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ABSTRACT 

After Adleman and Lipton have described the potential power 

of DNA computing, researchers have developed an interest in 

DNA computing for solving difficult computational problems 

like NP-complete problems. Partitioning of digital circuits 

also come under this category. Partitioning plays a key role in 

the design of a computer system. Existing conventional 

methods are unable to achieve the required breakthrough in 

terms of complexity, time and cost. This paper discusses how 

the potential of DNA can be used to solve the instances of 

circuit partitioning problem in an efficient way. A 

prototypical algorithm named DBACP is developed for 

solving the partitioning problem which is compared with 

SCAP approach on the small scale instances of circuit 

Benchmarks. 
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1. INTRODUCTION 
Efficient designing of any complex system necessitates 

decomposition of the same into a set of smaller subsystem. 

Subsequently, each subsystem can be designed independently 

and simultaneously to speed up the design process. The 

procedureat of decomposition is called partitioning. It plays a 

key role in the design of a computer system in general, and 

VLSI chips in particular. A computer system is comprised of 

tens of millions of transistors. It is partitioned into several 

smaller modules/blocks for facilitation of the design process. 

Each block has terminals located at the periphery that are used 

to connect the blocks. A VLSI system is partitioned at several 

levels due to its complexity. At the top level, it is partitioned 

into a set of sub systems whereby each subsystem can be 

designed and fabricated independently on a single PCB. The 

circuit partitioning problem arises in many VLSI applications 

[1, 2]. At any level of partitioning, the input to the partitioning 

algorithm is a set of components and a netlist. The result is a 

set of subcircuits which when connected, function as the 

original circuit and terminals required for each subcircuit to 

connect it to the other subcircuits. Other than maintaining the 

original functionality, partitioning technique optimizes certain 

parameters subject to certain constraints. The constraints for 

the partitioning problem include area constraints and terminal 

constraints [9, 11]. The objective function for a partitioning 

problem includes the minimization of the number of nets that 

cross the partition boundaries. Partitioning efficiency can be 

improved within three broad parameters. 

• The system must be decomposed carefully so that the 

original functionality of the system remains intact. 

• An interface specification is generated during the 

decomposition, which is used to connect all the subsystems. 

The system decomposition should ensure minimization of the 

interface interconnection between any two subsystems. 

• Finally, the decomposition technique should be simple and 

efficient so that the time required for the decomposition is a 

small fraction of the total design time. 

 

The present work concentrates on the DNA computing 

approach to solve the circuit partitioning problem.DNA 

computing like much of today’s cutting-edge research is 

multidisciplinary. It involves mathematics, biology and 

computer science. In many papers, [6,7,8,13,14,15] it is 

stressed that high levels of collaboration between academic 

disciplines will be essential to gear up the progress in DNA 

computing. Many of the search problems in computer science 

are unsolvable not theoretically but because of astronomical 

resources required for their solution. DNA Algorithms can be 

applied to these problems. They can be used to extract 

statistics such as mean, median, minimum element from an 

unsorted data that can be used to speed up algorithms for NP 

problems. It can also be used to speed up the search for keys 

to crypt systems such as DES, PGP etc. The main 

disadvantage of these algorithms is the lack of hardware 

support and measurement difficulties. Though the current 

difficulties found in translating theoretical DNA computing 

approaches into real life solutions are never sufficiently 

overcome, there is still a great potential for other areas of 

development. Future applications might utilize the error rates 

and instability of DNA based computation approaches as a 

means of predicting and simulating the emergent behavior of 

complex systems. This could relate to weather forecasting, 

economics, and lead to more a scientific analysis of similar 

problems. Such a system might rely on inducing mutation and 

increased error rates through exposure to radiation and 

deliberately inefficient encoding schemes. The methods of 

DNA computing can serve as the most obvious medium for 

the use of evolutionary programming for applications in 

design of expert systems. 

 

2. PROBLEM FORMULATION 
The partitioning problem can be expressed more naturally in 

graph theoretic terms. A graph G=(V, E) representing a 

partitioning problem can be constructed as follows. Let 

V={v1, v2…vn} be a set of vertices and E={e1, e2…em} be a 

set of edges. Each vertex represents a component. There is 

edge joining the vertices whenever the components 

corresponding to these vertices are to be connected. Thus, 

each edge is a subset of the vertex set i.e., ei ⊆ V, i=1,2…m. 
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The modeling of partitioning problem into graphs allows us to 

represent the circuit-partitioning problem completely as a 

graph-partitioning problem. The Bipartitioning problem is to 

partition V into V1, V2 where 

 

 

 

In the proposed work the values r, the balance factor, =0.5 and 

ᴕ=10%, the tolerance limit respectively. 

 |V1| and |V2| denotes the size of partitions such that  

 

Where a(vi) with denotes the area of cell .The cost of partition 

is called the cutsize, which is the number of edges crossing 

the cut. The constraints and the objective functions for the 

partitioning algorithms vary for each level of partitioning and 

each of the different design styles used. However, at the chip 

level, the partitioning algorithms usually have 

interconnections between partitions as an objective function. 

The number of interconnections at any level of partitioning 

has to be minimized. Minimizing the interconnections not 

only reduces the delay but also reduces the interface between 

the partitions making it easier for independent design and 

fabrication. A large number of interconnections boost the 

design area as well as complicates the task of placement and 

routing algorithms. Reduction of the number of 

interconnections between partitions is called the mincut 

problem. The cut minimization is a very important objective 

function for partitioning algorithms for any level or any style 

of design. The mincut problem is NP complete [3].  

 

3. THE PROPOSED METHOD DBACP 
 

The basic idea behind the proposed algorithm DBACP (A 

DNA Based Approach for Circuit Partitioning) for the 

minimum balanced bisection problem is as follows:  

Step 1: Construct a set T of all possible 2n bipartition 

solutions of given circuit with n gates. 

Step 2: Discard the solutions from the set T that don’t satisfy 

balance constraint (reading weighted file), thereby generating 

a tube T of all possible feasible solutions. 

Step 3: Based on  to T and incidence matrix M of graph G, 

determine the cut edge set C of the partitions for all solutions 

in T. 

Step 4: Retain the strands in tube T that have minimum edge 

cut. 

To solve the instance of Partitioning problem with G=(V, E) 

(|v| = n,nodes, |E|=e ,interconnections) start with 2n identical 

single stranded DNA memory strands each with (n+m) bit 

regions. The first n bit regions will represent the 

presence/absence of vertex in the first partition and the rest m 

bit regions will represent the presence/absence of an edge 

crossing the partition.  

 

             

 1       2     3                     n-1       n       1    2                   m-1    m         

Bit regions for 1st partition vertices       Bit regions for crossing edges 

Fig 1: Bit regions of a DNA Strand 

 

As shown in Fig 1, the n+m  bit regions of DNA strands are 

represented by v1, v2…vn, e1, e2…em-1, em.  vi is 1 if the vertex 

i is present in the first partition and otherwise it is zero. 

Similarly ei is 1 if the edge is crossing the partition otherwise 

it is zero. The summation of e1, e2…em-1, em will represent the 

total number of edges crossing the partition.  

3.1  Algorithm 
Step I Prepare a library .Design 2n DNA strands, each with 

n+m  bit regions (Initialize (T0,n)). 

 
Step II Read the weight file and separate the strands that 

don’t satisfy the balance constraints such that the tube T 

contains only strands of k feasible solutions i.e. a nonempty 

tube of k strands. 

Step III Find the edge cut costs of every strand by using 

incidence matrix M of graph G, for all solutions in T by 

calling edge_cut() function 

Step IV 

Extracts the strands from the tube using dna_opt(T) function 

which has minimum edge cut count. 

bool :=check(T ) :  Given a tube T , the function gives yes or 

no according as there is at least one DNA strand in T or not. 

b := get(T ): Given a tube T containing at least one strand, get 

randomly one strand s in T . 

 

This improved efficiency is achieved due to the ability of 

DNA computing to evaluate all possible combinations 

simultaneously. 

Procedure: edge_cut( T) 

begin 

for every strand in a tube of feasible solution 

for k:= 1 to n 

if(get(k)=0) 

for e:=1 to m 

sum(e)=m[k][e]+sum(e); 

for e:=1 to m 

if sum(e)==1 

set(edgebit(e))=1 

else 

set(edgebit(e))=0 

end of  for statement 

end of  for statement 

end 

 

Procedure s := dna_opt.(T ) 

Input: T : a nonempty tube of (k) strands. 

Output: s: a strand in T such that s contains a minimum edge 

cut cost. 

begin 

1. for i = 1 to k 

2. (T1, T0 ) := extract(T , n+ i ); 

3. if check(T0)= yes, then  

4. T:=rename(T0); 

5. else T :=rename(T1); 

6. s :=get(T ); 

end. 
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The figure 2 shows a random strand formed of circuit with 4 

nodes and 3 edges after the initialization process having 

stickers annealed to v1, v3, v4 and with last three bits for 

edges, with sticker annealed to e2 representing the edge cut. 

 

 

 

Fig 2: A random strand generated during the initialization 

process with annealed stickers 

4. SIMULATION RESULTS  
The DBACP algorithm is implemented in Linux environment 

running on parallel computing environment[12]. The 

performance of the proposed algorithm is tested on UCLA 

small circuit partitioning instances [4] generated by the top-

down partitioning-based placement process employed by the 

UCLA Capo placer. The circuit net lists are in the net list 

format. (.net,.nodes,.wts,.blk files).  The DBACP was tested 

against the circuits with the problem sizes range from 10 cells 

to 30 cells. DNA notations are developed utilizing the 

properties of massive parallelism and replications. A DNA 

Simulator software is developed which is used to obtain the 

results for the proposed DNA computing method. 

The results of DBACP are compared with that of SCAP 

algorithm [5]. The SCAP approach was run using the 

parameters:  population size as 10, crossover probability 0.6, 

mutation probability 0.02, with 50 as number of generations. 

Table 1 shows the comparison of average results of SCAP and 

DBACP algorithm. The algorithms were simulated using 

1,2,3,4 processors and results present the average cut and 

average runtime. The average results have been obtained on 

multiple number of partitioning instance groups in each size 

range.  

As seen from Table I, average results obtained by DBACP 

based partitioner are consistently better than these obtained by 

SCAP for small problem instances upto 20 nodes .With the 

increase in the size of problem instance the DBACP execution 

time increases in comparison to SCAP algorithm. The 

DBACP algorithm gives excellent quality of solution at the 

cost of running time of algorithm.  

5. CONCLUSIONS AND FUTURE 

SCOPE 
The results show that the proposed DNA algorithm is able to 

partition the circuit graph taking less no. of iterations as 

compared to SCAP approaches for small instances. SCAP 

Algorithm takes more amount of CPU time .In these situations 

DNA algorithms provide the better solution by taking the help 

 

 

 

of massive parallelism and recombination properties of DNA 

.at the cost of little increase in running time. 
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