
International Journal of Computer Applications (0975 – 8887)

Volume 69– No.25, May 2013

17

Digital Circuit Layout based on Graph Partitioning
Technique using DNA Computing

Maninder Kaur Kawaljeet Singh

Assistant Professor, SMCA Director, University Computer Center
Thapar University, Patiala Punjabi University, Patiala

ABSTRACT

After Adleman and Lipton have described the potential power

of DNA computing, researchers have developed an interest in

DNA computing for solving difficult computational problems

like NP-complete problems. Partitioning of digital circuits

also come under this category. Partitioning plays a key role in

the design of a computer system. Existing conventional

methods are unable to achieve the required breakthrough in

terms of complexity, time and cost. This paper discusses how

the potential of DNA can be used to solve the instances of

circuit partitioning problem in an efficient way. A

prototypical algorithm named DBACP is developed for

solving the partitioning problem which is compared with

SCAP approach on the small scale instances of circuit

Benchmarks.

General Terms

DNA Computing, Tube, VLSI Circuits, Circuit Partitioning,

Balance constraints

Keywords
Memory Strands, Extraction, Crossover, Mutation,

1. INTRODUCTION
Efficient designing of any complex system necessitates

decomposition of the same into a set of smaller subsystem.

Subsequently, each subsystem can be designed independently

and simultaneously to speed up the design process. The

procedureat of decomposition is called partitioning. It plays a

key role in the design of a computer system in general, and

VLSI chips in particular. A computer system is comprised of

tens of millions of transistors. It is partitioned into several

smaller modules/blocks for facilitation of the design process.

Each block has terminals located at the periphery that are used

to connect the blocks. A VLSI system is partitioned at several

levels due to its complexity. At the top level, it is partitioned

into a set of sub systems whereby each subsystem can be

designed and fabricated independently on a single PCB. The

circuit partitioning problem arises in many VLSI applications

[1, 2]. At any level of partitioning, the input to the partitioning

algorithm is a set of components and a netlist. The result is a

set of subcircuits which when connected, function as the

original circuit and terminals required for each subcircuit to

connect it to the other subcircuits. Other than maintaining the

original functionality, partitioning technique optimizes certain

parameters subject to certain constraints. The constraints for

the partitioning problem include area constraints and terminal

constraints [9, 11]. The objective function for a partitioning

problem includes the minimization of the number of nets that

cross the partition boundaries. Partitioning efficiency can be

improved within three broad parameters.

• The system must be decomposed carefully so that the

original functionality of the system remains intact.

• An interface specification is generated during the

decomposition, which is used to connect all the subsystems.

The system decomposition should ensure minimization of the

interface interconnection between any two subsystems.

• Finally, the decomposition technique should be simple and

efficient so that the time required for the decomposition is a

small fraction of the total design time.

The present work concentrates on the DNA computing

approach to solve the circuit partitioning problem.DNA

computing like much of today’s cutting-edge research is

multidisciplinary. It involves mathematics, biology and

computer science. In many papers, [6,7,8,13,14,15] it is

stressed that high levels of collaboration between academic

disciplines will be essential to gear up the progress in DNA

computing. Many of the search problems in computer science

are unsolvable not theoretically but because of astronomical

resources required for their solution. DNA Algorithms can be

applied to these problems. They can be used to extract

statistics such as mean, median, minimum element from an

unsorted data that can be used to speed up algorithms for NP

problems. It can also be used to speed up the search for keys

to crypt systems such as DES, PGP etc. The main

disadvantage of these algorithms is the lack of hardware

support and measurement difficulties. Though the current

difficulties found in translating theoretical DNA computing

approaches into real life solutions are never sufficiently

overcome, there is still a great potential for other areas of

development. Future applications might utilize the error rates

and instability of DNA based computation approaches as a

means of predicting and simulating the emergent behavior of

complex systems. This could relate to weather forecasting,

economics, and lead to more a scientific analysis of similar

problems. Such a system might rely on inducing mutation and

increased error rates through exposure to radiation and

deliberately inefficient encoding schemes. The methods of

DNA computing can serve as the most obvious medium for

the use of evolutionary programming for applications in

design of expert systems.

2. PROBLEM FORMULATION
The partitioning problem can be expressed more naturally in

graph theoretic terms. A graph G=(V, E) representing a

partitioning problem can be constructed as follows. Let

V={v1, v2…vn} be a set of vertices and E={e1, e2…em} be a

set of edges. Each vertex represents a component. There is

edge joining the vertices whenever the components

corresponding to these vertices are to be connected. Thus,

each edge is a subset of the vertex set i.e., ei ⊆ V, i=1,2…m.

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.25, May 2013

18

The modeling of partitioning problem into graphs allows us to

represent the circuit-partitioning problem completely as a

graph-partitioning problem. The Bipartitioning problem is to

partition V into V1, V2 where

In the proposed work the values r, the balance factor, =0.5 and

ᴕ=10%, the tolerance limit respectively.

 |V1| and |V2| denotes the size of partitions such that

Where a(vi) with denotes the area of cell .The cost of partition

is called the cutsize, which is the number of edges crossing

the cut. The constraints and the objective functions for the

partitioning algorithms vary for each level of partitioning and

each of the different design styles used. However, at the chip

level, the partitioning algorithms usually have

interconnections between partitions as an objective function.

The number of interconnections at any level of partitioning

has to be minimized. Minimizing the interconnections not

only reduces the delay but also reduces the interface between

the partitions making it easier for independent design and

fabrication. A large number of interconnections boost the

design area as well as complicates the task of placement and

routing algorithms. Reduction of the number of

interconnections between partitions is called the mincut

problem. The cut minimization is a very important objective

function for partitioning algorithms for any level or any style

of design. The mincut problem is NP complete [3].

3. THE PROPOSED METHOD DBACP

The basic idea behind the proposed algorithm DBACP (A

DNA Based Approach for Circuit Partitioning) for the

minimum balanced bisection problem is as follows:

Step 1: Construct a set T of all possible 2n bipartition

solutions of given circuit with n gates.

Step 2: Discard the solutions from the set T that don’t satisfy

balance constraint (reading weighted file), thereby generating

a tube T of all possible feasible solutions.

Step 3: Based on to T and incidence matrix M of graph G,

determine the cut edge set C of the partitions for all solutions

in T.

Step 4: Retain the strands in tube T that have minimum edge

cut.

To solve the instance of Partitioning problem with G=(V, E)

(|v| = n,nodes, |E|=e ,interconnections) start with 2n identical

single stranded DNA memory strands each with (n+m) bit

regions. The first n bit regions will represent the

presence/absence of vertex in the first partition and the rest m

bit regions will represent the presence/absence of an edge

crossing the partition.

 1 2 3 n-1 n 1 2 m-1 m

Bit regions for 1st partition vertices Bit regions for crossing edges

Fig 1: Bit regions of a DNA Strand

As shown in Fig 1, the n+m bit regions of DNA strands are

represented by v1, v2…vn, e1, e2…em-1, em. vi is 1 if the vertex

i is present in the first partition and otherwise it is zero.

Similarly ei is 1 if the edge is crossing the partition otherwise

it is zero. The summation of e1, e2…em-1, em will represent the

total number of edges crossing the partition.

3.1 Algorithm
Step I Prepare a library .Design 2n DNA strands, each with

n+m bit regions (Initialize (T0,n)).

Step II Read the weight file and separate the strands that

don’t satisfy the balance constraints such that the tube T

contains only strands of k feasible solutions i.e. a nonempty

tube of k strands.

Step III Find the edge cut costs of every strand by using

incidence matrix M of graph G, for all solutions in T by

calling edge_cut() function

Step IV

Extracts the strands from the tube using dna_opt(T) function

which has minimum edge cut count.

bool :=check(T) : Given a tube T , the function gives yes or

no according as there is at least one DNA strand in T or not.

b := get(T): Given a tube T containing at least one strand, get

randomly one strand s in T .

This improved efficiency is achieved due to the ability of

DNA computing to evaluate all possible combinations

simultaneously.

Procedure: edge_cut(T)

begin

for every strand in a tube of feasible solution

for k:= 1 to n

if(get(k)=0)

for e:=1 to m

sum(e)=m[k][e]+sum(e);

for e:=1 to m

if sum(e)==1

set(edgebit(e))=1

else

set(edgebit(e))=0

end of for statement

end of for statement

end

Procedure s := dna_opt.(T)

Input: T : a nonempty tube of (k) strands.

Output: s: a strand in T such that s contains a minimum edge

cut cost.

begin

1. for i = 1 to k

2. (T1, T0) := extract(T , n+ i);

3. if check(T0)= yes, then

4. T:=rename(T0);

5. else T :=rename(T1);

6. s :=get(T);

end.

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.25, May 2013

19

The figure 2 shows a random strand formed of circuit with 4

nodes and 3 edges after the initialization process having

stickers annealed to v1, v3, v4 and with last three bits for

edges, with sticker annealed to e2 representing the edge cut.

Fig 2: A random strand generated during the initialization

process with annealed stickers

4. SIMULATION RESULTS
The DBACP algorithm is implemented in Linux environment

running on parallel computing environment[12]. The

performance of the proposed algorithm is tested on UCLA

small circuit partitioning instances [4] generated by the top-

down partitioning-based placement process employed by the

UCLA Capo placer. The circuit net lists are in the net list

format. (.net,.nodes,.wts,.blk files). The DBACP was tested

against the circuits with the problem sizes range from 10 cells

to 30 cells. DNA notations are developed utilizing the

properties of massive parallelism and replications. A DNA

Simulator software is developed which is used to obtain the

results for the proposed DNA computing method.

The results of DBACP are compared with that of SCAP

algorithm [5]. The SCAP approach was run using the

parameters: population size as 10, crossover probability 0.6,

mutation probability 0.02, with 50 as number of generations.

Table 1 shows the comparison of average results of SCAP and

DBACP algorithm. The algorithms were simulated using

1,2,3,4 processors and results present the average cut and

average runtime. The average results have been obtained on

multiple number of partitioning instance groups in each size

range.

As seen from Table I, average results obtained by DBACP

based partitioner are consistently better than these obtained by

SCAP for small problem instances upto 20 nodes .With the

increase in the size of problem instance the DBACP execution

time increases in comparison to SCAP algorithm. The

DBACP algorithm gives excellent quality of solution at the

cost of running time of algorithm.

5. CONCLUSIONS AND FUTURE

SCOPE
The results show that the proposed DNA algorithm is able to

partition the circuit graph taking less no. of iterations as

compared to SCAP approaches for small instances. SCAP

Algorithm takes more amount of CPU time .In these situations

DNA algorithms provide the better solution by taking the help

of massive parallelism and recombination properties of DNA

.at the cost of little increase in running time.

6. REFERENCES
[1] Alpert, C.J., Kahng, A., (1995). “Recent Developments

in Netlist Partitioning: A survey”, in Integration: the

VLSI Journal, vol. 19, 1-18.

[2] Kumar, V., Grama, A., Gupta, A., Karypis, G., (1994),

“Introduction to Parallel Computing. Design and analysis

of algorithms”, The Benjamin/Cummings Publishing

company

[3] Garey, M.R., Johnson, D.S., (1979), “Computers and

Interactability: A Guide to the Theory of NP-

Completeness”, W.H. Freeman & Company, San

Francisco.

[4] http://vlsicad.ucsd.edu/GSRC/bookshelf/Slots/Partitionin

g/

[5] K.,Maninder, S., Kawaljeet (2011). “Soft Computing

Approach for Digital Circuit Layout based on Graph

Partitioning“. International Journal of Computer

Applications, Volume 15– No.1.

[6] J. Watada and R. B. A. Barkar, “DNA computing and its

applications,” in Proc. 8th Int. Conf. Intell. Syst. Des.

Appl., Nov. 2008, pp. 288–294.

[7] J. Y. Lee, S. Y. Shin, T. H. Park, and B.-T. Zhang,

“Solving traveling salesman problems with DNA

molecules encoding numerical value,” Biosystems, vol.

78, no. 1–3, pp. 39–47, Dec. 2004.

[8] Kahan, M.; Gil, B.; Adar, R.; Shapiro, E. (2008).

"Towards molecular computers that operate in a

biological environment". Physica D: Nonlinear

Phenomena 237 (9): 1165–1172.

[9] Fiducia, C.M., and Mattheyses, R.M., (1982),”A linear

time heuristic for improving network partitioning”, in

Proc ACM/IEEE Design Automation, 175-181.

[10] Holland, J., (1975), “Adaptation in Natural and Artificial

Systems”, Ann Arbor: University of Michigan Press.

[11] Kernighan, B.W., Lin S., (1970), “An Efficient Heuristic

Procedure for Partitioning Graphs", the Bell Sys. Tech.

Journal, 291-307.

[12] David Padua “Encyclopedia of Parallel Computing,”

Volume 4, 2011.

Table 1. shows the comparison of average cut(average runtime of SCAP and the proposed DBACP algorithm for the set of spp

benchmark circuits series

No. of

Processors

1 2 3 4

Circuit

Series

SCAP DBACP SCAP DBACP SCAP DBACP SCAP DBACP

spp-N10 4.293(0.00031) 3.06(0.000112) 3.889(0.000121) 3.06(0.000102) 3.40056(0.000109) 3.06(0.000092) 3.2034(0.000103) 3.06(0.000088)

spp-N15 5.23(0.000462) 4.36(0.0001192) 5.128(0.000317) 4.36(0.000118) 4.9818(0.000278) 4.36(0.000101) 4.567(0.00019) 4.36(0.000091)

spp-N20 7.39(0.001638) 5.204(0.002328) 6.16(0.001232) 5.204(0.001623) 6.009(0.001219) 5.204(0.001287) 5.89(0.001205) 5.204(0.000505)

spp-N25 8.07(0.00441) 6.18(0.013371) 7.94(0.00334) 6.18(0.010234) 7.88(0.003112) 6.18(0.009232) 7.62(0.002112) 6.18(0.002306

spp-N30 9.2890(0.009085) 7.75(0.0239083) 8.806(0.007902) 7.75(0.010915) 8.256(0.006805) 7.75(0.009649) 7.942(0.004964) 7.75(0.004818)

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.25, May 2013

20

[13] S. Shin, I. Lee, D. Kim, and B. Zhang, “Multiobjective

evolutionary optimization of DNA sequences for reliable

DNA computing,” IEEE Trans.Evol. Comput., vol. 9, no.

2, pp. 143–158, Apr. 2005.

[14] M. Darehmiraki and H. M. Nehi, “Molecular solution to

the 0–1 knapsack problem based on DNA computing,”

Appl. Math. Comput., vol. 187, no. 2,pp. 1033–1037,

2007.

[15] Roweis, S., Winfree, E., Burgoyne, R., Chelyapov, N.,

Goodman, M., Rothemund, P., Adleman, L., (1998), “A

Sticker-Based Model for DNA Computation”, Journal of

Computational Biology, 4, 615-629.

IJCATM : www.ijcaonline.org

