
International Journal of Computer Applications (0975 – 8887)

Volume 69– No.16, May 2013

9

Web Service Composition and Legacy Systems:
A Survey

Mohammed Said Osama Ismail Hesham Hassan

Central Lab of Agriculture Expert
Systems (CLAES)

Giza, Egypt

Faculty of Computers and
Information,

Cairo University
Cairo, Egypt

Faculty of Computers and
Information,

Cairo University
Cairo, Egypt

ABSTRACT

Service Oriented Architecture (SOA) has gained considerable

interest in recent years, mostly due to the advent of standards

based Web services that simplify interoperability, loose

coupling and reuse. One of the basic business motivations for

implementing SOA today is achieving business agility, as

SOA can help businesses respond more quickly and cost

effectively to the dynamic and continues changes in market

conditions. It can also simplify interconnection to the existing

legacy systems as well as reconfiguring loosely coupled

business services in a simple, fast and low cost manner. For

SOA to succeed in that, it is a key issue to provide a Web

service composition approach to facilitate business innovation

and adapt IT to today's fast changing markets.

In this paper, we present a survey of some existing proposals

about service composition approaches and provide an

overview of the strategies for the modernization of the legacy

system using SOA.

Keywords
Services, Web Service Composition, Service Oriented

Architecture (SOA), Legacy Systems.

1. INTRODUCTION
A service is a person or an organization performing some

work for another person or organization. Service-Oriented

Architecture (SOA) is defined by the organization for the

advancement of structured information standards (OASIS) as

"a paradigm for organizing and utilizing distributed

capabilities that may be under the control of different

ownership domains. It provides a uniform means to offer,

discover, interact with and use capabilities to produce desired

effects consistent with measurable preconditions and

expectations" [1].
Web services can be considered applications that are wide

spread and self directed. They can be found, connected and

interacting together through the web. The maximum value of

using web services lies into gathering them in great

applications whose business roles can be used and presented

through services. Service consumers can build powerful

applications and huge systems by taking the benefits of web

services through standard interfaces.

In 2007, the organization of Gartner Group stated that about

[2] 50% of very important operational applications had been

built using SOA. This percentage has been grown by 2010 up

to 80%. In addition, according to Forrester Research report [3]

in 2009, it was stated that about 75% of information

technology administrators working at Global 2000

organizations planned to use SOA. And only less than 1% has

been reported negative reactions on experiencing SOA. All of

the above make the implementation of SOA very considerable

goal for the decision makers of information technology field.

In fact, the concepts of SOA will rarely change overtime, but

the implementation technologies will probably vary [4].

This paper introduces some main SOA concepts and its open

issues focusing on service oriented composition approaches

and its relationships with the evolution of legacy systems.

The remainder of the paper is organized as follows. Section 2

explains general idea about web service. Section 3 introduces

the different approaches used to compose service oriented

and the main problems that face the composition process and

then explanation to legacy system evolution and strategies for

the modernization of the legacy system using SOA are

exposed in section 4. Finally, the concluding remarks as well

as SOA challenges and open issues are drawn in section 5.

2. WEB SERVICES
Web services are software components that communicate

using standards-based Web technologies. Since they are

based on open standards such as HTTP and XML-based

protocols including SOAP and WSDL, Web services can be

considered hardware, programming language and operating

system independent.

Services can be described using specific service description

languages such as Web Services Definition Language

(WSDL) and Business Process Execution Language (BPEL).

Also they are published and discovered according to

predefined protocols like Simple Object Access Protocol

(SOAP), and combined using an engine that organizes the

interactions among collaborating services. WSDL is an

XML-based language which defines the interface displayed

by web service in order to be invoked by other services.

WSDL provides a function-centric description of web

services containing inputs, outputs, and exception handling.

BPEL is an XML-based language supporting process

oriented service composition [5] [6].

SOAP is considered a platform- and language-independent

communication protocol that defines an XML-based format

for web services to exchange information over HTTP by

using remote procedure calls.

According to the W3C (World Wide Web Consortium) a

Web services is "a software system designed to support

interoperable machine-to-machine interaction over a

network. It has an interface described in a machine-process

able format (specifically WSDL). Other systems interact with

the Web service in a manner prescribed by its description

using SOAP-messages, typically conveyed using HTTP with

an XML serialization in conjunction with other Web-related

standards"[7].

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.16, May 2013

10

3. SERVICE-ORIENTED

COMPOSITION APPROACHES
Using an approach, that applies standard programming

languages to link components of a Web service, overcomes

the variety of middleware platforms that are being used. So

there is a great need for developing Service Composition

Middleware in order to make service composition in means

of abstractions and infrastructure. A service composition

middleware needs full and well description of the web

service features which are functionality, interfaces and

protocols it supports. Web service components are

considered system- and vendor-specific. This can be clear

when using Workflow Management Systems (WfMS) which

are highly flexible and generic but they need the web service

components to be familiar with WFMS API. Therefore web

service components require more additional development

effort. [8]

The Main Problems related to web services composition:

 how to specify them in a formal and expressive enough

language,

 how to compose them (automatically),

 how to discover them through the web,

 And how to ensure their correctness.

There are varied approaches to compose a service (see Figure

1), and they are described in details in the following

subsections.

Semantic

Context

based

Static

Dynamic

Model

Driven

Declarative

Automated

Service

Composition

Approaches

Figure 1: Services Composition approaches

3.1 Static Service Composition
Static Service Composition is done by choosing the needed

components, linking them, and at last compiling and

deploying these components. This approach is used when

business partners and service components does not or only

rarely change. There are two main approaches for the static

service composition: [9]

1. Web service Orchestration: It depends on merging

available services by adding a central controller, which

is called the orchestrator that is responsible for firing

and combining the single sub activities. Among the

orchestration languages (e.g. BPML [10] and BPEL

[5]).

2. Web service choreography: In this approach, the overall

activity is achieved by the composition of peer-to-peer

interactions among services that are working together.

3.2 Dynamic Service Composition
Dynamic composition makes the service environment highly

flexible and dynamic. New services become available daily

and the number of service providers is regularly increasing.

Achieving to the customer requirements and keeping with the

changes done to the environment with the minimum

involvement of user are considered the sign of the ideal

service processes [9].

There is a big challenge problem which is how to compose

services automatically. The services can be combined to

perform a specific task that the existing services can not

accomplish. According to the previous words, the dynamic

composition of services is so important and useful but the

automation process of it is still under research. The main

problem in the automation process is the big gap between the

concepts used by people and the computer interpretation to

data. [8]

Web services’ dynamic composition needs two important

things; the location of services depending on their

capabilities, and detecting which of the previous located

services can be used to formalize service composition

matching [11]. This difficulty can be controlled using

semantic web technologies, for example OWL-S which is

ontology, within The Ontology Web Language (OWL) based

framework of the Semantic Web, for describing Semantic

Web Services.

OWL-S (previously known as DAML-S) (see Figure 2); is a

service ontology that enables automatic service discovery,

invocation, composition, interoperation, and execution

monitoring [12]. OWL-S forms services using three way

ontology:

 Service profile: describes what the service requires

from users and what it gives.

 Service model: illustrates the workflow of the service.

 Service grounding: gives tutorial on how to use the

service.

3.3 Model Driven Service Composition
This approach [8] is based on dynamic service composition

as it assists the management and development of dynamic

service compositions. The framework of this approach

contains a service composition manager (SCM) which helps

the user in developing, executing and managing service

compositions and also contains service composition

repository that maintains composition elements and rules

[13]. The process of service composition development is

subdivided into four phases: service definition, scheduling,

construction and execution.

Firstly, SCM collect the requirements of the user and deliver

them to the definer to determine preliminary composition.

Service Profile

Service

Service Grounding

Grounding

Service Model

What

it

does

How

it

works

How

to

access

Figure 2: OWL-S Service

http://en.wikipedia.org/wiki/Semantic_Web
http://en.wikipedia.org/wiki/Semantic_Web_Services
http://en.wikipedia.org/wiki/Semantic_Web_Services

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.16, May 2013

11

Then, service definer invokes the composition engine to

require the rule repository. If a specific rule is already found

while composition, the repository of composed elements

sends the made actions back to the service definer. Secondly,

the service scheduler provides some possible compositions

alternatives and allows the user to select one of them. The

selected alternative is then passed to the service constructor

which its mission is generating the suitable software for

service execution. Finally, the service executor follows up

the execution process of the service.

3.4 Declarative Service Composition
In this approach, the services are composed temporarily to

get the user requirements. Two phases are included in the

declarative approach: first one, it makes a start point to work

with containing primary situation and the final required goal

then it creates set of suitable common plans. Second phase

picks one possible plan, finds out proper services and sets

their workflow.

This approach [8] contains three layers; a conversation layer,

a functionality layer and a database management layer. The

conversation layer mission is to state the order of exchanging

messages via conversation protocol. The functionality layer

contains two components, raw application and a filter that

makes analysis on the input information of an operation

inside the raw application.

3.5 Automated Web Services Composition
Ontology based service composition is another name to the

automated composition approach. Ontology is a collection of

Web services that share the same domain of interest. To

organize Web services into ontologies, DAML-S (DARPA

Agent Markup Language for Web services) is used to support

mechanisms for this job. [8]

Web service environment can be characterized by three

features [14]: exploratory, volatile and dynamic. Exploratory

implies that when a certain service is needed, it is called

during the runtime. And volatile means that the service can

be invoked at certain time but it is not available on any other

time. But dynamic represents coverage of the web service

changes even over time.

3.6 Context based Web Service Discovery

and Composition
The context manager uses some explanation that has

information of service providers, devices, and networks. Both

service providers and consumers are accessing the context

manager. It is linked to an interaction enabling platform via

an adaptive channel [15]. This interaction passes requests to

the platform which retrieves the services matching user

requirements and performs the composition based on the

adaptation rules. [8]

The word “context” is defined as “the kind of information

that makes information services aware of their current

context”. There are four components that manage context

information [8]:

 Web Service: have full control over the context

information. They decide how the information

influences their execution and their replies.

 Context plug-ins: are programmed in Java and installed

at each local host. Each plug-in is associated with one

context type.

 Context services: are associated with one context type

and must be available over the Internet.

 Clients: Those who use the services.

3.7 Semantic Web Service Composition
The semantic web can give services description at the

process level, and also provides functional information,

forming the preconditions and post conditions of the process

in order to evaluate the growth of the domain. Semantic web

depends on ontologies to structure the domain concepts that

are shared between the services [16] [17] [18].

Therefore, semantic web can result in practical and powerful

applications that depend on annotations and inference

engines to help into composing, discovering, executing, and

interoperating web services automatically. [8]

Composition of web services needs a semantic description

for services for easy interaction among them. WSDL does

not provide any semantic description to Web services. (see

Figure 3) developed by [19] presents WSDL features in

white ovals and those added by semantic descriptions in grey

filled ellipses. Also this figure shows the directions and

multiplicity information to describe the relations between the

entities.

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.16, May 2013

12

Figure 3: Ontology based description of web service [19]

4. LEGACY SYSTEM EVOLUTION
According to the large amount of information contained

within companies, this increases the complexity of the legacy

systems which store this information. Moving to SOA

platform can help in handling this increase.

Keeping the debugging of and various modifications done to

the legacy system along several years is very important to the

process of transformation. SOA has many features that make

the transformation of legacy systems is very desirable in

today's world. These features include loose coupling,

abstraction of underlying logic, agility, flexibility,

reusability, autonomy, statelessness, discoverability and

reduced costs. Providing a data bridge between incompatible

technologies is considered an important advantage to using

SOA with legacy systems.

There are four strategies for the modernization of the legacy

system using SOA; replacement, wrapping, redevelopment,

and migration [20]. They are discussed in the upcoming

sections.

4.1 Replacement Strategy
Replacement strategy main idea is to rebuild the whole

legacy system from scratch. There are two advantages for

using replacement strategy; first if the legacy system uses

technologies not recently being used so they are hard to

preserve them, second if the business rules in the system

application is realized.

To meet precisely the organization’s needs, new building of

the application is the perfect option. But this process is very

money and time consuming. Replacement strategy uses two

strategies; big-bang strategy or incrementally. Incremental

strategy is used only when the legacy system has clear

structure. [20]

4.2 Wrapping Strategy
Wrapping strategy helps legacy component being easily

reached by components use other software through providing

new SOA interface like WSDL. Wrapping woks mainly on

the interface of the legacy system neglecting the difficulty of

the internal parts, so it is considered black-box

transformation technique. [20]

Wrapping can be considered good, fast and cheap solution if

the code of the target legacy system has great value and is

written in qualified manner.

This strategy keeps the main features of the integrated legacy

applications so the problems exist in these applications

remain the same even after modernization and this is the

major problem of wrapping. Using white-box tools in this

type of legacy systems will be more helpful within

transformation to get more details about the internals

studying.

4.3 Redevelopment Strategy
Redevelopment means reengineering. Reengineering is

considered the modification and analysis of an application to

be presented in some different and new view. Reverse

engineering, redesigning, restructuring, and re-implementing

are considered some activities of the reengineering process.

There are three main issues in service-oriented reengineering:

service identification, service packaging, and service

deployment. Identification of services from a legacy system

is a complex mission. It is one of the main activities in the

modeling of a service-oriented solution, and therefore errors

made during identification can flow down through detailed

design and implementation activities that may require

multiple iterations, especially in building composite

applications. Service packaging is a detailed description of a

service that is available to be delivered to customers. And

service deployment refers to service selection and service

composition to satisfy functional and quality of service (Qos)

requirements. [20]

Software reengineering is a very important part in the

transformation process to the service-oriented environment.

Reengineering can be applied to only legacy systems which

have the following features:

1. The legacy system needs to be transformed to a

distributed environment and can be converted and

divided as a Web Service.

2. The legacy system functionality is reusable and

consistent and has worth business logic.

3. The legacy system is hard to be maintained as a whole,

and it is easier to maintain only some of its

components.

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.16, May 2013

13

4. The legacy system functionality has more benefit if

represented as separate services.

5. Target components need to run on different platforms

or vendor products.

6. The legacy system components should be implied step

by step without affecting the service consumer.

4.4 Migration Strategy
Migration strategy is some close to wrapping and

redevelopment strategies in the identifying, decoupling, and

extracting of the legacy system code. And it likes

reengineering strategy in making new interfaces matching

with SOA structure. Therefore, migration strategy includes

features of both redevelopment and wrapping strategies

aiming at producing system that has enhanced compatible

SOA design. Usually migration techniques are too similar to

wrapping and redevelopment techniques. So, migration refers

to transforming the whole legacy system to the new

environment. [20]

4.5 Comparison of Modernization

Techniques
In table 1 we have gathered some different research

techniques that handle different modernization strategies that

are explained in previous section. These techniques are

described and compared according to the following criteria.

[20]

 Legacy System Type: The kind of system to which the

technique applies.

 Degree of Complexity: Time/cost complexity of the

method (or NA, if not reported).

 Analysis Depth: The strategy used to analyze the

legacy system to understand its concepts and locate the

important functions to be exposed as part of SOA

architecture. The analysis could be shallow or deep

depending on the strategy used. Minimal dependency

on the existing legacy system components in achieving

SOA architecture increases flexibility.

 Process Adaptability: How well the process adapts to

the legacy system to minimize the amount of the

required modifications.

 Tool Support: To what degree is the process

automated, and if a tool is proposed or implemented.

Table 1: Comparison of modernization techniques
Tech.

Name

Modern.

strategy

Legacy

System Type

Degree of

Complexity

Analysis

Depth

Process Adaptability Tool

Support

Sneed

[21][22]

Wrapping Legacy

programs

NA Depends on business

rules in the legacy code

Code stripping Yes

Canfora et

al. [23]

Wrapping Interactive

legacy system

NA Use cases of legacy app. NA No

Chung

et al. [24]

Redevelopment Interactive

legacy system

Moderate Reverse software

engineering & forward

soft. eng

Reverse software

engineering

Yes

Distante et
al[25]

Redevelopment Windows
stand-alone

application

Time
consuming

Design recovery &
forward design methods

Web transaction &
navigation mode

Yes

Cuadrado
et al. [26]

Redevelopment Dependent Dependent Detailed description of
legacy system

NA Yes (Eclipse
TPTP &

Omondo

UML)

Lewis
et al.

 &

Smith [27]

Migration Program
Independent

Depends on
legacy

system

Architecture
reconstruction & detailed

analysis of the target

SOA

Legacy system
characteristics,

architecture, and code is

gathered

Yes

Cetin

et al. [28]

Migration Program

Independent

NA Legacy system is

analyzed

If change is needed,

legacy components

modified or replaced

Yes

Marchetto

& Ricca

[29]

Migration Java

Application

Moderate UML Use Case diagram The internal structure

can be changed if

needed

Yes

All the techniques have advantages and disadvantages. The

wrapping approach presented by Canfora [23] is manual, and

so it is the least preferred approach. It was hard to identify

the degree of process adaptability for these techniques. And

so it is difficult to evaluate the complexity of these

approaches, since all techniques depend greatly on the size of

the legacy system. Actually, while the benefits of the

strategies are quite well understood, there is still no general

technique that can be applied to solve all of the problems that

a developer may face.

4.6 Choosing a Strategy
When choosing a strategy, there are many features should be

considered. Table 2 summarizes an initial set of strengths and

weaknesses for each strategy. Two or more modernization

strategies can be mixed to achieve the required goal

depending on the advantages and disadvantages of each

strategy.

Table 2: Summary of modernization strategies
Strategy Advantages Disadvantages

Replacement - Reduce

maintenance

- Improve business

functions

- Time consuming

- Expensive

- Experienced resources

needed

Wrapping - Fast - Inflexible

- Difficult maintenance

Redevelopment - Increase agility
- Flexibility

- Reduced cost

- Source code needed
- Original requirements

needed

Migration - Stable environment

- Tools availability

- Time consuming

- Experienced resources

needed

- Source code needed

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.16, May 2013

14

In fact, there is no perfect solution to the problem of

modernizing a legacy system. The choice of strategy depends

mainly on the goals for the SOA architecture, the available

budget and resources and the time needed to complete the

project.

5. CONCLUSION

5.1 Fundamental Results
After huge comprehensive study about Service-Oriented

Architecture (SOA), Service composition faces increasing

interest in making much research effort to support the

existence of a global component market to enforce

widespread reusable software.

Nowadays, using third-party services becomes the new

business model. So there have been great needs to support for

service usability from a design and an adoption point of

view.

This includes areas of SOA governance, SOA adoption, and

development processes and practices for service oriented

systems development. SOA implementations within

enterprise IT systems are used to access data that resides in

legacy systems. So applications are capable of interacting

with standard web services in a traditional request response

pattern. In our paper we reviewed some topics related to

SOA, such as use of semantics for service discovery and

composition, in which there are significant efforts in the

research community. If SOA is to be used in advanced ways,

significant research topics need to be addressed in areas as

design for context awareness, service usability, federation,

automated governance and runtime monitoring and

adaptation, dynamic service discovery and composition, real

time applications, and multi organizational implementations.

In our future work, we account for new research and for

promising challenges hoping this document provides SOA

researchers in many fields.

According to many research efforts, the reality is that SOA

remains the best solution available for systems integration

and modernization of legacy systems.

5.2 Open Issues
Recently, there are many potential research topics for SOA

that need to be solved. Among those needs, Reusability of

services and, maintenance and evolution in dynamic,

heterogeneous systems. In the upcoming paragraphs we are

handling the most popular research points related to those

specific topics.

SOA brought new chances to improve the development of

reusable components. However, there are still many

challenges that need to be overcome. Although some initial

solutions have been proposed to make services more

reusable, there are still many points need to be covered as

follows: [30]

1. Standardize service specification languages.

2. Implement high performance service registry and

service discovery.

3. Provide rigid contract negotiation tools.

4. Implement dynamic service binding.

5. Develop strategies where the service execution should

be located.

Another point of view in SOA new research issues that

require to be addressed is related to Service-oriented systems

which are significantly different from traditional systems.

These differences include:

 The diversity of service consumers and service

providers.

 Shorter release cycles because of the capability of

rapidly adapting to changing business needs.

 The potential to leverage legacy investments with

potentially minimal change to existing systems.

What does maintenance and evolution look like in this

dynamic, heterogeneous, and potentially distributed

development and maintenance environment is a very

important question. We have identified a set of research

topics that we believe would help to find answers to this

question that are shown in the following [4]:

1. Tools, Techniques, and Environments to Support

Maintenance Activities: The complexity of the

maintenance process in an SOA environment continues

to increase so some considerations should be taken.

Analysis activities for service providers have to

consider possible set of users. Also analysis for service

implementation code has to consider direct users of the

service implementation code and users of the service

interfaces too. In addition to the above, release cycles

between services and consumers, services and

infrastructure, and consumers and infrastructure ideally

should be coordinated.

2. Multilanguage System Analysis and Maintenance: One

of the benefits associated with SOA, is the independent

platform. Although, it is represented using standard

interfaces, any language can be used to write the

implemented service. Despite this is a great advantage,

it is not easy to handle the whole system without

partitioning.

3. Reengineering Processes for Migration to SOA

Environments: SOA enables existing legacy systems to

represent their functionality as services, as it has

characteristics of loose coupling, published interfaces,

and standardized communication model. Feasibility,

risk, and cost are three main factors should be

physically analyzed when migration is done onto the

legacy system although the great value of it. Also the

legacy code identification and extraction of services are

too important

4. Transition Patterns for Service-Oriented Systems:

SOA enables systems to be modernized incrementally

and this is one of the various advantages of it. The

components of legacy system are being replaced

incrementally with newer components using Web

Services technology. To initially access the new

services, service consumers have to be modified once

only if the interfaces remain stable. The minimization

of “throw-away” cost and effort to provide

intermediary system states is main difficulty of

incremental migration.

6. REFERENCES

[1] Organization for the Advancement of Structured

Information Standards, " Service-Oriented

Architecture Reference Model Technical Committee".

A Reference Model for Service-Oriented

Architecture. White Paper, Billerica, MA, 2006.

[2] Lewis, G. A., & Smith, D. B., "Service-oriented

architecture and its implications for software

maintenance and evolution", In Frontiers of Software

Maintenance (FoSM) IEEE, pp. 1-10, 2008.

[3] Heffner, R., "Survey Results Show SOA Governance

Improves SOA Benefit Realization", For Enterprise

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.16, May 2013

15

Architecture Professionals, 2009.

[4] Lewis, G. A., Smith, D. B., Kontogiannis, K., "A

research agenda for service-oriented architecture

(SOA): Maintenance and evolution of service-

oriented systems", Software Engineering Institute,

Carnegie Mellon University, 2010.

[5] IBM Corporation. "Business Process Execution

Language for Web Services BPEL-4WS" (Version

1.1), 2002.

http://www.ibm.com/developerworks/library/ws-bpel

[6] Curbera, F., Khalaf, R., Mukhi, N., Tai, S., and

Weerawarana, S., "The next step in Web services".

Communications of the ACM, 46(10):29-34, 2003.

[7] Booth, David, Haas, Hugo, McCabe, Francis,

Newcomer, Eric, Champion, Michele, Ferris, Chris,

and Orchard, David. Web Services Architecture.

(W3C Working Group Note), 2004.

[8] Dustdar, S., Wolfgang S., "A survey on web services

composition" International Journal of Web and Grid

Services 1.1, pp. 1-30, 2005

[9] Sun, H., Wang, X., Zhou, B., & Zou, P, "Research

and Implementation of Dynamic Web Services

Composition". APPT, LNCS 2834, Springer-Verlag

Berlin Heidelberg, pp. 457-466, 2003.

[10] Curbera, F., Leymann, F., Storey, T., Ferguson, D.,

& Weerawarana, S., "Web services platform

architecture: SOAP, WSDL, WS-policy, WS-

addressing, WS-BPEL, WS-reliable messaging and

more", Englewood Cliffs: Prentice Hall PTR, 2005.

[11] Mao, Z.M., Brewer, E.A., and Katz, R.H., "Fault-

tolerant, Scalable, Wide-Area Internet Service

Composition". Technical Report UCB/CSD-01-1129,

University of California, Berkeley, 2001.

[12] Ankolekar, A., Burstein, M., Hobbs, J. R., Lassila,

O., Martin, D., McDermott, D., Sycara, K., "DAML-

S: Web Service Description for the Semantic Web".

In Proceedings of the 1st International Semantic Web

Conference (ISWC), volume 2342 of Lecture Notes

in Computer Science, pages 348-363. Springer-

Verlag, Berlin, 2002.

[13] Orriëns, B., Yang, J., & Papazoglou, M. P, "Model

Driven Service Composition", In Service-Oriented

Computing-ICSOC 2003, Springer-Verlag. Berlin

Heidelberg, pp.75-90, 2003.

[14] Akram, M. S., Medjahed, B., & Bouguettaya, A,

"Supporting Dynamic Changes in Web Service

Environments", ICSOC, LNCS 2910, Springer-

Verlag Berlin Heidelberg, pp. 319-334, 2003.

[15] Baresi, L., Bianchini, D., De Antonellis, V., Fugini,

M. G., Pernici, B., & Plebani, P., "Context-Aware

Composition of E-services". TES, LNCS 2819,

pp.28-41, Springer-Verlag Berlin Heidelberg, 2003.

[16] Berners-Lee, T., Hendler, J., & Lassila, O., "The

Semantic Web". Scientific American, 284(5), pp. 34-

43, 2001.

[17] World Wide Web Consortium W3C. "Semantic

Web", 2001. http://www.w3.org/2001/sw/.

[18] McIlraith, S. A., Son, T. C., & Zeng, H., "Semantic

Web Services". IEEE Intelligent Systems, 16(2), pp.

46-53, 2001.

[19] Su, S. Y., Meng, J., Krithivasan, R., Degwekar, S., &

Helal, S., "Dynamic inter-enterprise workflow

management in a constraint-based e-service

infrastructure", Electronic commerce research,

Kluwer Academic Publishers, 3(1-2), pp. 9-24, 2003

[20] Almonaies, A. A., Cordy, J. R., & Dean, T. R.,

"Legacy system evolution towards service-oriented

architecture" International Workshop on SOA

Migration and Evolution, pp. 53-62, 2010.

[21] Sneed, H. M., "Integrating legacy software into a

service oriented architecture". In: CSMR, pp.3-14,

2006.

[22] Sneed, H. M., "Wrapping legacy software for reuse

in a SOA". Technical report, 2005.

[23] Canfora, G., Fasolino, A. R., Frattolillo, G., &

Tramontana, P., "Migrating interactive legacy

systems to web services". In: Software Maintenance

and Reengineering (CSMR), Proceedings of the 10th

European Conference, pp. 24-36, 2006.

[24] Chung, S., An, J. B. C., & Davalos, S., "Service-

oriented software reengineering: SoSR". In System

Sciences, HICSS, Proceedings of the 40th Annual

Hawaii International Conference IEEE, pp.172c,

2007.

[25] Distante, D., Tilley, S., & Canfora, G., "Towards a

holistic approach to redesigning legacy applications

for the web with uwat", In Software Maintenance and

Reengineering, Proceedings of the 10th European

Conference, pp.295-299, 2006.

[26] Cuadrado, F., García, B., Dueas, J. C., & Parada, H.

A., "A case study on software evolution towards

service-oriented architecture". In Advanced

Information Networking and Applications-

Workshops (AINAW), 22nd International

Conference, pp.1399-1404, 2008.

[27] Smith, D.B.: "Migration of legacy assets to service-

oriented architecture environments", In Software

Engineering-Companion (ICSE), 29th International

Conference, pp. 174-175, 2007.

[28] Cetin, S., Ilker Altintas, N., Oguztuzun, H., Dogru,

A. H., Tufekci, O., Suloglu, S. "Legacy migration to

service-oriented computing with mashups". In

Software Engineering Advances (ICSEA), IEEE, pp.

21-21, 2007.

[29] Marchetto, A., Ricca, F.: From objects to services:

"toward a stepwise migration approach for java

applications", International journal on software tools

for technology transfer 11(6), pp.427-440, 2009.

[30] Zhu, H., "Building reusable components with

service-oriented architectures", Information Reuse

and Integration, Conf IEEE International Conference

on. IEEE, pp. 96-101, 2008.

