1000 neurons in the hidden layer. 

 

3. Output Layer – It has two output neurons, to output the row 

and column co-ordinate where the robot should move to in the 

next step for the input row and column co-ordinate. 

 

In addition to the above mentioned neurons, there are two 

biases – one each in the input and the hidden layer, each fed 

with an input of 1. 

 

Two sets of weights can be identified for our setup – W(i,j)
(1) , 

which is the weight of synapse between the ith neuron in the 

input layer and the jthin the hidden layer and W(i,j)
(2), the 

weight of the synapse between the ith neuron in the hidden 

layer and the jthneuron in the output layer. 

 

The weights are initially randomly initialized with a small 

value between 0.001 to 0.1 and updated thorough multiple 

training passes.  

 

The learning rate was chosen to be 0.25. 

 

The operation of the network involves two phase -  

 

1. Training phase, over which a number of (input, output) 

patterns are presented to the network and the weights are 

appropriately updated by comparing the obtained output with 

the expected output. 

 

2. Operation phase, in which an input is presented to the 

network and the obtained output is used to decide the next 

step of motion. 

 

The number of training patterns varies with the complexity of 

the problem space and the accuracy desired. 

5. THE PROPOSED MODEL 

5.1 The Back-Propagation Algorithm 
First, the error function is defined as the function that 

measures the squared difference between the expected and the 

obtained output in each iteration. The back-propagation 

algorithm aims at finding the optimal combination of weights 

of the synapse that minimizes this error function. For this we 

follow a method of gradient decent. The weight of a synapse 

is moved in the direction that aims to minimize the error. 

More formally, the weight of a synapse is shifted in a 

direction opposite to the gradient of the error with respect to 

the weight. 

 

The ability of being able to calculate the gradient of the error 

function at each step requires the error function, and hence the 

activation function for each of the neuron ( in the hidden and 

the output layer ) to be differentiable. Let the activation 

function be f for both – the hidden and the output neurons. 

 

Let the input to the two input neurons are x and y respectively 

and 1 to the bias, which they pass on as their output.  

 

The activation for the jthhidden neuron as such can be given 

as, 



International Journal of Computer Applications (0975 – 8887) 

Volume 69– No.28, May 2013 

26 

 

Aj
(1)

 = Σ W(i,j)
(1) 

. Oi 

 

where, Oi is the output from the ithinput neuron, W(i,j)
(1) is the 

weight between the ith input neuron and the jthhidden neuron 

and i varies in summation from 1 to 3 (signifying 3 input 

neurons including the bias). 

 

If the activation function for the hidden neurons is f, then the 

output from the jth hidden neuron is 

 

Oj
(1) 

= f( Aj
(1) 

) 

 

Similarly, The activation for the jthoutput neuron as such can 

be given as, 

 

Aj
(2)

 = Σ W(i,j)
(2) 

. Oi
(1)

 

 

where, Oi
(1) is the output from the ithhidden neuron, W(i,j)

(2) is 

the weight between the ith hidden neuron and the jthoutput 

neuron and i varies in summation from 1 to k ( signifying k 

hidden neurons including the bias ). 

 

If the activation function for the output neurons is f, then the 

output from the jth output neuron is 

 

Oj
(2) 

= f( Aj
(2) 

) 

 

During the operation phase, the collection of all outputs (from 

the 1st and the 2nd output neuron) specifies the next step for 

the robot.  

 

During the training phase, if the expected output from the jth 

output neuron is Pj, then the error from the jth neuron is 

calculated as  

 

Ej=0.5 .( Oj
(2 ) 

- Pj)
2
 

 

As such, the overall error is the collection of errors from all 

outputs and is given as 

 

E=Σ 0.5 .( Oj
(2 ) 

- Pj)
2
 

 

where summation is calculated for j from 1 to 2 (due to two 

output neurons). 

 

The steps discussed so far constitute the forward pass of the 

back-propagation algorithm. 

 

During the error back-propagation phase, for each weighted 

synapse with weight w, the gradient with respect to the weight 

is calculated and the weight is moved in the direction opposite 

to this gradient. Mathematically, after the tth iteration, the 

weight Wtof any synapse, with weight Wt- 1 before the 

iteration, is given as 

 

Wt=Wt – 1 –η . ∂E / ∂Wt – 1 

 

where, η is the learning rate, E is the total error as defined 

above and ∂ E / ∂ Wi – 1 is the partial derivative of E with 

respect to  Wi – 1. 

 

Applying the above formula to the weights between the 

hidden and the output layer gives  

 

W(i,j)
(2)

t =W(i,j)
(2)

t – 1 –η . δj
(2) 

. Oi
(1)   

...(1) 

 

where symbols have predefined meanings and,  

 

δj
(2)  

= ∂Oj
(2 )

 / ∂Aj
(2)

 .(Oj
(2 ) 

-Pj)   …(2)  
 

where symbols have predefined meanings. 

 

Similarly for the weights between the input and the hidden 

layer we have  

 

W(i,j)
(1)

t =W(i,j)
(1)

t – 1 –η . δj
(1) 

. Oi...(3) 

 

where symbols have predefined meanings and,  

 

δj
(1)  

= ∂Oj
(1 )

 / ∂Aj
(1)

 . Σ(W(j,q)
(2)

.δj
(2)

) ...(4) 

 

where symbols have predefined meanings and the summation 

is carried for q varying from 1 to 2 (signifying two output 

neurons). 

 

The weights are updated during the back-propagation step as 

explained. This process continues for various training 

iterations after which the network becomes sufficiently 

trained for operations.  

 

During the operation phase only the forward pass is executed 

to obtain the outputs. 

5.2 Parallel Matrix Multiplication 

Implementation of Back-Propagation 

Algorithm 
The computations described previously can be gathered into a 

few operations of matrix-multiplication. Matrix-multiplication 

being a classical problem that can be parallelized, the 

reduction of all the above described computations into one or 

more matrix-multiplication provides an opportunity to 

parallelize the overall neural network operations. Before 

describing the reduction of computations into a few operations 

of matrix-multiplication, a few matrices need to be defined 

that will be used in the discussion that follows. 

 

Ô is defined as a 1 x 3 matrix (a vector) of the outputs of the 

input neurons (including bias) 

 

Ô =   O1, O2, O3  

 
Similarly, Ô(1) is defined as the  1 x k matrix of the outputs 

from the hidden neurons ( including the bias ) 

 

Ô
(1) 

=   O1
(1)

,  O2
(1)

, … , Ok
(1)

 

 

D1 is defined as a ( k – 1) x ( k – 1 ) diagonal matrix, as 
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 ∂O1
(1 )

/∂A1
(1)   

0   0  …   0 

D1=    0   ∂O2
(1)

/∂A2
(1)    

0  …   0 

   …   …   …  …  …  …    

      0   0   0   … ∂Ok-1
(1)

/∂Ak-1
(1)

 
 

 

where symbols have the same meanings as defined previously 

and k - 1 is the number of hidden neurons excluding the bias. 

 

Similarly is defined D2, a 2 x 2 matrix, as    

 

D2 =  ∂O1
(2 )

/∂A1
(2)   

0 

 0  ∂O2
(2)

/∂A2
(2)

 

 

where the symbols have the same meanings as defined 

previously.  

 

Another 2 x 1 matrix E is defined as 

 

E =   O1
(2 ) 

-P1 

O2
(2 ) 

-P2 

 

with symbols holding the same meanings as before. 

 

The weight matrix Ŵ1 is a 3 x k matrix for weights between 

the input and the hidden layer, such that ŵ1( i, j ) is the weight 

of the synapse from the ith input neuron to the  jthhidden 

neuron. 

 

Similarly is defined the k x 2 matrix Ŵ2 for the weights 

between the hidden and the output neuron. 

 

W1 is the 3 x (k – 1) weight matrix formed from the matrix 

Ŵ1 by removing the column corresponding to the bias in the 

hidden layer. 

 

Similarly is formed the matrix W2 from Ŵ2. 

 

After having all the terminologies in place, the operations 

defined previously are transformed and grouped together as 

matrix-multiplication operations. 

 

Beginning with the feed-forward operation, the outputs from 

the hidden neurons can be collected into a 1 x (k – 1) matrix 

O(1)  (excluding the bias) which is given as  

 

O
(1) 

= f( Ô x Ŵ1 ) 

 

where f is the activation function to be applied on each 

element of the obtained product matrix.  

 

Similarly, the outputs from the output layer can be gathered 

into a 1 x 2 matrix O(2) as 

 

O
(2) 

= f( Ô
(1)

 x Ŵ2 ) 

 

Now moving towards the back-propagation the following 

reductions are needed as cited below. 

 

Equation (2) for all j's can be transformed into  

 

δ
(2)

 = D2 x E 

 

Similarly, equation (4) for all j and q can be transformed into 

 

δ
(1)

 = D1 x W2 x δ
(2)

 

 

As such equation 1 for all i, j becomes, 

 

Ŵ2(t)
(T)

=Ŵ2(t – 1)
(T) 

–η . δ
(2) 

. Ô
(1)

 

 

where, (T) stands for the transpose of the matrix. 

 

Similarly, the updating of weights between the input and the 

hidden layer is done for all i,j  by, 

 

Ŵ1(t)
(T)

= Ŵ1(t – 1)
(T) 

–η . δ
(1) 

. Ô 

 

which is the reduced form of the equation (3). 

 

To sum up, each iteration during training requires four matrix-

multiplications and two matrix subtraction, whereas during 

the operation phase only two matrix-multiplications are 

required. 

6. IMPLEMENTATION AND RESULTS 
The methodology discussed above was implemented in C++. 

The OpenMpapi was used for implementing thread level 

parallelism. 

The overall algorithm was broken down into steps of matrix-

multiplication and these matrix-multiplications were 

parallelized using the directives and constructs of OpenMp. 

 

To begin with finer-level details – the neural network was 

constructed and tested with 3 hidden neurons, 100 hidden 

neurons and 1000 hidden neurons. The best result was 

obtained with 1000 hidden neurons. A neural network with 

1000 hidden neurons could deal with versatile problem 

scenarios for small to medium scale problem space and yet 

provide a sufficiently accurate result. The activation function f 

was chosen to be the identity function ( f(x) = x ). Hence the 

partial derivative, ∂f/∂x = 1. 

 

The parallel program was tested on a uniprocessor system, a 

two-processor system and a four processor system and a near 

optimal speed-up was obtained. A twp processor system 

yielded a speed-up about 1.9, while for a four processor 

system it was about 3.7. 

 

The input size also had an effect on the speed-up obtained. 

For small input sizes, the speed-up was suboptimal due to the 

inefficient / incomplete utilization of the available processors. 

With medium to large sized input a near-optimal speed-up 

was obtained.  
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Fig 1: Change in the run-time with change in the number 

of processors 

 

The change in the run-time of the program with the change in 

the number of processors is graphically depicted above. 

 

As can be seen, the speed up obtained is proportional ( and 

very nearly equal ) to the number of processors. For a medium 

sized input, the program took 18 ms to execute on a uni- 

processor system. While for the same input it took 9 ms on a 

2-processor system and 5 ms on a 4-processor system. 

 

The overall variation of the run-time (r) on an input with the 

number of processors (p) can be approximately represented as  

 

rp = k 

 

for some constant k.  

 

Considering the operation of the neural network, the 

implemented neural network was experimented with various 

problem and space and in each of those the robot could safely 

avoid any obstacles and reach the destination using a 

sufficiently good path. In each of the cases, the robot would 

stop moving when it has reached close enough to the 

destination. 

For instance, when the network was trained on a square grid 

with the area in the vicinity of the center of the square filled 

with obstacles and the robot released from the top left corner 

with the destination being the bottom right corner, the robot 

could safely avoid the obstacles and reach the desired 

destination as depicted below. The constructed path in this 

case consists of four intermediate points between the starting 

and the destination point. 

 

Fig 2: Trajectory of the robot for an obstacle-filled 

problem space 

7. CONCLUSION AND FUTURE WORK 
This paper presented a neural network approach to the 

problem of collision free path-planning of an autonomous 

robot, and thereafter transformed it into a sequence of matrix-

multiplications which were parallelized on a multiprocessor 

system. Thread level parallelism was used for parallelization. 

The speed-up obtained was near-optimal. The robot was 

successfully able to move from a starting source position to a 

destination while avoiding obstacles. 

As a future endeavor, further research can be made to specify 

and outline the architectural design so as to achieve a higher 

degree of parallelism as well as make the program even more 

efficient. Such a design shall remove the limitations that come 

with implementing parallelism at the application level such as 

context switch overheads, synchronization etc. 
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