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ABSTRACT 
The preservation of the pairwise distances measured in a data 

set ensures that the low dimensional embedding inherits the 

main geometric properties of the data like the local 

neighborhood relationships. In this paper, distance preserving 

technique namely, Sammons nonlinear mapping (Sammon‟s 

NLM) and Curvilinear Component Analysis (CCA) have been 

discussed and compared for non-linear dimensionality 

reduction. Basic principle in both the technique is that local 

neighborhood relationship is maintained. The results have 

beencompared for both the techniques on artificially 

generated data set using MATLAB software. 
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1. INTRODUCTION 
Basic meaning of dimensionality reduction is the 

transformation of a high dimensional data to a meaningful 

representation of low dimensional data [1]. There are various 

techniques which are used for dimensionality reduction like 

distance preserving technique and topology preserving 

technique. In this paper main emphasis is on „Distance 

Preserving Technique‟. Historically distance preservation has 

been the first criterion used to achieve dimensionality 

reduction in a nonlinear way [5]. In the linear case, simple 

criterion like maximizing the variance preservation or 

minimizing the reconstruction error, combined with a basic 

linear model, lead to robust method like Principal Component 

Analysis (PCA) and Multi-Dimensional Scaling (MDS) [2-3]. 

In the nonlinear case however the use of same simple criteria 

requires the definition of more complex data models, which is 

little bit difficult. In this context distance preservation appears 

as a nongenerative way to perform dimensionality reduction 

[12]. The criterion does not need any explicit model: no 

assumption is made about the mapping from latent variables 

to the observed ones. The motivation behind distance 

preservation is that any manifold can be fully described by 

pairwise distance [3-4]. Hence if low-dimensional 

representation can be built in such a way that the initial 

distances are reproduced, then the dimensionality reduction is 

successful [9]: the information content conveyed by the 

manifold its geometrical structure is preserved. It is clear that 

if close points are kept close and if far points remain far, then 

the initial manifold and its low dimensional embedding share 

the same shape [10-13]. This is the basic approach which is 

used in all two techniques discussed in this paper. First 

technique which is discussed is Sammon‟s nonlinear mapping, 

which is a nonlinear technique. Main objective of this 

technique is to preserve the structure of data through 

Nonlinear mapping from high dimension to low dimension 

[4]. Second technique which is discussed is CCA [6-7]. 

Thistechnique mainly uses the concept of vector quantization 

[7-8]. It is a first method to combine the concept of vector 

quantization along with dimensionality reduction [11]. In this 

work emphasis is mainly given to show how these techniques 

perform the embedding from high dimension to low 

dimension by preserving the distance between the data 

points.This paper is organized as follows: Section 2 describes 

the CCA and Sammons nonlinear mapping theoretical 

concepts in detail. Experimental results are shown in Section 

3. Finally the conclusions are drawn in Section 4. 

2.DISTANCE PRESERVATION BASED 

TECHNIQUES 

2.1 Sammon’s Nonlinear Mapping 
It is a method proposed by Sammon to establish a mapping 

between a high dimensional space and a lower dimensional 

one.  It is a nonlinear technique. The concept of Sammon‟s 

NLM is closely related to MDS. But in this case no generative 

model is used like MDS only a stress function is defined. 

Consequently the low dimensional representation can be 

totally different from the distribution of the true latent 

variables. Sammons NLM minimizes the following stress 

function: 
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Where ( , )d i jy  is a distance measure between ith and jth 

points in the P-dimensional latent space ( , )d i jx is a distance 

measure between the ith and jth points in the D-dimensional 

data space (P<D) and normalizing constant C is defined as: 
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From eqn. (1) we find there is a factor
1

( , )d i jy
 , which is not 

in case of MDS and PCA.Intuitive meaning of this factor 
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which is weighting the summed terms is clear: It gives less 

importance to errors made on large distances. More precisely 

the weighting factor simply adjusts the importance to be given 

to each distance in Sammon‟s stress, according to its value: 

the preservation of long distances is less important than the 

preservation of shorter ones, and therefore the weighting 

factor is chosen to be inversely proportional to the distance. 

Thus our main motive is to minimize this Stress function. The 

optimization technique which is used to minimize above 

function is Quasi-Newton optimization which is iterative in 

nature. This optimization method is a good tradeoff between 

the exact Newton method, which involves the Hessian matrix, 

and a gradient descent, which is less efficient. From the 

concept of Quasi-Newton update rule, the parameter yk (i) can 

be updated as follows:  
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Where α is called as magic factor and Sammon recommends 

its value between 0.3 and 0.4. 

 Minimization of Stress Function can be achieved in following 

ways: 
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After this we calculate second derivative in following way: 
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     (4) 
For getting the minima calculation of 1st derivative and 2nd 

derivative is required. 

AlgorithmSammons Nonlinear Mapping 

Step1. Compute all pair wise distances ( , )xd i j in the D-

dimensional data space. 

Step2. Initialize the P-dimensional coordinates of all points 

y(i) ,either randomly or on the hyper plane spanned by the 

first P principal components of the data set(either PCA or 

MDS). 

Step3. Compute the Coordinates of all points y (i) and update 

all coordinates according to update rule using equation (2),(3) 

and (4) 

Step4. Return to step 3 until the value of stress function no 

longer decreases.  

By comparison with classical metric MDS, Sammons 

Nonlinear mapping can efficiently handle nonlinear 

manifolds, atleast if they are not too heavily dopped. As a 

main drawback it lacks the ability to generalize the mapping 

to new points. 

 

2.2 Curvilinear Component Analysis (CCA) 
CCA belongs to the class of distance preserving method. CCA 

was actually the first method to combine Vector Quantization 

[9-10] with a non-linear dimensionality reduction achieved by 

distance preservation. Like dimensionality reduction, Vector 

Quantization can be defined a way to reduce the size of a data 

set. However, instead of lowering the dimensionality of the 

observation, vector quantization reduces the number of 

observation. In practice it is achieved by replacing the original 

data points with a smaller set of points called units, centroids. 

Vector Quantization is basically an optional preprocessing of 

the data. It can be applied to reduce the number of vectors in 

large databases, for DR method. For small databases or 

sparsely sampled manifolds, however, it is often better to skip 

Vector Quantization in order to fully exploit the available 

information. In other words Vector Quantization can be 

thought of as an “Approximator”. Inorder to reduce the data 

points we take round-off value or mean value between the 

various data points. Concept of vector quantization is shown 

in fig1 

0 6 842

XX X X

1 3 5 7
 

                 Fig 1: 1-D vector quantization 
All the points between 0-2 are considered as one point at 

1.Similarly for other points values are taken. 

Stress or Error Function which is minimizes by CCA can be 

defined as: 

1 2
(( ( , ) ( , )) ( ( , ))

1, 12

N
E d i j d i j F d i jx y y

i j  
 

     (5)

       

Where, ( , )d i jy is the Euclidean distances in the embedding 

space of dimension P (P<D) and ( , )d i jx  is the Euclidean 

distance in the data space of dimension D. 

To maintain the global shape of the manifold it is always 

require preserving the short distance as compare to longer 

distance. That‟s why F  is typically chosen as a 

monotonically decreasing function of its argument. But in 

CCA we find that F depends on the distances in the 

embedding space which are varying and could temporarily be 

very small. While in sammon‟s stress function, the weighting 

depends on the constant distance measured in the data space. 

The optimization procedure which is used to determine the 

minimization of equation (5) can be calculated as: 
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Where 
( )

E
y i

  represents the gradient of E with respect to 

vector y(i).The minimization of „E‟ by a gradient descent 

gives the following update rule: 
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Where α is a positive learning rate scheduled according to the 

Robbins-Monro condition. 

The embedding of highly folded manifolds requires focusing 

on short distances .Longer distances have to be stretched in 

order to achieve the unfolding and their contribution must be 

lowered in stress function „E‟. Therefore F is usually chosen 

as a positive and decreasing function.For example

( ) exp( )
d y

F d y 
                                            

(8)Where  controls the decrease 

Algorithm (CCA) 
Step1. Perform the vector Quantization to reduce the size of 

data set, if required. 

Step2. Compute all pair wise Euclidean distances ( , )xd i j  

in the D-dimensional data space. 

Step3. Initialize the P-dimensional coordinates of all points 

y(i),either randomly or on the hyper plane spanned by the first 

principal components. Let q be equal to 1. 

Step4. Give the learning rate α and the neighborhood width

 their scheduled value for epoch no. Q. 

Step5. Select a point Y (i), and update all other ones 

according to update rule.(Using equation 6 and 7) 

Step6. Return to step 5 until all points y (i) have been selected 

exactly once during the current epoch. 

Step7. Increase Q and if convergence is not achieved return to 

step 4. 

By comparison with Sammon‟s NLM, CCA proves much 

more flexible, mainly because the user can choose and 

parameterize the weighting function F in equation (5) at 

will. This allows one to limit the range of considered 

distances and focus on the preservation of distances on a 

given scale only. Moreover the weighting function F

depends on the distances measured in the embedding space 

this allows tearing some regions of the manifold .This is better 

solution than crushing the manifold, like Sammon‟s NLM 

does.   

3. RESULT 
In this section results of the proposed algorithm are presented 

for some artificially generated data set: Swissroll and Helix. 

All artificial Data set consists of 2,000 samples. Fig. 2shows 

the data set on which different techniques are applied These 

data set is in 3-D. Fig 3 shows the result of two techniques 

CCA and Sammons Nonlinear Mapping on Swiss roll data set. 

Fig 4 shows the result of both the techniques applied on Helix 

Data set. 3-D data set are converted to 2-D. After analysis of 

result (as shown in Fig.3 and 4), it is found that data points are 

not bijective in case of Sammon‟s nonlinear mapping. 

Superposition of data points occurs from one curve to the 

other. In other words we can say that Euclidean distance 

between the data points in the embedded space is not 

maintained, which is the important criteria for getting the 

error free result 
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Fig 2: Artificial generated data set (a) Swiss Roll (b) Helix 
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Fig 3: Results of Dimensionality Reduction on Swiss Roll Data Set 

 

 
Fig4: Results of Dimensionality Reduction on Helix Data Set 

 

In case of Helix data set also the result of Sammon‟s 

Nonlinear Mapping is disappointing. But the result of CCA is 

much more convincing. In this case we find that the result is 

almost superposition free (from Fig.2 and3). Euclidean 

distance between the data points is maintained in a much 

closer sense in the Embedding space too. This is what we 

achieve from visualization point of view. Other criteria of 

comparison between the two techniques are Time Complexity 

and Space Complexity. In CCA Space Complexity is much 

less as compare to Sammon‟s Nonlinear mapping because the 

number of data points get reduced after vector quantization. In 

this data points get reduced from „N‟ to „P‟ (N<P) Unlike 

Sammon‟s Nonlinear mapping in which data points are „N‟. 

Along with this Time Complexity for both the data set is also 

less in case of CCA as compare to Sammon‟s Nonlinear 

Mapping. Time complexity is calculated during the run time 

of both algorithms. All this comparison between the two 

techniques can be summarized in Table1. Both the techniques 

are Non-spectral method. Non-spectral method gives better 

tradeoff between computation time and flexibility than 

spectral methods (which is used in the technique like PCA, 

MDS). In this method we choose an objective function and 

accordingly we choose an adequate optimization technique. 

But in spectral method we mainly use the concept of EVD.

 

Table 1. 
 Curvilinear Component Analysis(CCA) Sammons Nonlinear Mapping 

Non-spectral Method Yes Yes 

Vector Quantization Could be used Not used 

Space Complexity  O(P*P)  O(N*N)  

Time Complexity HELIX - 1.99 sec 

Swiss roll : 22.26 sec 

HELIX : 160.27 sec 

Swissroll : 290.3 sec 

Embedding  Embedding is superposition free for data set 

Swissroll and Helix 

Embedding is disappointing, turns 

are superposed for both data set 

 

4. CONCLUSIONS 
Sammon‟s Nonlinear mapping is still disappointing for two 

benchmark manifolds Swissroll and Helix. Turns of the spiral 

are superposed meaning that the mapping between the initial 

manifold and its two dimensional embedding is not bijective. 

But CCA succeeds in embedding the two benchmark 

manifolds in a much more satisfying way as compare to 

Sammon‟s Nonlinear Mapping.Two dimensional embedding 

of the manifolds are almost superposition free. Also time 

complexity of CCA is less compare to sammon‟s NLM. 
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