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ABSTRACT 

In this paper we propose a new approximation algorithm for 

calculating the min-cut tree of an undirected edge-weighted 

graph. Our algorithm runs in O(V2.logV + V2.d), where V is 

the number of vertices in the given graph and d is the degree 

of the graph. It is a significant improvement over time 

complexities of existing solutions. However, because of an 

assumption it does not produce correct result for all sorts of 

graphs but for the dense graphs success rate is more than 90%. 

Moreover in the unsuccessful cases, the deviation from actual 

result is very less (usually for less than 5% pairs) and for most 

of the pairs we obtain correct values of max-flow or min-cut. 
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1. INTRODUCTION 

Graph connectivity is one of the classical subjects in graph 

theory, and has many practical applications, for example in 

chip and circuit design, reliability of communication 

networks, transportation planning and cluster analysis [1, 5]. 

Finding the minimum cut of an undirected edge-weighted 

graph is a fundamental algorithmic problem. Precisely it 

consists in finding a non-trivial partition of the graph’s vertex 

set V into two parts such that the cut weight, the sum of 

weights of the edges connecting the two parts, is minimum. 

Given an undirected edge-weighted graph G with vertex set V 

and edge set E, the problem is to build a tree such that  u, v 

 V the weight of the edge having minimum weight on the 

unique path connecting u and v in the tree represents the value 

of minimum cut of graph separating u and v. We call this tree 

Minimum-Cut Tree. 

In this paper we propose a new approximation algorithm for 

calculating the min-cut tree of an undirected edge-weighted 

graph. Our algorithm runs in O(V2.logV + V2.d), where V is 

the number of vertices in the given graph and d is the degree 

of the graph. It is a significant improvement over time 

complexities of existing solutions. However, because of an 

assumption it does not produce correct result for all sort of 

graphs but for the dense graphs success rate is more than 90%. 

Moreover in the unsuccessful cases, the deviation from actual 

result is very less (usually for less than 5% pairs) and for most 

of the pairs we obtain correct values of max-flow or min-cut. 

 

2. RELATED WORK 

Gomory and Hu [3] proved that min-cut or max-flow between 

all pair of vertices in an undirected graph can be computed by 

doing n-1 max flow computations rather than the naive  

max-flow computations. All the algorithms for constructing 

the Minimum-Cut Tree use n-1 minimum s-t cut (i.e. max 

flow) subroutines. 

Gomory and Hu [3] solved the multi-terminal network flow 

problem in 1961 and proved that  maxflow problems in an 

undirected network have at most n-1 distinct solutions. They 

represented these n-1 values using a tree, nodes of which were 

same as those of original network and edge-weights were 

those n-1 values.  This tree is known in literature as Gomory-

Hu tree or Min-cut tree. Gomory and Hu [3] presented an 

algorithm for making min-cut tree of an undirected, edge-

weighted graph time complexity of which was 

O(V*Complexity of solving a maxflow problem).  

The fastest algorithm known so far for solving max flow 

problem between two specified vertices has the complexity 

O(V3). Therefore Min-Cut tree can be constructed in O(V4) 

using the algorithm proposed by Gomory and Hu [3]. 

In this paper we do not use max flow subroutine here; rather 

we present an approximation algorithm in which we first 

calculate an upper bound for each vertex and repeatedly relax 

it till it becomes minimum-cut value. This approximation 

algorithm has a significantly better running time than the 

fastest existing algorithm till now and gives surprisingly good 

results for dense graphs. 

3. INTRODUCTION TO MIN CUT TREE  

Given a graph G = (V, E) with vertex set V, edge set E and 

weight function w: E  R. It can be shown that there are at 

most n-1 distinct min-cuts among the  total pairs of nodes. 

We represent these n-1 min-cuts by a (not necessarily unique) 

tree, called Min-Cut Tree, which always exists and has the 

following properties: 

 The nodes of the tree are the same as the nodes of 

the initial graph, (i.e. V). Each edge is assigned a value (not 

directly related to the weights of the initial graph).  

 For every pair s, t, we can find the min-cut value by 

following the (unique) path between s and t in the min-cut 

tree. Suppose that e is the edge with minimum value on that 

path. Then value (e) is also the min-cut value between s and t 

in the initial graph G.  

 To actually find the cut between s and t, we simply 

cut off the edge e of minimum value on the s-t path. The two 

connected subsets of nodes in the tree, also define the min-cut 

between s and t in the initial graph G. 

3.1 Notation Used for Min Cut Tree 

Cut: A cut (S, V-S) of graph G is a partition of vertex set V 

into two parts S and V-S. We denote the cut by C. The weight 

w(C) of the cut is defined as [6] 
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i.e. weight of the cut w(C) is the sum of the weights of the 

edges connecting the two parts. 

s-t Cut: For two vertices s, t  V s-t cut is a cut C such that s 

 S and t  S or vice versa i.e. cut C separates s and t. 

Min s-t Cut: A Min s-t cut of graph G is a s-t cut having 

minimum weight among all s-t cuts of G. 

Min Cut: A Min cut of graph G is a cut C having minimum 

weight among all cuts of G. More detailed, a minimum cut of 

an undirected graph G with edge weights is a set of edges with 

minimum sum of weights, such that its removal would cause 

the graph to become unconnected. 

4. EXISTING APPROACHES TO SOLVE 

THE PROBLEM 

4.1. Gomory-Hu Algorithm 

Gomory and Hu [3] showed that in a graph having n nodes, 

there can be only n-1 numerically different flows. So all flow 

can be deduced after only n-1 different flows have been 

computed. Consider a flow network with a minimum cut (A, 

A’) separating Ni and Nj , Ni  A and Nj  A’. Construct a 

slightly different network, one in which all nodes in A’ are 

replaced by a single node P to which all the arcs of the cut are 

attached. In this condensed network consider the maximum 

flow between two ordinary nodes Ne and Nk. Gomory and Hu 

proposed the following lemma: 

Lemma: The flow between two ordinary nodes Ne and Nk in 

the condensed network is numerically equal to the flow f(e, k) 

in the original network. 

Gomory and Hu proposed the following method to compute 

the min-cut tree of an undirected, edge-weighted graph [3]: 

They take two nodes and do a maximal flow computation to 

find a minimum cut (A, A’). They represent this by two 

generalized nodes connected by an arc bearing the cut value. 

In one node are listed the nodes of A, in the other those of A’. 

They now repeat this process. Choose two nodes in a (or two 

in A’) and solve the flow problem in the condensed network in 

which A’ (or A) is a single node. The resulting cut has a value 

 and is represented by a link connecting the two parts into 

which A is divided by the cut, say  and . A’ is attached to 

 if it is in the same part of the cut as  , to  if it is in the 

same part as . 

The cutting up is then continued. At each stage we have 

certain generalized nodes (which may represent many nodes 

of the original network), and certain arcs connecting them. To 

proceed with the computation we select a generalized node  

and two original nodes  in . Upon removing all 

arcs which connect to , the network of generalized nodes 

falls into a number of disconnected components. We condense 

each component except  itself into a single node and solve 

the network flow problem consisting of these condensed nodes 

and the original nodes within , and using  as 

source and sink. The minimal cut obtained by this flow 

calculation splits  into two parts, . This is 

represented in the diagram by replacing  by two 

generalized nodes  connected by an arc bearing 

the cut value. All other arcs and generalized nodes in the 

diagram are unchanged except those arcs which formerly 

connected to . Such an arc is now attached to  if its 

component was on the same side of the cut as the nodes in 

, and attached to , if its component fell on the other 

side. 

This process is repeated until the generalized nodes of the 

diagram consist of exactly one node each. This point is 

reached after exactly n-1 cuts, for the array is a tree at all 

times so when the process stops it is an n-node tree and so has 

n-1 branches each created by solving a flow problem in a 

network equal to or smaller in size than the original. 

The algorithm proposed by Gomory and Hu has time 

complexity O (V*Time complexity of finding a min s-t cut). 

4.2. Finding Min s-t Cut 

All the approaches to find min s-t cut till now use its close 

relationship to Maximum Flow Problem [1]. 

In the maximum flow problem we are given a flow network G 

= (V, E) which is a graph in which each edge (u, v)  E has a 

non-negative capacity c(u, v) ≥ 0. If (u, v)  E then it is 

assumed that c(u, v) = 0. We distinguish two vertices in a 

flow network: a source s and a sink t. In this problem we wish 

to compute the greatest rate at which material can be shipped 

from the source s to the sink t without violating any capacity 

constraints.  

Let G = (V, E) be a flow network with a capacity function c. 

Let s be the source of the network, let t be the sink. A flow in 

G is a real valued function f : V x V R that satisfies the 

following three properties: 

Capacity Constraint: For all u, v  V, we require  

                                  f(u, v) ≤ c(u, v). 

Skew Symmetry: For all u, v  V, we require  

                                 f(u, v) = -f(v, u) 

Flow Conservation: For all u  V – {s, t}, we require 

 

The quantity f(u, v), which can be positive, zero or negative is 

called the flow from vertex u to vertex v. The value of a flow f 

is defined as 

 

i.e. the total flow out of the source. In the maximum flow 

problem we are given a flow network G with source s and 

sink t, and we wish to find a flow of maximum value. 

The capacity constraint simply says that the flow from one 

vertex to another must not exceed the given capacity. Skew 

symmetry is a notational convenience that says that the flow 

from a vertex u to a vertex v is the negative of the flow in the 

reverse direction. The flow conservation property says that the 

total flow out of a vertex other than the source or sink is zero. 

One interpretation of the flow conservation property is that 

the positive flow entering a vertex other than the source or 

sink must equal the total positive flow leaving that vertex. 
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4.2.1. Ford-Fulkerson Method 

The following Ford-Fulkerson method [4] is used for finding 

max flow between a pair of vertices s and t. This method is 

iterative. We start with f(u, v) = 0 for all u, v  V, giving an 

initial flow of value zero. For each iteration we increase the 

flow by finding an “augmenting path”, which we can think of 

simply as a path from the source s to sink t along which we 

can send more flow, and then augmenting the flow along this 

path. We repeat this process until no augmenting path can be 

found. 

Procedure: Ford-Fulkerson-Method(G, s, t) 

Initialize flow to 0  

While there exists an augmenting path p 

 do Augment flow f along p 

return f  

 

If we implement the computation of the augmenting path p 

with a breadth first search i.e. if the augmenting path is a 

shortest path from s to t in the residual network, where each 

edge has unit distance (weight), we call the Ford-Fulkerson 

method [4] so implemented the Edmonds-Karp Algorithm. 

Running time of Edmonds-Karp Algorithm is O(VE2). The 

asymptotically fastest maximum-flow algorithms are based on 

push-relabel method and have the running time of O(V3). 

4.2.2. Max-Flow-Min-Cut Theorem 

The Max-Flow-Min-Cut theorem by Ford and Fulkerson 

shows the duality of the maximum flow and minimum s-t cut. 

This theorem states that the value of maximum flow in a flow 

network G with source s and sink t is equal to the value of min 

s-t cut of G. 

So using the algorithm proposed by Gomory and Hu Min-Cut 

tree can be constructed in O(V4). 

4.3. Finding Overall Minimum Cut 

M. Stoer and F. Wagner [1] have given a simple and 

compact algorithm for finding the minimum cut of a graph. 

The algorithm is remarkably simple and has the fastest 

running time so far. The algorithm uses the following very 

interesting theorem: 

Theorem: Let s and t be two vertices of a graph G. Let G/{s, 

t} be the graph obtained by merging s and t. Then a minimum 

cut of G can be obtained by taking the smaller of a minimum 

s-t cut of G and a minimum cut of G/{s, t}. 

So a procedure finding an arbitrary min s-t cut can be used to 

construct a recursive algorithm to find a min cut of a graph. 

To find an arbitrary min s-t cut this algorithm uses maximum 

adjacency search or maximum cardinality search. 

Procedure: Min-Cut Phase (G, w, a) 

A←{a} 

While(A≠V) 

 Add to A the most tightly connected vertex Store the 

cut-of-the-phase and shrink G by merging the two vertices 

added last. 

 

A subset A of the graph vertices grows starting with an 

arbitrary single vertex until A is equal V. In each step, the 

vertex outside of A most tightly connected with A is added. 

Formally we add a vertex 

zA such that w(A, z) = max{w(A, y)| yA}, 

 

where w(A, y) is the sum of the weights of all the edges 

between A and y. At the end of each such phase, the two 

vertices added last are merged, that is, the two vertices are 

replaced by a new vertex, and any edges from the two vertices 

to a remaining vertex are replaced by an edge weighted by the 

sum of the weights of the previous two edges. Edges joining 

the merged nodes are removed. 

 

The cut of V that separates the vertex added last from the rest 

of the graph is called the cut-of-the-phase. The lightest of 

these cut-of-the-phases is the result of the algorithm, the 

desired minimum cut: 

 

Procedure: Min Cut(G, w, a) 

While(|V| > 1) 

 Min-Cut Phase(G, w, a) 

 if(the cut-of-the-phase is lighter than the current 

minimum cut) 

  then store the cut-of-the-phase as the current 

minimum cut 

 

The starting vertex a stays the same throughout the whole 

algorithm. It can be selected arbitrarily in each phase instead. 

In order to prove the correctness of this algorithm they 

following lemma. 

 

Lemma: Each cut-of-the-phase is a minimum s-t cut in the 

current graph, where s and t are the two vertices added last in 

the phase 

 

Running time of the algorithm: The algorithm consists of 

|V| - 1 identical phases each of which requires O(|E| + |V| log 

|V|) time yielding an overall running time of O(|V||E| +  

log |V|). 

5. OUR APPROACH TO FIND MIN CUT 

TREE 

 

We present a new approximation algorithm [7] for 

constructing the minimum cut tree. We calculate an upper-

bound value for each node in the graph[1]. We define the 

upper bound value of each node as the value of cut which 

separates this node from rest of the graph i.e. 

 

Lemma: The value of minimum cut of a graph G separating 

Ni and Nj is less than or equal to minimum of the upperbound 

values of two nodes Ni and Nj. 
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Proof: Simple reasoning can be given to prove it. Let (A, A’) 

be the minimum cut of G separating Ni and Nj. Upper-

bound(Ni) and upper-bound(Nj) are the values of two cuts 

which also separate Ni and Nj. Therefore, 

w(A, A’) ≤ min(upperbound(Ni), upperbound(Nj)) 

where w(A, A’) =  

 

Algorithm: We proceed by finding an edge uv such that upon 

merging the two nodes Nu and Nv we are able to reduce the 

upperbound value, i.e. 

upperbound(Nu) + upperbound(Nv) – 2*w(u,v) < 

max(upperbound(Nu), upperbound(Nv)) 

We start from the node having the minimum upperbound 

value and check for all of the edges leaving it. If we are able 

to reduce the upperbound value by merging it with any of the 

nodes, we merge the nodes and repeat the same procedure. If 

we are not able to reduce the node’s upperbound value, we 

check for rest of the nodes in the increasing order of 

upperbound values. The reason behind considering the nodes 

in increasing order of upperbound values will be clear in the 

next lemma. 

After all the nodes in the graph are merged and it has only one 

node left, we proceed to construct the min-cut tree by using 

the information from intermediate stages. We move from last 

to first stage and at each stage we see the two nodes that were 

merged during last stage and separate the node with smaller of 

the two upperbound values from the other by an arc bearing 

the value equal to the smaller of the two upperbound values. 

Since we separate the two merged nodes in the tree by an arc 

having the value equal to smaller of the two upperbound 

values, it is necessary to consider the nodes during merging 

process in the increasing order of upperbound values so that 

the node with less upperbound value will be merged first, if 

possible at all. 

Lemma: If we consider the nodes to be merged in the 

increasing order of upperbound values and while examining 

the adjacency list of Ni we get Nj as the node which upon 

merging with Ni will reduce the upperbound value of Ni, then 

(1) Either upperbound(Nj) will also be reduced. 

(2) Or upperbound(Nj) can’t be reduced. 

Proof: We are considering the nodes in the increasing order 

of upperbound values, and so 

Case 1: upperbound(Nj) ≥ upperbound(Ni) 

Since merging Ni and Nj reduces the upperbound 

value of Ni, therefore 

upperbound(Ni) + upperbound(Nj) – 2*w(i, j) ≤ 

upperbound(Ni) 

It is clear from above two equations: 

upperbound(Ni) + upperbound(Nj) – 2*w(i, j) ≤ 

upperbound(Nj) 

i.e. upperbound(Nj) is also reduced. 

Case 2: upperbound(Nj) < upperbound(Ni) 

Since we are considering the nodes in the increasing order of 

upperbound values, checking for Ni itself implies that Nj has 

already been checked and it was not possible to reduce its 

upperbound value at all. So in this case upperbound(Nj) 

cannot be reduced. 

If at any stage it is not possible to merge any node, then we 

merge that pair of nodes which results in minimum increment 

of the upperbound value. 

Assumption: Our algorithm is based on the assumption that if 

we are merging two nodes Ni and Nj and if upperbound(Ni) < 

upperbound(Nj) then it is not possible to merge Nj with any 

other node which will result in a node having upperbound 

value which is less than upperbound(Ni). However, this 

assumption is not true always. 

During the course of our algorithm, if we merge a pair of 

nodes Ni and Nj such that: 

(i) upperbound(Ni) < upperbound(Nj) and, 

(ii) It was possible to merge Nj with some other node Nk such that 

upperbound value of the resulting node (let it be val) would 

have been less than upperbound(Ni), 

In this case, the resulting min-cut tree will not be correct and 

will give wrong min-cut values for some pair of nodes. More 

precisely, it would give the value of min Ni-Nj cut as 

upperbound(Ni) but the correct value is val. We call such a 

pair of nodes wrong pair to merge. 

For sparse graphs, the probability of choosing the wrong pair 

of nodes to merge is high due to the less number of available 

pairs among which to choose i.e. due to less number of edges. 

For dense graph, the probability of choosing wrong pair of 

nodes is very less due to large number of available pairs 

among which to choose i.e. due to large number of edges.  

For dense graph this algorithm produces surprisingly good 

results. After running the procedure with more than 20000 

randomly generated graphs we have figured out that for 

graphs having density >= 0.4, success rate of algorithm is 

more than 90%. Moreover in the unsuccessful cases, the 

deviation from actual result is very less (usually for less than 

5% pairs) and for most of the pairs we obtain correct values of 

max-flow or min-cut.  

Procedure: Min-Cut Tree(G) 

Input: Undirected edge-weighted graph G 

Output: Min-Cut Tree 

1. Calculate the upperbound values for each node. 

2. while(number of vertices in the current graph > 1) 

3.        loop(Consider the vertices in the increasing 

order of upperbound value) 

4.              if(upperbound value can be reduced by 

merging a node with any adjacent node) 

5.              then merge those two adjacent nodes  

6.                     break; 

7.             End if 

8.        End loop 

9.  if (it is not possible to merge any pair of nodes) 

10.  then merge the pair of nodes which results in 

minimum increment of the upperbound         value. 

11.  End if 

12. End While 
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13. Construct Min-Cut Tree T by using the information from 

intermediate stages as described: 

a. Move from last to first stage. 

b. At each stage check the two nodes that were merged 

during last stage. 

c. Separate the node with lower upperbound value 

from the other by an arc bearing the value equal to the lower 

upperbound value. 

14. return T 

Time Complexity: O(V2.logV + V2.d)  

where V is the number of vertices in the given graph and d is 

the degree of the graph. 

6. RESULTS ANALYSIS 

6.1 Random Graphs with Fixed Number of 

Nodes 

We generated 7500 random graphs of different densities but 

having fixed number of nodes (=50). Edge-weights were also 

random and were in between 1-300.  Results of running our 

algorithm with these graphs are summarised in following 

plots: 

Fig 1: Plot of Success Rate Vs Density (Number of nodes were fixed to 50) 

 

It is clear from figure 1 that for desity >= 0.4 success rate is 

about 100%. Figure 2 says that for the unsuccessful test cases 

deviation from the actual result is less than 3%. It means that 

even in the case of failure we get correct valus of max-flows 

or min-cuts for most of the pair of nodes. 

 

  

Fig 2: Plot of Deviation Vs Density (For unsuccessful test cases) 
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6.2.  Random Graphs with Random 

Number of Nodes 

We generated 7500 random graphs of different densities and 

number of nodes in them were also random (=5-55). Edges 

weights were also random and were in between 1-300.  

Results of running our algorithm with these graphs are 

summarised in following plots: 

 

Fig 3: Plot of Success Rate Vs Density (Number of nodes were random 5-55) 

 

It is clear from figure 3 that for desity >= 0.4 success rate is 

more than 92%. Figure 4 says that for the unsuccessful test 

cases deviation from the actual result is less than 5%. It  

means that even in the case of failure we get correct valus of 

max-flows or min-cuts for most of the pair of nodes. 

 

 

Fig 4: Plot of Deviation Vs Density (For unsuccessful test cases) 
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7. CONCLUSION 

Approximation algorithm presented in this paper for 

calculating the min-cut tree of an undirected edge-weighted 

graph runs in O(V2.logV + V2.d), where V is the number of 

vertices in the given graph and d is the degree of the graph. 

This algorithm shows a significant improvement over time 

complexities of existing solutions. For the dense graphs 

success rate of our algorithm is more than 90% and because of 

an assumption it does not produce correct result for all sorts of 

graphs. Moreover in the unsuccessful cases, the deviation 

from actual result is very less (usually for less than 5% pairs) 

and for most of the pairs we obtain correct values of max-flow 

or min-cut. 
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