
International Journal of Computer Applications (0975 – 8887)

Volume 69– No.20, May 2013

1

A New Technique for Finding Min-cut Tree

Ashwani Kumar
Dept. of Computer Science &

Engineering
G. B. Pant Engg. College,
Pauri, Uttarakhand, INDIA

Surinder Pal Singh
Dept. of CSE

Maharishi Markandeshwar
Engineering College, MMU,

Mullana, Haryana, INDIA

Nitin Arora
Dept. of CSE

Women Institute of
Technology, Dehradun,

Uttarakhand, INDIA

ABSTRACT

In this paper we propose a new approximation algorithm for

calculating the min-cut tree of an undirected edge-weighted

graph. Our algorithm runs in O(V2.logV + V2.d), where V is

the number of vertices in the given graph and d is the degree

of the graph. It is a significant improvement over time

complexities of existing solutions. However, because of an

assumption it does not produce correct result for all sorts of

graphs but for the dense graphs success rate is more than 90%.

Moreover in the unsuccessful cases, the deviation from actual

result is very less (usually for less than 5% pairs) and for most

of the pairs we obtain correct values of max-flow or min-cut.

Keywords

Undirected edge-weighted graph; min-cut tree; dense graphs;

max-flow; min-cut

1. INTRODUCTION

Graph connectivity is one of the classical subjects in graph

theory, and has many practical applications, for example in

chip and circuit design, reliability of communication

networks, transportation planning and cluster analysis [1, 5].

Finding the minimum cut of an undirected edge-weighted

graph is a fundamental algorithmic problem. Precisely it

consists in finding a non-trivial partition of the graph’s vertex

set V into two parts such that the cut weight, the sum of

weights of the edges connecting the two parts, is minimum.

Given an undirected edge-weighted graph G with vertex set V

and edge set E, the problem is to build a tree such that  u, v

 V the weight of the edge having minimum weight on the

unique path connecting u and v in the tree represents the value

of minimum cut of graph separating u and v. We call this tree

Minimum-Cut Tree.

In this paper we propose a new approximation algorithm for

calculating the min-cut tree of an undirected edge-weighted

graph. Our algorithm runs in O(V2.logV + V2.d), where V is

the number of vertices in the given graph and d is the degree

of the graph. It is a significant improvement over time

complexities of existing solutions. However, because of an

assumption it does not produce correct result for all sort of

graphs but for the dense graphs success rate is more than 90%.

Moreover in the unsuccessful cases, the deviation from actual

result is very less (usually for less than 5% pairs) and for most

of the pairs we obtain correct values of max-flow or min-cut.

2. RELATED WORK

Gomory and Hu [3] proved that min-cut or max-flow between

all pair of vertices in an undirected graph can be computed by

doing n-1 max flow computations rather than the naive

max-flow computations. All the algorithms for constructing

the Minimum-Cut Tree use n-1 minimum s-t cut (i.e. max

flow) subroutines.

Gomory and Hu [3] solved the multi-terminal network flow

problem in 1961 and proved that maxflow problems in an

undirected network have at most n-1 distinct solutions. They

represented these n-1 values using a tree, nodes of which were

same as those of original network and edge-weights were

those n-1 values. This tree is known in literature as Gomory-

Hu tree or Min-cut tree. Gomory and Hu [3] presented an

algorithm for making min-cut tree of an undirected, edge-

weighted graph time complexity of which was

O(V*Complexity of solving a maxflow problem).

The fastest algorithm known so far for solving max flow

problem between two specified vertices has the complexity

O(V3). Therefore Min-Cut tree can be constructed in O(V4)

using the algorithm proposed by Gomory and Hu [3].

In this paper we do not use max flow subroutine here; rather

we present an approximation algorithm in which we first

calculate an upper bound for each vertex and repeatedly relax

it till it becomes minimum-cut value. This approximation

algorithm has a significantly better running time than the

fastest existing algorithm till now and gives surprisingly good

results for dense graphs.

3. INTRODUCTION TO MIN CUT TREE

Given a graph G = (V, E) with vertex set V, edge set E and

weight function w: E  R. It can be shown that there are at

most n-1 distinct min-cuts among the total pairs of nodes.

We represent these n-1 min-cuts by a (not necessarily unique)

tree, called Min-Cut Tree, which always exists and has the

following properties:

 The nodes of the tree are the same as the nodes of

the initial graph, (i.e. V). Each edge is assigned a value (not

directly related to the weights of the initial graph).

 For every pair s, t, we can find the min-cut value by

following the (unique) path between s and t in the min-cut

tree. Suppose that e is the edge with minimum value on that

path. Then value (e) is also the min-cut value between s and t

in the initial graph G.

 To actually find the cut between s and t, we simply

cut off the edge e of minimum value on the s-t path. The two

connected subsets of nodes in the tree, also define the min-cut

between s and t in the initial graph G.

3.1 Notation Used for Min Cut Tree

Cut: A cut (S, V-S) of graph G is a partition of vertex set V

into two parts S and V-S. We denote the cut by C. The weight

w(C) of the cut is defined as [6]

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.20, May 2013

2

i.e. weight of the cut w(C) is the sum of the weights of the

edges connecting the two parts.

s-t Cut: For two vertices s, t  V s-t cut is a cut C such that s

 S and t  S or vice versa i.e. cut C separates s and t.

Min s-t Cut: A Min s-t cut of graph G is a s-t cut having

minimum weight among all s-t cuts of G.

Min Cut: A Min cut of graph G is a cut C having minimum

weight among all cuts of G. More detailed, a minimum cut of

an undirected graph G with edge weights is a set of edges with

minimum sum of weights, such that its removal would cause

the graph to become unconnected.

4. EXISTING APPROACHES TO SOLVE

THE PROBLEM

4.1. Gomory-Hu Algorithm

Gomory and Hu [3] showed that in a graph having n nodes,

there can be only n-1 numerically different flows. So all flow

can be deduced after only n-1 different flows have been

computed. Consider a flow network with a minimum cut (A,

A’) separating Ni and Nj , Ni  A and Nj  A’. Construct a

slightly different network, one in which all nodes in A’ are

replaced by a single node P to which all the arcs of the cut are

attached. In this condensed network consider the maximum

flow between two ordinary nodes Ne and Nk. Gomory and Hu

proposed the following lemma:

Lemma: The flow between two ordinary nodes Ne and Nk in

the condensed network is numerically equal to the flow f(e, k)

in the original network.

Gomory and Hu proposed the following method to compute

the min-cut tree of an undirected, edge-weighted graph [3]:

They take two nodes and do a maximal flow computation to

find a minimum cut (A, A’). They represent this by two

generalized nodes connected by an arc bearing the cut value.

In one node are listed the nodes of A, in the other those of A’.

They now repeat this process. Choose two nodes in a (or two

in A’) and solve the flow problem in the condensed network in

which A’ (or A) is a single node. The resulting cut has a value

 and is represented by a link connecting the two parts into

which A is divided by the cut, say and . A’ is attached to

 if it is in the same part of the cut as , to if it is in the

same part as .

The cutting up is then continued. At each stage we have

certain generalized nodes (which may represent many nodes

of the original network), and certain arcs connecting them. To

proceed with the computation we select a generalized node

and two original nodes in . Upon removing all

arcs which connect to , the network of generalized nodes

falls into a number of disconnected components. We condense

each component except itself into a single node and solve

the network flow problem consisting of these condensed nodes

and the original nodes within , and using as

source and sink. The minimal cut obtained by this flow

calculation splits into two parts, . This is

represented in the diagram by replacing by two

generalized nodes connected by an arc bearing

the cut value. All other arcs and generalized nodes in the

diagram are unchanged except those arcs which formerly

connected to . Such an arc is now attached to if its

component was on the same side of the cut as the nodes in

, and attached to , if its component fell on the other

side.

This process is repeated until the generalized nodes of the

diagram consist of exactly one node each. This point is

reached after exactly n-1 cuts, for the array is a tree at all

times so when the process stops it is an n-node tree and so has

n-1 branches each created by solving a flow problem in a

network equal to or smaller in size than the original.

The algorithm proposed by Gomory and Hu has time

complexity O (V*Time complexity of finding a min s-t cut).

4.2. Finding Min s-t Cut

All the approaches to find min s-t cut till now use its close

relationship to Maximum Flow Problem [1].

In the maximum flow problem we are given a flow network G

= (V, E) which is a graph in which each edge (u, v)  E has a

non-negative capacity c(u, v) ≥ 0. If (u, v)  E then it is

assumed that c(u, v) = 0. We distinguish two vertices in a

flow network: a source s and a sink t. In this problem we wish

to compute the greatest rate at which material can be shipped

from the source s to the sink t without violating any capacity

constraints.

Let G = (V, E) be a flow network with a capacity function c.

Let s be the source of the network, let t be the sink. A flow in

G is a real valued function f : V x V R that satisfies the

following three properties:

Capacity Constraint: For all u, v  V, we require

 f(u, v) ≤ c(u, v).

Skew Symmetry: For all u, v  V, we require

 f(u, v) = -f(v, u)

Flow Conservation: For all u  V – {s, t}, we require

The quantity f(u, v), which can be positive, zero or negative is

called the flow from vertex u to vertex v. The value of a flow f

is defined as

i.e. the total flow out of the source. In the maximum flow

problem we are given a flow network G with source s and

sink t, and we wish to find a flow of maximum value.

The capacity constraint simply says that the flow from one

vertex to another must not exceed the given capacity. Skew

symmetry is a notational convenience that says that the flow

from a vertex u to a vertex v is the negative of the flow in the

reverse direction. The flow conservation property says that the

total flow out of a vertex other than the source or sink is zero.

One interpretation of the flow conservation property is that

the positive flow entering a vertex other than the source or

sink must equal the total positive flow leaving that vertex.

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.20, May 2013

3

4.2.1. Ford-Fulkerson Method

The following Ford-Fulkerson method [4] is used for finding

max flow between a pair of vertices s and t. This method is

iterative. We start with f(u, v) = 0 for all u, v  V, giving an

initial flow of value zero. For each iteration we increase the

flow by finding an “augmenting path”, which we can think of

simply as a path from the source s to sink t along which we

can send more flow, and then augmenting the flow along this

path. We repeat this process until no augmenting path can be

found.

Procedure: Ford-Fulkerson-Method(G, s, t)

Initialize flow to 0

While there exists an augmenting path p

 do Augment flow f along p

return f

If we implement the computation of the augmenting path p

with a breadth first search i.e. if the augmenting path is a

shortest path from s to t in the residual network, where each

edge has unit distance (weight), we call the Ford-Fulkerson

method [4] so implemented the Edmonds-Karp Algorithm.

Running time of Edmonds-Karp Algorithm is O(VE2). The

asymptotically fastest maximum-flow algorithms are based on

push-relabel method and have the running time of O(V3).

4.2.2. Max-Flow-Min-Cut Theorem

The Max-Flow-Min-Cut theorem by Ford and Fulkerson

shows the duality of the maximum flow and minimum s-t cut.

This theorem states that the value of maximum flow in a flow

network G with source s and sink t is equal to the value of min

s-t cut of G.

So using the algorithm proposed by Gomory and Hu Min-Cut

tree can be constructed in O(V4).

4.3. Finding Overall Minimum Cut

M. Stoer and F. Wagner [1] have given a simple and

compact algorithm for finding the minimum cut of a graph.

The algorithm is remarkably simple and has the fastest

running time so far. The algorithm uses the following very

interesting theorem:

Theorem: Let s and t be two vertices of a graph G. Let G/{s,

t} be the graph obtained by merging s and t. Then a minimum

cut of G can be obtained by taking the smaller of a minimum

s-t cut of G and a minimum cut of G/{s, t}.

So a procedure finding an arbitrary min s-t cut can be used to

construct a recursive algorithm to find a min cut of a graph.

To find an arbitrary min s-t cut this algorithm uses maximum

adjacency search or maximum cardinality search.

Procedure: Min-Cut Phase (G, w, a)

A←{a}

While(A≠V)

 Add to A the most tightly connected vertex Store the

cut-of-the-phase and shrink G by merging the two vertices

added last.

A subset A of the graph vertices grows starting with an

arbitrary single vertex until A is equal V. In each step, the

vertex outside of A most tightly connected with A is added.

Formally we add a vertex

zA such that w(A, z) = max{w(A, y)| yA},

where w(A, y) is the sum of the weights of all the edges

between A and y. At the end of each such phase, the two

vertices added last are merged, that is, the two vertices are

replaced by a new vertex, and any edges from the two vertices

to a remaining vertex are replaced by an edge weighted by the

sum of the weights of the previous two edges. Edges joining

the merged nodes are removed.

The cut of V that separates the vertex added last from the rest

of the graph is called the cut-of-the-phase. The lightest of

these cut-of-the-phases is the result of the algorithm, the

desired minimum cut:

Procedure: Min Cut(G, w, a)

While(|V| > 1)

 Min-Cut Phase(G, w, a)

 if(the cut-of-the-phase is lighter than the current

minimum cut)

 then store the cut-of-the-phase as the current

minimum cut

The starting vertex a stays the same throughout the whole

algorithm. It can be selected arbitrarily in each phase instead.

In order to prove the correctness of this algorithm they

following lemma.

Lemma: Each cut-of-the-phase is a minimum s-t cut in the

current graph, where s and t are the two vertices added last in

the phase

Running time of the algorithm: The algorithm consists of

|V| - 1 identical phases each of which requires O(|E| + |V| log

|V|) time yielding an overall running time of O(|V||E| +

log |V|).

5. OUR APPROACH TO FIND MIN CUT

TREE

We present a new approximation algorithm [7] for

constructing the minimum cut tree. We calculate an upper-

bound value for each node in the graph[1]. We define the

upper bound value of each node as the value of cut which

separates this node from rest of the graph i.e.

Lemma: The value of minimum cut of a graph G separating

Ni and Nj is less than or equal to minimum of the upperbound

values of two nodes Ni and Nj.

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.20, May 2013

4

Proof: Simple reasoning can be given to prove it. Let (A, A’)

be the minimum cut of G separating Ni and Nj. Upper-

bound(Ni) and upper-bound(Nj) are the values of two cuts

which also separate Ni and Nj. Therefore,

w(A, A’) ≤ min(upperbound(Ni), upperbound(Nj))

where w(A, A’) =

Algorithm: We proceed by finding an edge uv such that upon

merging the two nodes Nu and Nv we are able to reduce the

upperbound value, i.e.

upperbound(Nu) + upperbound(Nv) – 2*w(u,v) <

max(upperbound(Nu), upperbound(Nv))

We start from the node having the minimum upperbound

value and check for all of the edges leaving it. If we are able

to reduce the upperbound value by merging it with any of the

nodes, we merge the nodes and repeat the same procedure. If

we are not able to reduce the node’s upperbound value, we

check for rest of the nodes in the increasing order of

upperbound values. The reason behind considering the nodes

in increasing order of upperbound values will be clear in the

next lemma.

After all the nodes in the graph are merged and it has only one

node left, we proceed to construct the min-cut tree by using

the information from intermediate stages. We move from last

to first stage and at each stage we see the two nodes that were

merged during last stage and separate the node with smaller of

the two upperbound values from the other by an arc bearing

the value equal to the smaller of the two upperbound values.

Since we separate the two merged nodes in the tree by an arc

having the value equal to smaller of the two upperbound

values, it is necessary to consider the nodes during merging

process in the increasing order of upperbound values so that

the node with less upperbound value will be merged first, if

possible at all.

Lemma: If we consider the nodes to be merged in the

increasing order of upperbound values and while examining

the adjacency list of Ni we get Nj as the node which upon

merging with Ni will reduce the upperbound value of Ni, then

(1) Either upperbound(Nj) will also be reduced.

(2) Or upperbound(Nj) can’t be reduced.

Proof: We are considering the nodes in the increasing order

of upperbound values, and so

Case 1: upperbound(Nj) ≥ upperbound(Ni)

Since merging Ni and Nj reduces the upperbound

value of Ni, therefore

upperbound(Ni) + upperbound(Nj) – 2*w(i, j) ≤

upperbound(Ni)

It is clear from above two equations:

upperbound(Ni) + upperbound(Nj) – 2*w(i, j) ≤

upperbound(Nj)

i.e. upperbound(Nj) is also reduced.

Case 2: upperbound(Nj) < upperbound(Ni)

Since we are considering the nodes in the increasing order of

upperbound values, checking for Ni itself implies that Nj has

already been checked and it was not possible to reduce its

upperbound value at all. So in this case upperbound(Nj)

cannot be reduced.

If at any stage it is not possible to merge any node, then we

merge that pair of nodes which results in minimum increment

of the upperbound value.

Assumption: Our algorithm is based on the assumption that if

we are merging two nodes Ni and Nj and if upperbound(Ni) <

upperbound(Nj) then it is not possible to merge Nj with any

other node which will result in a node having upperbound

value which is less than upperbound(Ni). However, this

assumption is not true always.

During the course of our algorithm, if we merge a pair of

nodes Ni and Nj such that:

(i) upperbound(Ni) < upperbound(Nj) and,

(ii) It was possible to merge Nj with some other node Nk such that

upperbound value of the resulting node (let it be val) would

have been less than upperbound(Ni),

In this case, the resulting min-cut tree will not be correct and

will give wrong min-cut values for some pair of nodes. More

precisely, it would give the value of min Ni-Nj cut as

upperbound(Ni) but the correct value is val. We call such a

pair of nodes wrong pair to merge.

For sparse graphs, the probability of choosing the wrong pair

of nodes to merge is high due to the less number of available

pairs among which to choose i.e. due to less number of edges.

For dense graph, the probability of choosing wrong pair of

nodes is very less due to large number of available pairs

among which to choose i.e. due to large number of edges.

For dense graph this algorithm produces surprisingly good

results. After running the procedure with more than 20000

randomly generated graphs we have figured out that for

graphs having density >= 0.4, success rate of algorithm is

more than 90%. Moreover in the unsuccessful cases, the

deviation from actual result is very less (usually for less than

5% pairs) and for most of the pairs we obtain correct values of

max-flow or min-cut.

Procedure: Min-Cut Tree(G)

Input: Undirected edge-weighted graph G

Output: Min-Cut Tree

1. Calculate the upperbound values for each node.

2. while(number of vertices in the current graph > 1)

3. loop(Consider the vertices in the increasing

order of upperbound value)

4. if(upperbound value can be reduced by

merging a node with any adjacent node)

5. then merge those two adjacent nodes

6. break;

7. End if

8. End loop

9. if (it is not possible to merge any pair of nodes)

10. then merge the pair of nodes which results in

minimum increment of the upperbound value.

11. End if

12. End While

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.20, May 2013

5

13. Construct Min-Cut Tree T by using the information from

intermediate stages as described:

a. Move from last to first stage.

b. At each stage check the two nodes that were merged

during last stage.

c. Separate the node with lower upperbound value

from the other by an arc bearing the value equal to the lower

upperbound value.

14. return T

Time Complexity: O(V2.logV + V2.d)

where V is the number of vertices in the given graph and d is

the degree of the graph.

6. RESULTS ANALYSIS

6.1 Random Graphs with Fixed Number of

Nodes

We generated 7500 random graphs of different densities but

having fixed number of nodes (=50). Edge-weights were also

random and were in between 1-300. Results of running our

algorithm with these graphs are summarised in following

plots:

Fig 1: Plot of Success Rate Vs Density (Number of nodes were fixed to 50)

It is clear from figure 1 that for desity >= 0.4 success rate is

about 100%. Figure 2 says that for the unsuccessful test cases

deviation from the actual result is less than 3%. It means that

even in the case of failure we get correct valus of max-flows

or min-cuts for most of the pair of nodes.

Fig 2: Plot of Deviation Vs Density (For unsuccessful test cases)

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.20, May 2013

6

6.2. Random Graphs with Random

Number of Nodes

We generated 7500 random graphs of different densities and

number of nodes in them were also random (=5-55). Edges

weights were also random and were in between 1-300.

Results of running our algorithm with these graphs are

summarised in following plots:

Fig 3: Plot of Success Rate Vs Density (Number of nodes were random 5-55)

It is clear from figure 3 that for desity >= 0.4 success rate is

more than 92%. Figure 4 says that for the unsuccessful test

cases deviation from the actual result is less than 5%. It

means that even in the case of failure we get correct valus of

max-flows or min-cuts for most of the pair of nodes.

Fig 4: Plot of Deviation Vs Density (For unsuccessful test cases)

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.20, May 2013

7

7. CONCLUSION

Approximation algorithm presented in this paper for

calculating the min-cut tree of an undirected edge-weighted

graph runs in O(V2.logV + V2.d), where V is the number of

vertices in the given graph and d is the degree of the graph.

This algorithm shows a significant improvement over time

complexities of existing solutions. For the dense graphs

success rate of our algorithm is more than 90% and because of

an assumption it does not produce correct result for all sorts of

graphs. Moreover in the unsuccessful cases, the deviation

from actual result is very less (usually for less than 5% pairs)

and for most of the pairs we obtain correct values of max-flow

or min-cut.

8. REFERENCES

[1] Arora N., Kaushik P. K. and Singh S. P., “A Survey

on Methods for finding Min-Cut Tree”. International Journal

of Computer Applications (IJCA), Volume 66, No. 23, March

2013, pp. 18-22.

[2] Stoer M. and Wagner F. “A Simple Min-Cut Algorithm”.

Journal of the ACM (JACM), Volume 44, No. 4, July 1997,

pp. 585-591.

[3] Brinkmeier M. 2007. “A Simple and Fast Min-Cut

Algorithm”. Theory of Computing Systems, Volume 41, issue

2, pp. 369-380.

[4] Gomory R. E. and Hu T. C. December 1961. “Multi-Terminal

Network Flows”. J. Soc. Indust. Appl. Math, volume 9, No. 4.

[5] L. R. Ford and D. R. Fulkerson. Maximal Flow through a

network. Can. J. Math., 8:399-404, 1956.

[6] Hu T. C. 1974. “Optimum Communication Spanning Trees”.

SIAM J. Computing, volume 3, issue 3.

[7] Flake G. W., Tarjan R. E. and Tsioutsiouliklis K. “Graph

Clustering and Minimum Cut Trees”. Internet Mathematics,

volume 1, issue 4, 385-408.

[8] Introduction to Algorithms by T. H. Cormen, C. E. Leiserson,

R. L. Rivest and C. Stein.

