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ABSTRACT 

In this paper, approximate analytical solution of SIRC model 

associated with the evolution of influenza A disease in human 

population is acquired by the modified differential transform 

method (MDTM). The differential transform method (DTM) 

is mentioned in summary. MDTM can be obtained from DTM 

applied to Laplace, inverse Laplace transform and padé 

approximant. The MDTM is used to increase the accuracy and 

accelerate the convergence rate of truncated series solution 

getting by the DTM. The analytical-numerical technique can 

be used in order to produce simulations with different initial 

conditions, parameter values for different values of the basic 

reproduction number. 
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1. INTRODUCTION 

   Influenza is caused by a virus that attacks mainly the upper 

respiratory tract, nose, throat and bronchi and rarely also the 

lungs. Many people recover within 1-2 weeks without 

requiring any medical treatment. In the very young, the 

elderly and people suffering from medical conditions such as 

lung diseases, diabetes, cancer, kidney or heart problems, 

influenza poses a serious risk. In these people, the infection 

may lead to severe complications of underlying diseases, 

pneumonia and death. In annual influenza epidemics 5-15% 

of the populations are affected with upper respiratory tract 

infections. Hospitalization and deaths mainly occur in high 

risk groups (elderly, chronically ill). Annual epidemics are 

possibly between three and five million cases of severe illness 

and between 250,000 and 500,000 deaths every year around 

the world. Influenza is transmitted by a virus that can be of 

three different types, namely A, B and C [1]. Among these 

taypes, the virus A is epidemiologically the most important 

one for human beings, because it can recombine its genes with 

those of strains circulating in animal populations such as 

birds, swine, horses etc. Unfortunately, within type a virus, 

there are several subtypes, H1N1, H3N2, H5N1, etc., each 

one of these has been pointed as the causal of recent 

pandemics. Much evidence shows that the antigenic distance 

between two different strains influences the degree of partial 

immunity, often called cross-immunity, conferred to a host 

already infected by one of the strains with respect to the 

other[2]. Mathematical models have proven to be useful tools 

to study the dynamics of viral infections, within these models, 

compartmental models have been transformed of ordinary or 

partial differential equations. Over the last two decades, a 

number of epidemic models for predicting the spread of 

influenza through human population have been proposed 

based on either the classical susceptible-infected-removed 

(SIR) model developed by Kermack and McKendrick[3]. 

Casagrandi et al.[2] have introduced SIRC model by adding a 

new compartment C, which can be called cross-immune 

compartment, to the SIR model. This cross-immune 

compartment (C) describes an intermediate state between the 

fully susceptible (S) and the fully protected (R)one. They have 

studied the dynamical behaviors of this model numerically 

[4]. Jodar et al. [5] developed two nonstandard finite 

difference schemes to obtain numerical solutions of a 

influenza A disease model presented by Casagrandi et al.[2] . 

Very recently Samanta[4] considered a nonautonomous SIRC 

epidemic model for Influenza A with varying total population 

size and distributed time delay. This model assumes no 

immune interference between the different A virus subtypes, 

that is why they only considered one virus subtype. In this 

paper, the modified differential transform method (MDTM) 

has been applyed will be employed in a straightforward 

manner without any need of linearization or smallness 

assumptions. DTM was first applied in the engineering 

domain by [6]. DTM provides an efficient explicit and 

numerical solution with high accuracy, minimal calculations, 

sparing of physically unrealistic assumptions. However, DTM 

has some drawbacks. By using DTM, a series solution  which 

is obtained, in practice a truncated series solution. This series 

solution does not exhibit the periodic behavior which is 

characteristic of oscillator equations and gives a good 

approximation to the true solution in a very small region. In 

order to develop the accuracy of DTM, an alternative 

technique is used which modifies the series solution for non-

linear oscillatory systems as follows:  first apply the Laplace 

transformation to the truncated series obtained by DTM, then 

convert the transformed series into a meromorphic function by 

forming its Padé approximants([7],[8],[9],[10],[11]), and 

finally accept an inverse Laplace transform to obtain an 

analytic solution, which may be periodic or a better 

approximation solution than the DTM truncated series 

solution.  

2. The SIRC MODEL 

      Casagrandi et al. [2] considered the model 

 1 ,
dS

S C SI
dt

     
   (1) 
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  ,
dI

SI SI I
dt

      
          (2) 

   1 ,
dR

CI I R
dt

        
 (3) 

  ,
dC

R CI C
dt

      
            (4) 

With initial conditions 

       1 2 3 40 , 0 , 0 , 0 .S M I M R M C M   

 Where 

μ is the mortality rate, 

θ is the rate of progression from infective to recovered per 

year, 

δ is the rate of progression from recovered to cross-immune 

per year, 

γ is the rate of progression from recovered to susceptible per 

year, 

σ is the recruitment rate of cross-immune into the infective, 

β is the contact rate per year. 

The disease free equilibrium is locally asymptotically stable if  

and only if  

1


 


   

and unstable if  

1


 


  . 

   There exists a unique and positive endemic equilibrium 

point if and only if (β/(μ+θ))>1 which is locally 

asymptotically stable under some conditions on the 

coefficients[12] 

3. PADÉ APPROXIMATIONS 

    Some techniques exist to increase the convergence of a 

given series. Among them, the so- called padé technique is 

widely applied in this section the notion of rational 

approximations is introduced for functions. The function f(x) 

will be approximated over a small portion of its domain. For 

example, if f(x)=cos(x), it is sufficient to have a formula to 

generate approximations on the interval [0,π/2]. Then 

trigonometric identities can be used to compute cos(x) for any 

value x that lies outside [0,π/2]. A rational approximation to 

f(x) on [a,b] is the quotient of two polynomials
 NP x

and 

 MQ x
 of degrees N and M, respectively. The notation 

[N/M] (x) can be  used to denote this quotient: 

  
 

 
/  for .

N

M

P x
N M x a x b

Q x
  

     (5) 

    Our goal is to make the maximum error as small as 

possible. For a given amount of computational effort, one can 

usually construct a rational approximation that has a smaller 

overall error on [a,b] than a polynomial approximation. The 

development is an introduction and will be limited to Padé 

approximations. The method of Padé requires that f(x) and its 

derivative be continuous at x=0. There are two reasons for the 

arbitrary choice of x=0. First, it makes the manipulations 

simpler. Second, a change of variable can be used to shift the 

calculations over to an interval that contains zero. The 

polynomials used in Eq. (5) are 

  2

0 1 2 ... N

N NP x p p x p x p x    
    (6) 

    And 

  2

1 21 ... M

M MQ x q x q x q x    
       (7) 

    The polynomials in (6) and (7) are constructed so that f(x) 

and [N/M] (x) agree at x=0 and their derivatives up to N+M 

agree at x=0. In the case Q₀ (x) =1, the approximation is just 

the Maclaurin expansion for f(x). For a fixed value of N+M 

the error is smallest when 
 NP x

and 
 MQ x

have the 

same degree or when 
 NP x

has degree one higher than 

 MQ x
. Notice that the constant coefficient of MQ

is 

 q₀  =1. This is permissible, because it cannot be 0 and [N/M] 

(x) is not changed when both 
 NP x

and 
 MQ x

 are 

divided by the same constant. Hence the rational function 

[N/M](x) has N+M+1 unknown coefficients. Assume that f(x) 

is analytic and has the Maclaurin expansion 

  2

0 1 2 ... ...,k

kf x a a x a x a x     
  (8) 

    And form the difference  

        :M Nf x Q x P x z x 
 

0 0 0 1

M N
j j j j

j j j j

j j j j N M

a x q x p x c x
 

     

    
     

    
   

(9) 

    The lower index j=M+N+1 in the summation on the right 

side of (9) is chosen because the first N+M derivatives of f(x) 

and [N/M](x) are to agree at x=0. When the left side of (9) is 

multiplied out and the coefficients of the powers of 
jx  are 

set equal to zero for k= 0,1,...,N+M, the result is a system of 

N+M+1 linear equations: 

1

0 0

1 0 1 1

2 0 1 2 2

3 0 2 1 1 2 3 3

1 1

0

0

0                                                

0

... 0M N M M N M N N

a p

q a a p

q a q a a p

q a q a q a a p

q a q a a p   

 

  

   

    

    
     

  And 

 10
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1 1 2 1 1

2 1 3 1 1 2

1 1 1 1

... 0

... 0 

                                                                                    

... 0

M N M M N M N N

M N M M N M N N

M N M N N M N M

q a q a q a a

q a q a q a a

q a q a q a a

     

      

    

    

    

    



 

    Notice that in each equation the sum of the subscripts on 

the factors of each product is the same, and this sum increases 

consecutively from 0 to N+M. The M equations in (11) 

involve only the unknowns 1 2, ,... Mq q q and must be solved 

first. Then the equations in (10) are used successively to find

0 1, ,..., NP p p  

4. BASIC DEFINITIONS OF 

DIFFERENTIAL TRANSFORMATION 

METHOD 

Pukhov [13] proposed the concept of differential 

transformation, where the image of a transformed function is 

computed by differential operations, which is different from 

the traditional integral transforms as are Laplace and Fourier. 

Thus, this method becomes a numerical-analytic technique 

that formalizes the Taylor series in a totally different manner. 

Differential transformation is a computational method that can 

be used to solve linear (or non-linear) ordinary (or partial) 

differential equations with their corresponding boundary 

conditions. A pioneer using this method to solve initial value 

problems is Zhou [6], who introduced it in a study of 

electrical circuits. Additionally, differential transformation 

has been applied to solve a variety of problems that are 

modeled with differential equations ([14],[15],[16],[17]) 

 The method consists of, given system of differential 

equations and related initial conditions; these are transformed 

into a system of recurrence equations that finally leads to a 

system of algebraic equations whose solutions are the 

coefficients of a power series solution.  

    For the sake of clarity in the presentation of the DTM and 

in order to help to the reader we summarize the main issues of 

the method that may be found in [6]. 

Definition 4.1 A differential transformation Y(k) of function 

y (x) is defined as follows [18] 

 
 

0

1

!

k

k

x

d y x
Y k

k dx


 
  

 
                                    (12) 

   In (12), y(x) is the Original function and Y(k) is the 

transformed function. Differential inverse transform of Y(k) is 

defined as follows 

   
0

k

k

y x x Y k




                                         (13) 

In  fact. From (12) and (13), we obtain 

 
 

0
0

!

kk

k
k

x

d y xx
y x

k dx






 
  

 
                               (14) 

    Equation (14) implies that the concept of differential 

transformation is derived from the Taylor series expansion. 

    From Equation (12) and (13), it is easy to obtain the 

following mathematical operations: 

1. If      y x g x h x  then  

     Y k G k H k  . 

2. If    y x cg x then    Y k cG k , c is a 

constant. 

3. If  
 n

n

d g x
y x

dx
 ,then

 
 

 .
!

k n
Y k G k n

k


 

 

4. If      y x g x h x then 

      
0

k

l

Y k G l H k l


  . 

5. If   ny x x then 

   
1,  

0,  k n

k n
Y k k n


   


, δ is the  

Kronecker delta . 

6. If        y x u x v x w x  then 

       
0

0

k
k s

m
s

Y k U s V m W k s m





    . 

4.1THE OPERATION PROPERTIES OF 

DIFFERENTIAL TRANSFORMATION 

       If x (t) and y (t) are two uncorrelated functions with time t 

where X (k) and Y(K) are the transformed functions 

corresponding to x(t) and y(t) then the fundamental 

mathematics operations can be proved by differential 

Transformation and are listed as follows [16]:(1) Linearity. If 

    ,X k D x t        Y k D y t     and c1 

and c2 are independent of t and k then 

       1 2 1 2D c x t c y t c X k c Y k       (15) 

Thus, if c is a constant, Then 

 [ ] ,  where  is the kronecer delta function.D c c k 
   

 (2) Convolution. if  

         

   

1

1

, ,z t x t y t x t D X k

y t D Y k





    

   

and ⨂  

denote the convolution and Symbol D denoting the 

differential transformation process. Then 

 11
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     

   

   
0

     
k

l

D z t D x t y t

X k Y k

x l Y k l


      

 

 

                    (16)                  

If          1 2 1... n ny x y x y x y x y x  then 

   

   

 

31 2

1 2 2 1

1 1

0

2 2 1 1 1 2

1

...

...

n

n n

kk kk

k k k k

n n n

n n

Y k Y k

Y k k Y k k

Y k k



  

  





  

 

 

       (17) 

The proof of above properties is deduced from the definition 

of the differential transform 

5. APPLICATION OF THE SIRC 

INFlUENZA MODEL 

    In this section, the differential transformation technique is 

applied to solve nonlinear differential equations system such 

as SIRC influenza model. The following recurrence relation to 

the SIRC influenza model is obtained By using the 

fundamental operations of differential transformation method. 

Applying this method, the system in equations (1)-(4) can be 

written as follows:   

  
            

0

1
1

1

k

l

S k k S k S l I k l C k
k

   


 
        

   

(18) 

             
0 0

1
1

1

k k

l l

I k S l I k l C l I k l I k
k

   
 

 
         

     

(19) 

             
0

1
1 1

1

k

l

R k C l I k l I k R k
k

    


 
         

    

(20) 

           
0

1
1

1

k

l

C k R k C l I k l C k
k

   


 
        

   

(21) 

       1 2 3 4with 0 , 0 , 0 , 0 .S M I M R M C M     
  (22) 

Are differential transform of  respectively. 

       , , ,  S t I t R t C t
 

Thus, from a process of inverse differential transformation, it 

can be obtained the solutions in the power series 

   

   

   

   

0

0

0

0

,

,

,

,

n
k

k

n
k

k

n
k

k

n
k

k

S t S k t

I t I k t

R t C k t

C t C k t

































                                          (23) 

     

 

Therefore 

    

  

  

  

  

1 1 2 4 1

1 2 4 1

2

2 4 3 4

2 1 2 4 1

1 1 2 2 2 4

1

1

1

2
1

S t M M M M M t

M M M M

M M M M t

M M M M M

M M M M M M

  

   

    

  


   

      

 
 
   
 
     
 

     
  
         

 

    

    

  

  

  

  

2 1 2 2 2 4

1 2 2 2 4

2 1 2 4 1 2

1 1 2 2 2 4

2 2 4 3 4

4 1 2 2 2 4

11

2

I t M M M M M M t

M M M M M

M M M M M
t

M M M M M M

M M M M M

M M M M M M

   

     

  


   

   


   

     

 
 
      
 
     
  

      
 
     
  

         

      

      

  

 
  

  

3 2 3 2 4

2 3 2 4

2

1 2 2 2 4

2 2 4 3 4

4 1 2 2 2 4

1

1

1

2

1

R t M M M M M t

M M M M

M M M M M t

M M M M M

M M M M M M

    
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6. NUMERICAL METHODS AND 

SIMULATIONS 

    In this section, the numerical results are obtained based on 

the application of the (MDTM) to SIRC influenza model. 

Since most of the non-linear differential equations do not have 

exact analytic solutions, so approximation and numerical 

techniques must be used. 

6.1 Disease free equilibrium 

(R₀=(β/(μ+θ))<1) 

    For numerical study, (for R₀ <1) the following parameters 

can be used as folow: 
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1 1 1
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1/ 50 , 73 , 1
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

  

  
 

 This was done with the standard parameter values given 

above and initial values 

    M₁ =0.8, M₂ =0.1, M₃ =0.04, M₄ =0.06. 

    These values correspond to table 2 in [12]. 

 

    By taking differential transform method to initial conditions 

is transformed as follows: 

       0 0.8,  0 0.1,  R 0 0.04,C 0 0.06.S I     

 

.And from equations (18)-(21), The solution series can be 

easily written as follows : 
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In this section, Laplace transformation is applied to (24), 

which yields 
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For simplicity, replacing s= (1/t)  
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padé approximant [4/4] of (26) and substituting 

1
,t

s


can 

be obtained [4/4] in terms of  S. Finally, by using the inverse 

Laplace transformation, the modified approximate solutions 

can be expressed as: 
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 Figure1: S(t)for μ=0.02,β=50,δ=1,γ=0.5,σ=0.05,θ=73    
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Figure2:I(t)for μ=0.02,β=50,δ=1,γ=0.5,σ=0.05,θ=73 

 
Figure3:R(t)forμ=0.02,β=50,δ=1,γ=0.5,σ=0.05,θ=73 

       
Figure4:C(t)forμ=0.02,β=50,δ=1,γ=0.5,σ=0.05,θ=73 

6.2  Endemic equilibrium 

0 1R


 
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    In this section, to illustrate the capability of the MDTM, the 

variables and parameters, are considered as follows: 
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 This was done with the standard parameter values given 

above and initial values 

    M₁=0.8, M₂=0.1, M₃=0.04, M₄=0.06. 

    These values correspond to table 2 in [12]. For the  four- 

component model. An approximation for S(t), I(t),R(t),C(t), 

the solution can be easily written as:  
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In this section, Laplace transformation is applied to the series 

solutions in (27),which yields 
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 padé approximant [4/4]  is applied of (29) and substituting

1
,t

s
  padé approximant [4/4] is obtained in terms of  S. 

Finally, by using the inverse Laplace transformation, the 

modified approximate solutions can be expressed as: 
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Figure5:S(t)for μ=0.02,β=100,δ=1,γ=0.5,σ=0.05,θ=73] 

 

 

Figure6:I(t)for μ=0.02,β=100,δ=1,γ=0.5,σ=0.05,θ=73] 

 

 
Figure7:R(t)for μ=0.02,β=100,δ=1,γ=0.5,σ=0.05,θ=73] 

 

 
Figure8:C(t)forμ=0.02,β=100,δ=1,γ=0.5,σ=0.05,θ=73]    

 

7. CONCLUSIONS 

    In this paper, the modified differential transform method 

has been used to obtain approximate analytical solution of 

nonlinear ordinary differential equation systems such as SIRC 

dynamical model. The accuracy and efficiency of this method 

was demonstrated by solving SIRC influenza model. Laplace 

transformation and padé approximant are used to obtain 

analytic solution and to improve the accuracy of differential 

transform method. The modified DTM is an efficient method 

for calculating periodic solutions of nonlinear differential 

equation system. The advantage of the method is that the 

approximate solutions can be calculated easily in shorter time 

with the computer programs such as Matlap and mathematica 

moreover this method solves the problem without any need 

for discretization, perturbation or linearization of the 
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variables. The computations and graphs associated with the 

example in this paper were performed using Mathematica 

ver.8. 
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