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ABSTRACT
This article presents the reduction of neuronal models from
the classic four-dimensional differential model of Hodgkin and
Huxley [7] to discrete binary automata which keep the main
properties of more complex models. A reduction of Fitzhugh
and Nagumo (FHN) model is performed using a numerical
strategy introduced in [3] completed by a linearization in the
spirit of McKean model [14]. The resultant discrete binary
model keeps the properties of the complete FHN model. The
numerical simulations of networks composed by these discrete
binary automata demonstrate changes in the system dynamics
dependent on the coupling strength. Moreover, for large coupling
strength, phase-locking is observed.
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1. INTRODUCTION
Brain functioning depends on several scales of organization from
molecules to the entire brain which also act at several temporal
scales. As a consequence, the nervous system is one of the
typical complex system. Although neuroscience offers a large set
of recording techniques of brain activity, major advances in the
comprehension of brain functioning may depend on the ability to
simulate brain activity and to obtain theoretical results for further
investigation.
The study of neuronal excitability by Hodgkin and Huxley [7]
has provided one of the major advance towards the integration of
physiological and theoretical perspectives for the understanding
of neural network functions. Nevertheless the use of Hodgkin
and Huxley (HH) model to simulate brain functioning is

noticeably difficult due to high demand in computation (see
[10]). There is thus a crucial need to obtain simpler models
of neuronal activity in order to deal with models reasonable
all together in computational demand, analytic tractability and
biological realism. This is usually achieved by hybrid spiking
models [9] which comprise the integrate-and-fire models family.
The reduction of the continuous models of neural dynamics
to dynamics discrete in both state and time complements the
hybrid models but is less widely used. Nevertheless, these
discrete models keep important properties of neuronal dynamics
[1, 15, 11] and may offer a general framework for the study
of large-scale neuronal networks. Moreover, the development of
discrete automata analogs of neuronal dynamics may prove the
same interest as the one depicted by cellular automata as models
of physical systems [4].
In the first part of this paper, the reduction of HH model to
two dimensional continuous models is rapidly reviewed. This
first step allows to introduce the Fitzhugh and Nagumo (FHN)
model as a general expression for two-dimensional continuous
neuronal models. In the following section, the same strategy as
that developed in [3, 2] was used in order to build a binary
neuronal analog based on the FHN model. A general method
is applied here for the definition of a discrete binary automata
model with discrete time dynamics derived from continuous two
dimensional continuous model. Simulating this binary model,
the behavior is first explored as an isolated automata and
compared its properties with those of the continuous FHN
model. In a second step, networks of binary automata were
simulated. The dynamics of the network in the case of large
coupling strength was compared with those obtained in the case
of small coupling strength.

2. REDUCTION OF HODGKIN AND HUXLEY
MODEL TO TWO-DIMENSIONAL MODEL

From 1948 to 1952, Hodgkin and Huxley conducted voltage
clamp experiments on the giant squid axon and proposed the
ionic mechanisms and a mathematical model for the genesis of
action potential in their classic paper [7]. They were awarded
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the Nobel price, with Sir J. C. Eccles, in 1963 for this important
work.

2.1 Hodgkin-Huxley model
The mathematical formulation of the model is based on:

(1) the approximation of the neuron to a point and thus
neglecting the spatial dependency of the voltage1

(2) the linear approximation of ionic currents2 which thus
follow Ohm’s law, and

(3) the fact that three currents were implied in the explanation of
the experimental results: two active ionic currents (sodium
and potassium) and one passive leak current.

The conservation of electric charges in squid axon is thus written
as:

C
dv

dt
= −F + I (1)

where v is the membrane potential, C is the axon membrane
capacitance , I is the sum of external currents entering the
cell and F is the total membrane current which arises from
the conduction of sodium and potassium ions through voltage-
dependent channels in the membrane and the leak current.
Each membrane current Ik follows Ohm’s law and is thus
expressed as:

Ik = gk(v −Ek) (2)

where Ek is the reversed potential for the current and gk the
conductance which is constant for the leak current and depends
on the kinetics of the ionic channels for the active currents. F is
thus a function of the membrane voltage v given by:

F (v,m, h, n) = gL(v−EL)+ḡKn
4(v−EK)+ḡNahm

3(v−ENa)
(3)

where the subscriptsK,Na andL denote the potassium, sodium
and leakage currents respectively. The variables n, m and h are
voltage-dependent activation and inactivation gating variables
assumed to follow first order kinetics. Their dynamics thus take
the form:

τw(v)
dw

dt
= w(v)− w (4)

where w = n, m or h and τw(v) and w(v) are voltage-
dependent time constant and asymptotic value (respectively)
determined from the experimental data.
Equations (3) and (4) represent a four dimensional dynamical
system which formulates the HH model for action potential
genesis. The reduction of this model proceed in two steps which
we sum up below.

2.2 Stationary state approximation
The first step in the reduction of HH model is due to the
difference between the time scale of the dynamics of the gating
variable m and the time scale of the dynamics of the other
variables (see Figure 1). In fact, the time constant τm is lower
than the time constants τh and τn leading to faster changes for
m than for h and n. It can thus be assumed that the gating
variable m reaches instantaneously its asymptotic value m̄(v)
and use its value in the expression of dv/dt. This is equivalent
to assuming that activation of the Na+ conductances acts on a
time scale even faster than that of the voltage and introduces
approximations only for the short time scale of the beginning

1This approximation was justified by the experimental technique of the
voltage clamp which ensures a constant potential on the axon membrane.
2This model thus does not take into account the non-linearity which are
for example present in the Goldman-Hodgkin-Katz equation.
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Fig. 1. Time constant of the dynamics of the gating variables show
admissible short time scale τm.

of the action potential. A new model with three dimensions is
obtained:

F (v,m, h, n) ≈ F (v,m(v), h, n) ≡ F (5)

This three-dimensional model can be further reduced to a two-
dimensional model.

2.3 Reduction to a two-dimensional system
The next step in the reduction of HH model and more
generally conductance-based models consists in the study of the
relationship between gating variables. In the case of HH model,
it can be done at a specific or a general level.
A specific method is based on early numerical simulations of
HH model [13] where it was noticed that the sum n(t) + h(t)
remains approximately equal to 0.84 during the time evolution
of the system. The variable h can thus be eliminated by setting
h(t) ≈ 0.8 − n(t) and this led to a two variable model, called
the fast-slow phase plane model. Equation (3) can be written as:

F (v,m, h, n) ≈ F (v,m(v), 0.8− n(v), n(v)) ≡ f(v, n) (6)

A general method has been proposed by [3]. It is based on
the introduction of an auxiliary variable which represents an
equivalent potential. This auxiliary voltage variable u allows to
replace h and n by their asymptotic values not at the potential v
but rather at u. This new variable has a slower time-scale than v.
So equation (5) can be written as:

F (v,m, h, n) ≈ F (v,m(v), h(u), n(u)) ≡ f(v, u) (7)

This introduction of an equivalent potential has also been used as
a general method for the reduction of models based on arbitrary
numbers of conductance [12].

2.4 Fitzhugh-Nagumo model
The main ingredients for the genesis of an action potential
by a nerve cell (mainly the time-scale separation between the
two variables and the shape of the v-nullcline) that appear
in the previous two-dimensional models are captured by the
FHN model. This model includes two variables: the membrane
potential variable v and a recovery variable u. This model is
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governed by the two differential equations:

ε
dv

dt
= f(v)− u+ I (8)

τ
du

dt
= g(v, u) (9)

where ε depends in capacitance C, and f(v) and g(u, v) are
given by:

f(v) = v − v3/3 and g(v, u) = av + bu (10)

The expression of dv/dt defines a fast variable controled by a
cubic non-linearity that allows regenerative self-excitation via
a positive feedback. The expression of du/dt is linear and
provides a slower negative feedback. This model will be used
as a basis for the definition of discrete binary automata.

3. FROM FHN NEURONAL MODEL TO
DISCRETE BINARY AUTOMATA

The definition of a discrete binary automata based on FHN
neuronal model is based on its phase plane analysis3 and on the
linearization of the cubic v-nullcline.

3.1 Phase plane analysis of FHN model
The analysis of FHN model dynamics in the (v, u)-plane is
depicted on Figure 2. The behavior of the model is organized
around the v− and u−nullclines (i.e. dv/dt = 0 and du/dt =
0). The v−nullcline has the shape of a cubic function (u = v −
v3/3+I) and the u−nullcline is a linear function (u = −av/b).
The intersection point of these nullclines define the fixed points
of the dynamics.
The stimulus current I acts as a control parameter since it
shifts the v−nullcline on the vertical axis and thus changes the
dynamics in the neighborhood of the fixed point. In this paper,
the case where the two nullclines intersect on the ascending parts
of the cubic nullcline (e.g. I = 0) will be applied. In this case,
the fixed point is unstable and the system evolves on a limit cycle
which leads to repetitive firing4.
The dynamics of the membrane voltage v during the firing of
action potential is composed of fast phases where the voltage
change from low values to high values and reciprocally and
slow phases where the voltage has high or low values. The slow
phases last longer than the fast phases and thus FHN model
evolves mainly along the v−nullcline, while changes of the
membrane voltage levels are almost instantaneous (see Figure 2).
This remark is the starting point of the further analysis which
leads to the discrete binary model [3].

3.2 Reduction of FHN model
On the basis of the previous remark, one can consider that
the membrane potential can have either a high or a low value
and changes instantaneously between these two levels. This
approximation corresponds to neglecting the capacitance of the
membrane. Moreover, when the membrane potential evolves on
either of these levels: dv/dt ≈ 0. On the basis of this hypothesis,

3Only the main points of the phase plane analysis of FHN model are
summed up here; for a more complete analysis see: [6].
4The difference between FHN model and that developed in [3] lay in the
fact that only the left hand portion of the v-nullcline curve rises as I is
increased in the case of the latter whereas the entire curve is translated in
the case of FHN model. This causes an independence between the firing
frequency and the action potential amplitude in the case of FHN model
whereas the amplitude of the action potentials decrease when firing rate
increase in the other model as in full HH model.

one can thus rewrite equation (8) as:

dv

dt
= f(v)− u+ I ≈ 0 (11)

When the model is on one of these levels, it evolves on one
of the branches of the cubic shaped v−nullcline. In the spirit
of McKean model [14] the v−nullcline can be assimilated to
a piecewise linear function which allows to simplify its cubic
shape: the left and right branch in the cubic are replaced by
two straight lines. An approximation of these lines is given by
observing that the dynamics remains in the neighborhood of
the minimum and the maximum of the cubic nullcline. These
extrema form right and left knees of the curve with coordinates:
l = (−1,−2/3 + I) and r = (1, 2/3 + I).
The linear approximation should thus intersect a knee and depict
a slope as < 0 close to the best fit of the portion of the cubic
followed by the system during the slow phases. The two straight
segments can thus be expressed as:

nl(v) = asv + bs + I for v ≥ 1 (12)
nr(v) = asv − bs + I for v ≤ −1 (13)

where bs = 2/3 − as. In the numerical examples, the values
as = −1.5 and thus bs = 2.16 were used (see figure (3)).
Now a binary variable S can be introduced to keep track of which
branch of the curve is being used [3, 2].

S =

{
+1 if v ≥ 1,

−1 if v ≤ −1.
(14)

There is no need to define S in the region where v is between
−1 and 1 because in the limit of small cell capacitance, the
membrane potential jumps instantaneously over this region,
always remaining v > 1 in absolute value [1].
Equations (12) and (13) can then be written as:

n(v) = asv + Sbs + I (15)

and using (15) to solve (11) for v:

v =
u− bsS − I

as
(16)

and one can rewrite (9) as:

τ
du

dt
= a

(
u− bsS − I

as

)
+ bu (17)

Since S = sign(v − S), the binary variable S can be expressed
by:

S = sign

(
u− (2S/3)− I

as

)
(18)

and equations (17) and (18) constitute the binary analog of the
FHN model. The variable S is the controlled discretization of
the state variable v. Thus, if the cell is hyperpolarised and silent:
S = −1 and, if it is depolarized and firing: S = +1.

4. NUMERICAL SIMULATIONS
For numerical applications, as = −1.5 and thus bs = 2.16 are
used, leading to the following system:

τ
du

dt
= a

(
I − u+ 2.16S

1.5

)
+ bu (19)

S = sign[0.66S − u+ I] (20)

4.1 Single cell behavior
In order to demonstrate the behavior of one neuron, a discrete
time version of the model can be generated by integrating
equations (18) and (17) over one time step4t:

S(t+4t) = sign[S(t)− u(t) + I(t)] (21)
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Fig. 2. Phase portrait and time series of the FHN model plotted with these Parameters: a = 0.75; b = −0.2; I = 0; τ = 50; ε = 1.

Fig. 3. The two approximated straight lines of the cubic shape of
FHN model. These two lines are the tangents of each branch which

intersected respectively the two knees of the cubic.

The function u(t) representing the slow component of the cell
membrane current has be discretized by solving (17) as a first
order differential equation of the unknown u:

u(t+4t) = u(t)exp(−C1

τ
4t) +

C1

C2

(
1− exp(−C1

τ
4t)

)
(22)

with: C1 = −b+ a/1.5 and C2 = a(I + 2.16S)/1.5.
The results of the numerical simulation of this model are
depicted on Figure 4 and can be compared with those obtained
for the continuous FHN model with the same parameters
depicted on Figure 2.

4.2 Behavior of networks of discrete binary
automata

Networks of N discrete binary automata are simulated using
equations (19) and (20) and discrete time with steps δt = 1 ms.
Each automata is characterized by a binary variables Si and a
recovery variable ui with i = 1 . . . , N . The state of cell i is
updated at time t+ 1 using:

Si(t+ 1) = sign[Si(t)− ui(t) + Ii(t)] (23)

where Ii(t) is the sum of the synaptic input to neuron i at time t
and defined as in the Hopfield model [8]:

Ii(t) =
1

N

N∑
j=1

JijSj(t) (24)

with Jij is the element of the N × N matrix J of synaptic
coupling from neuron j to neuron i. The magnitude of Jij
determines the strength of the coupling between j and i and its
sign describes whether the synapse is excitatory or inhibitory.
Network behavior can be characterized using the alignment of
the state Si at time t by introducing the variable [2]:

m(t) =
1

N

N∑
i=1

Si(t) (25)

The averages 〈m(t)〉 and 〈m2(t)〉 are equal to zero in the case
of disordered dynamics whereas in the case of phase-locking:
〈m(t)〉 = 0 but 〈m2(t)〉 6= 0 [2].
The dynamics of two types of networks of discrete binary
automata were studied: one with strong coupling strength (see
Figure 5) and one with weak coupling strength (see Figure 6).

For strong coupling, Jij are randomly drawn from an uniform
distribution on the interval [−1, 1]. For weak coupling, they are
drawn from an unform distribution on the interval [−0.03, 0.03].
In the case of strong coupling, one can observe coherent
oscillations and the network maintains some particular pattern
of activity. In this case 〈m2(t)〉 = 0.72 and signs the presence
of phase-locking in the dynamics of the network. In the case of
weak coupling, the dynamic demonstrates a disordered phase
with all the cells oscillating independently. This is further
characterized by 〈m2(t)〉 = 0.004 in this case of weak coupling.

5. DISCUSSION
In neurophysiology, mathematical models use ordinary
differential equations to describe the behavior of isolate
neuron or networks of neurons coupled through synapses or
gap-junctions. However, these models are heavy in terms of
calculations. Several attempts have been applied to reduce the
complexity of the differential models. An extreme simplification
lead to models discrete in both time and states. A controlled
discretization has to take care of the conservation of the
biological and computational aspect of the continuous model
and of the correspondence between the parameters of the
models.
In this paper, the continuous FHN model was reduced to a
discrete model with binary states. The parameters of the discrete
model are expressed as functions of the initial parameters and
the dynamics of the isolated binary neuron display the same
characteristics as those depicted by the full FHN model with the
same parameters. Moreover, numerical simulations of networks
of binary automata showed that the dynamics of the networks
changes with the coupling strength. In the case of weak coupling,
the network depicts a disordered dynamics whereas in the case
of strong coupling, the network dynamics is characterized by
a phase-locking of all the automata. In the case of phase-
locking, it has been shown that the network can exhibit memory
recall through phase-locking as well as modulation of function
and gated learning through modification of intrinsic cellular
characteristics [2, 1]. Such properties should be studied in the
present model.
As a perspective of this study, analyzing the performance and
capacity of such phase-locking memories in this FHN binary
network is suggested, also it will be interesting to study the
behavior of populations of excitatory and inhibitory neurons
which exhibit oscillation and bistability as collective phenomena
[15]. Indeed, using numerical techniques, it has been observed
that McKean system has traveling wave phase-locked solutions
consistent with that of a network of more biophysically detailed
Hodgkin-Huxley neurons [5]. A further study should address
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Fig. 4. Binary FHN model simulated with parameters: a = 0.75; b = −0.2; I = 0; τ = 50. In left: time series of the S binary variable. In
right: time series of the binary model
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Fig. 5. The behavior of binary variable S for 100 coupled neurons at each time step, in black S = 1, in white S = −1. Upper raw: Strong
coupling of the network cells, demonstrate the repetitive behavior of all cells which fire at almost the same time steps. Lower raw: Small coupling

of the network cells demonstrate the independence of the cells’ oscillation.

whether these properties are conserved by networks of the simple
discrete binary automata proposed here.
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Fig. 6. The overlap m as a function of time shows (in the left) a repetitive patterns obtained with the strong coupling of 100 neurons in the
network, these patterns did disappear with the small coupling (in the right).
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