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ABSTRACT 

In recent years, Infrastructure-as-a-Service (IaaS) clouds have 

become increasingly popular as a flexible and inexpensive 

platform for ad-hoc parallel data processing. Major players in 

cloud computing have started to integrate frameworks for 

parallel data processing in their product portfolio, making it 

easy for customers to access these services and to deploy their 

programs. However, currently used processing frameworks 

have been designed for static, homogeneous cluster systems 

and do not support the new features which distinguish the 

cloud platform. In this paper discussion is being done on the 

research project Nephele. Nephele is the first data processing 

framework to explicitly exploit the dynamic resource 

allocation offered by today‟s IaaS clouds for both, task 

scheduling and execution.  First performance results of 

Nephele are presented and its efficiency is compared with one 

of the well-known software, MapReduce. MapReduce is 

chosen for comparison since it is open source software and 

currently enjoys high popularity in the data processing 

community. 
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1. INTRODUCTION 

Now-a-days large number of companies have to process 

abundant data in a cost efficient way. Internet search engines, 

like Microsoft, Google, and Yahoo are some companies which 

represent this trend. [1]. On-demand resource provisioning is 

one of the key features of IaaS cloud. The cost of acquiring 

and maintaining a large IT infrastructure has often been 

expensive for companies that only have to process huge 

amount of data occasionally, running their own data center. 

Parts of the computer science community have tackled this 

problem with “cloud computing”.  

Cloud computing has emerged as a promising approach to 

rent a large IT infrastructure on a short-term pay-per-usage 

basis. Operators of so-called Infrastructure-as-a-Service (IaaS) 

clouds, let their customers allocate, access, and control a set 

of virtual machines (VMs) which run inside their data centers 

and only charge them for the period of time the machines are 

allocated. The cloud‟s virtualized nature helps to enable 

promising use cases for efficient parallel data processing. 

However, it also imposes new challenges compared to classic 

cluster setups. Instead of dynamic resource allocation, current 

data processing frameworks expect the cloud to imitate the 

static nature of the cluster environments they were originally 

designed for. For example, Amazon Elastic MapReduce [2], 

currently a major product for cloud data processing, does not 

support to change the set of allocated VMs for a processing 

job in the course of its execution, although the job might have 

completely different demands on the environment. As a result, 

the rented resources may be inadequate for big parts of the 

processing job, which may lower the overall processing 

performance and increase the cost. 

  

2. RELATED WORK 

In recent years a variety of systems to facilitate many tasks 

computing (MTC) [1] has been developed. Dean and 

Ghemawat [3] designed MapReduce to run data analysis jobs 

on a large amount of data, which is expected to be stored 

across a large set of share-nothing commodity servers. 

MapReduce is highlighted by its simplicity: Once a user has 

fit his program into the required map and reduce pattern, the 

execution framework takes care of splitting the job into 

subtasks, distributing and executing them. The MapReduce 

[4] scheme takes a set of input key-value pairs, processes it, 

and produces a set of output key-value pairs.   

The Pegasus framework by Deelman et al. [5] has been 

designed for mapping complex scientific workflows onto 

distributed resources such as the Grid. Pegasus which stands 

for Planning for Execution in grids, lets its users describe their 

jobs as a DAG (directed acyclic graph) with vertices 

representing the tasks to be processed and edges representing 

the dependencies between them. The created workflows 

remain abstract until Pegasus creates the mapping between the 

given tasks and the concrete compute resources available at 

runtime. It deals with unexpected changes in the execution 

environment and uses DAGMan and Condor-G as its 

execution engine [6]. As a result, different task can only 

exchange data via files.  

Thao et al. [7] introduced the Swift system to reduce the 

management issues which occur when a job involving 

numerous tasks has to be executed on a large, possibly 

unstructured, set of data. Isard et al. [8] proposed Dryad, 

which is designed to scale from powerful multi-core single 

computers, through small clusters of computers, to data 

centres with thousands of computers. Current data processing 

frameworks like Google‟s MapReduce or Microsoft‟s Dryad 

engine have been designed for cluster environments. This is 

reflected in a number of assumptions they make which are not 

necessarily valid in cloud environments. 

Raicu et al. [9] proposed Falkon, which is a Fast and 

Lightweight task execution framework, is designed to enable 

the efficient dispatch and execution of many small tasks. 

Dornemann et al. [10] presented an approach to handle    

peak-load situations in BPEL workflows using Amazon EC2. 

Ramakrishnan et al. [11] discussed how to provide a uniform 

resource abstraction over grid and cloud resources for 

scientific workflows. Programming grid and cloud systems for 

e-Science workflows and managing QoS in these 
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environments is challenging. VgrADS‟ virtual grid abstraction 

simplifies these tasks, unifying workflow execution over 

batch queue systems and cloud computing. The drawback of 

this is it rather aims at batch-driven workflows than the data 

intensive, pipelined workflows. Borkar et al. [12] proposed 

Hyracks which is a flexible and extensible foundation for 

data-intensive computing. Hyracks is a partitioned-parallel 

dataflow execution platform that runs on shared-nothing 

clusters of computers. Considering the opportunities and 

challenges for efficient parallel data processing in clouds 

Warneke and  Kao [1] presented research project Nephele. 

Nephele is the first data processing framework to explicitly 

exploit the dynamic resource allocation offered by today‟s 

IaaS clouds for both, task scheduling and execution. 

 

3. PROPOSED WORK 
3.1 Overview of Nephele 
Nephele is a new data processing framework for cloud 

environment that takes up many ideas of previous processing 

frameworks but refines them to better match the dynamic and 

opaque nature of a cloud. Nephele architecture follows a 

classic master-worker pattern as illustrated in Figure 1. 

Before submitting a Nephele compute job, a user must start a 

VM in the cloud which runs the Job Manager (JM). The JM 

which receives the client‟s jobs is responsible for scheduling 

them and coordinates their execution [1, 13]. It is capable of 

communicating with the interface the cloud operator provides 

to control the instantiation of VMs. This interface is cloud 

controller. By means of the cloud controller the JM can 

allocate or deallocate VMs according to the current job 

execution phase. We will comply with common cloud 

computing terminology and refer to these VMs as instances 

for the remainder of this study [13]. The term instance type 

will be used to differentiate between VMs with different 

hardware characteristics. 

The actual execution of tasks which a Nephele job consists of 

is carried out by a set of instances. Each instance runs a so-

called Task Manager (TM). A TM receives one or more tasks 

from the JM at a time, executes them and after that informs 

the JM about their completion or possible errors. Unless a job 

is submitted to the JM, we expect the set of instances (and 

hence the set of TM) to be empty. 

 

 

 

 

 

 

 

 

 

 

 

Upon job reception the JM then decides, depending on the 

job‟s particular tasks, how many and what type of instances 

the job should be executed on and when the respective 

instances must be allocated/deallocated to ensure a continuous 

but cost efficient processing. The newly allocated instances 

boot up with a previously compiled VM image. The image is 

configured to automatically start a TM and register it with the 

JM. Once all the necessary TMs have successfully contacted 

the JM, it triggers the execution of the scheduled job.  

3.2 Structure of a Nephele Schedule 
Nephele‟s architecture follows a classic master-worker 

pattern. Workers can be allocated on demand. 

 

3.2.1 On-Line Non-Preemptive Utility 

 

3.2.1.1 Efficiency Scheduling 
The on-line non-preemptive scheduling method is used to 

maximize the efficiency gain. A task is a sequential activity 

that uses a set of inputs to produce a set of outputs [13].  Since 

the execution of a task may gain positive profit or suffer 

penalty and thus degrade the overall computing performance, 

judicious decisions must be made with regard to executing a 

task, dropping or aborting a task and when to drop or abort a 

task. The rationale of this approach is very intuitive; a task 

can be accepted and executed only when it is statistically 

promising to bring positive gain and discarded or aborted 

otherwise. Before introduction of the details of scheduling 

approach, first we have to introduce two useful concepts, the 

expected gain utility and the critical point. 

 

3.2.1.2 The expected gain utility and the critical 

point 
Since the task execution time is not known deterministically, 

we do not know if executing the task will lead to positive gain 

or loss. To solve this problem, we can employ a metric, i.e., 

the expected gain utility, to help us make the decision. Given 

a task T with arrival time of ati, let its predicted starting time 

be ti. Then the potential Gain Pi (ti) to execute T can be 

represented as the integration of the summation of gain over 

time ti and the difference of the starting time of the process 

and the arrival time of the process[13]. 
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Similarly, the potential loss (Li (T)) to execute Ti can be 

represented as[13]: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Nephele  architecture [13] 
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Therefore, the expected increased efficiency η (T) to execute 

Ti can be represented as[13]: 

)()()( iiii tLtPT  ………………………………(3) 

 
A task can be accepted or chosen for execution when η 

(T)>0, which means that the probability to obtain positive 

gain is no smaller than that to incur a loss. We can further 

limit the task acceptance by imposing a threshold (δ) to the 

expected accrued utility, i.e. a task is accepted or can be 

chosen for execution if: Pi(T) ≥µ 

 

3.2.1.3 Efficiency threshold (µ) 
Furthermore, since the task execution time is not known a 

prior, we need to decide whether to continue or abort the 

execution of a task. The longer we execute the task, the closer 

we are to the completion point of the task. At the same time, 

however, the longer the task executes the higher penalty the 

system has to endure if the task cannot meet its deadline. To 

determine the appropriate time to abort a task, we employ 

another metric, the critical point. Let Ti starts its execution at 

t1, then the potential profit Ti > t (i. e., η (T)) can be 

represented as the integration of the maximum gain and the 

difference of the task. 

The potential loss of a function can be calculated by the 

integration of its completion time to the max time. Hence, the 

expected efficiency η is the difference believes the gain of a 

task and the loss of a task. If we substitute η to be equal to 0, 

we can see that the gains & loss are found to be equal in 

executing a task. As time increases, the η decrease and after a 

critical point at deadline more loss incurs than gain. 

 

3.3 ALGORITHMS 

 
3.3.1 Algorithm 1:Non-Preemptive Scheduling 
Consider K accepted task in ready queue and the current time 

t -Parameters 

1. Accepted task in the queue level. Let {t 1  , t 2  , t 3

,……....., t k } Ar be the arrival time AT [T= 1 to K]. 

2.  Let currently running task may be at T=0. Show the 

task with T and the threshold value Th  AT = A0. 

3. Conditions the current job is in critical, then abort 

the execution of T0. 

4. Otherwise new task enrolled in the end process. 

5. Calculation of efficiency of task and reschedule the 

task based on the utility value and load into the 

ready queue. 

6. Start the execution from T 1 . The utility value is less 

than the threshold value then removes the process 

from ready queue else the current process and start 

its execution. 

 

Description: 

This scheduling algorithm works at scheduling points that 

include: the arrival of a new task, the completion of the 

current task and the critical point of the current task. In 

algorithm 1, when the time reaches the critical point of the 

current task, the current active task is immediately discarded 

and the task with the highest expected efficiency is selected to 

be executed. Upon the finish of the current task, the task with 

the highest expected efficiency is selected for execution. After 

the selection of the new task in both of the two cases, the 

expected efficiency for the rest of the tasks is recalculated. 

The tasks with the expected efficiency smaller than the 

threshold value are discarded. 

 
3.3.2 Algorithm 2: Sort the Ready Queue based 

on Recalculated Expected Gain 

1. Input: Let Tr={ t 1  , t 2  , ..., t k } be the accepted 

tasks in the ready queue, let tri , 

 i = 1, ..., k represent their specific arrival times. Let 

current time be t and T0 be the task currently being 

executed. 

2. Output: The list of tasks in the ready queue is given 

as T‟r = {T‟ 1 , T‟ 2 , ..., T‟ k } sorted based on their 

expected gain. 

3.  Tstart = expected finishing time of T0 – t. 

4.  for i=0 to k do. 

5.  T‟ i = T j  where T j T r  is the task with the 

largest expected gain assuming it starts at Tstart.  

6. Remove T j  from T r . 

7.  Tstart = Tstart + expected execution time of T‟ j  . 

8.  Calculate the following tasks expected utility at 

time Tstart. 

9.  end for. 

 

Description: 

When a new job comes, it is first inserted at the head of the 

ready queue, assuming its expected starting time would be the 

expected finishing time of the current active task. Based on 

this starting time, we then can compare its expected utility 

with the rest of the tasks in the queue. If its expected utility is 

less than that of the one following it, we reinsert this job to the 

queue according to its new expected utility. We calculate the 

new expected utility according to Algorithm 2, by estimating 

its new expected starting time as the sum of the expected 

executing time of the leading tasks‟ in the ready queue. This 

procedure continues until the entire ready queue becomes a 

list ordered according to their expected utilities. We remove 

the ones with expected utility lower than the threshold. 

The feasibility check is one more part deserves detail 

description. In this part, scheduling simulates the real 

execution sequence for the left tasks in ready queue and check 

following this sequence, if all of them can satisfy the 

requirement or not. The thing needs to be discussed is how to 

determine the sequence of the left tasks. From equation (1), 

(2) and (3), we can clearly see that the expected utility of 

running a task depends heavily on variable T, i.e., the time 

when the task can start. If we know the execution order and 

thus the expected starting time for tasks in the ready queue, 

we will be able to quantify the expected utility density of each 

task more accurately. 

4. PERFORMANCE EVALUATION 
The Nephele and MapReduce architectures are simulated in 

the OMNeT++ version 3.2 simulator .We got output vector 

files as a result of simulation.  
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4.1 Nephele Simulation Nephele architecture is simulated in Figure 2. 
 

 
Figure 2:  Nephele framework 

 

Five modules are created as: Job_ Manager, Controller, 

Task_Manager, Task_Reply and FailureSend. In the 

framework six users (customers) are created to create 

job_requests. One by one each user sends request to 

Job_Manager. At the upper part one cloud server is shown. 

This is the cloud server responsible for processing all user 

jobs.  

All requests are forwarded to Task_Manager through 

Controller. First user2 sent job_request to Job_Manager. One 

by one user send request to Job_Manager. Task_Manager 

sends controller check towards Controller, and then 

job_requests are forwarded towards Task_Manager. Near to 

Controller, Task_Reply and FailureSend modules, ready 

queues are shown. Ready queue length is shown with letter 

„q‟ .When Jobs will be accumulated in each module, that 

respective ready queue length will get automatically increase.  

When the request is forwarded to cloud server, reply will sent 

back to user through Task_Manager.Task_Manager will sent  

that reply to Job_Manager through Task_Reply and then to 

user. As per nonpreemptive scheduling algorithm, job is 

accepted or can be chosen for execution if: (Pi (T) µ) 

Potential gain is greater than Efficiency threshold. Ready 

queue is sorted based on the recalculated expected gain. If 

jobs are processed successfully the result is forwarded to 

Task_Reply otherwise towards FailureSend module. 

First we run the simulation up to 15 minutes and analyzed the 

graphs plotted by plove tool. The graph in Figure 3 shows that 

the variation between the total job requests sent by user1 and 

total time required getting reply for that job request.  

The graph of Figure 4 shows that total four jobs got reply. 

Similarly the graph in Figure 5 shows variations between total 

job request sent in Nephele Job_Manager and total time 

required to get reply for that job request. The total job reply 

got is shown in Figure 6. 

 
Figure 3: Total job request sent in Nephele 
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Figure 4:  Total job reply received in Nephele user1 

 

 
Figure 5:  Total job reply sent in Nephele Job_Manager 

 

 
Figure 6:  Total job request receivedt in Nephele Job_Manager 

4.2 MapReduce Simulation 
MapReduce arhitecture is simulated in Figure 7. In this 

framework near to passive queue server ready queues are 

shown to store jobs (messages) as like Nephele framework 

and color changes when queue is holding number of 

messages. 

In the model, the "enter" module generates messages with 

different message types (message kinds 0, 1, 2 and 3 with 

uniform probability). These messages get into "classifier" 

which looks at the message kind and forwards the message on 

the corresponding gate (kind=0 on gate "out [0]", kind=1 on 

gate "out [1]", kind=2 on gate "out [2]", and the rest (kind=3) 
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on the gate "other". The latter messages get discarded in the 

"leave1" module; the others get into "delay" modules where 

they each suffer a small constant delay.   

After the delay they are queued up in "passiveq" passive 

queues, served by "qserver". "qserver" serves the three queues 

in priority order: "passiveq [1]" is only examined when 

"passiveq [0]" is empty, and "passiveq [2]" is only examined 

when both "passiveq [0]" and "passiveq [1]" are empty. 

Examination of the queues is programmed by calling a 

method in the passive queue module objects (as opposed to 

message exchange, or integrating all queues and the server 

into a single module). Once the "qserver" decided from which 

queue to obtain a message, it tells the passive queue object to 

send it (this is also done via a method call.) The processing 

time in the server is random. After processing, messages are 

forwarded into "leave2" where they end their life circles. 

All the statistics are collected about the time messages spent 

in the system. In Figure 8 statistics about the messages get 

discarded in the "leave1" module are plotted. In Figure 9 

statistics about the time messages spent in the “leave2” of 

system are plotted. 

 
Figure 7: MapReduce  framework 

 

 
Figure 8:  Messages get discarded in the "leave1" 

 

 
Figure 9:  Time messages spent in the “leave2” 
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5. ANALYSIS OF RESULTS 
Performance of both the frameworks have been studied and 

simulated under a variety of parameters and time intervals. In 

both frameworks simulation time kept same to analyze the 

results at various intervals. In this analysis four parameters are 

considered. After setting the specific time interval, framework 

will schedule the number of messages for processing. While 

running the simulation we can see variations in each 

parameter. The simulation results of both frameworks at 

various intervals of time from 0, 3, 6…15 minutes are 

recorded and tabulated in the Table 1.  

Table 1 Comparative performance analysis of Nephele and MapReduce frameworks 

Parameter 

 

 

Time(Min) 

Messages 

Schedulled 

Messages 

Created 

Messages 

Present 

Events 

Completed     

Nephele MR* Nephele MR* Nephele MR* Nephele MR* 

0 9 1 15 2 15 2 0 0 

3 9 3 36 6 36 4 40 20 

6 9 2 79 8 79 4 109 33 

9 9 2 120 12 120 5 184 62 

12 9 2 157 16 157 7 250 83 

15 9 4 202 20 202 8 328 103 

*MapReduce 

 
The graph in Figure 10 shows that the variation between time 

in minutes and messages scheduled in both frameworks. 

When we started Nephele framework simulation, nine 

messages got scheduled at the start and remained same at the 

end of simulation. While in MapReduce number of messages 

scheduled got varied at each interval of time. From that we 

can know that the values of messages created will be same 

corresponding values of time in minutes. This graph shows 

that, Nephele‟s message creation is having higher total utility 

than the MapReduce. 

The graph in Figure 11 shows that the variation between time 

in minutes and messages created in both frameworks. Number 

of messages created and messages present in Nephele are 

always same. This graph shows that, the number of messages 

created in Nephele within respective time is always more than 

MapReduce. From that we can know, how the values of 

message creation will increased to the corresponding values of 

time intervals.  

The graph in Figure 12 shows that, the variation between time 

in minutes and messages present in both frameworks. As 

number of messages created is less so the number of messages 

presented will be automatically less in case of MapReduce as 

compared to Nephele. The graph in Figure 13 shows that the 

variation between time in minutes and events completed in 

both frameworks. At the end of simulation, we can easily 

analyze, events completed in Nephele are more than thrice the 

events completed in Mapreduce. So we can conclude that 

from each graph, working of Nephele is fast and superior to 

MapReduce . 

 

 

Figure 10: Messages scheduled vs. Time (min) in Nephele             Figure 11: Messages created vs. Time (min) in Nephele  

 and MapReduce framework    and MapReduce framework 
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Figure 12: Messages present vs. Time (min) in Nephele                 Figure 13: Events completed vs. Time (min) in Nephele  

                   and MapReduce framework    and MapReduce framework 

 

6. CONCLUSIONS AND FUTURE 

SCOPE 
In this paper we presented Nephele‟s basic architecture and a 

performance comparison to the famous data processing 

framework MapReduce with a conclusion that, working of 

Nephele is fast and superior to MapReduce. In structure of 

Nephele schedule, we present non-preemptive scheduling as 

new approach to Nephele. Performance of Nephele may 

improve extensively by incorporating preemptive scheduling 

in future.  
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