
International Journal of Computer Applications (0975 – 8887)

Volume 69– No.16, May 2013

25

Moving Object indexing using Crossbreed Update

K. Appathurai
Ph.D Research Scholar

Karpagam University
Coimbatore – 21

S. Karthikeyan, PhD.

Director, School of computer Science
Karpagam University

Coimbatore – 21

ABSTRACT

Although lot of spatio-temporal indexing techniques for

moving objects are availed, some more intelligence has been

given to the advance of techniques that competently support

queries about the past, present, and future positions of moving

objects. This paper proposes the new index structure called

SOBBx (Space Based Optimal BBx) which indexes the

positions of moving objects, given as linear functions of time,

at any time. In a Time t, more objects are updated to the tree

than usual. It saves the cost of regular update as well. The

simulation results shows that the proposed algorithm provides

superior performance than POBBx index structure.

Keywords

Moving Objects, BBx-tree, OBBx index, POBBx index,

Migration, Regular Update, Crossbreed Update and SOBBX

index.

1. INTRODUCTION

Spatio-temporal databases deals with moving objects that

change their locations over time. In common, moving objects

report their locations obtained via location-aware instrument

to a spatio-temporal database server. Spatiotemporal access

methods are subversive into four categories: (1) Indexing the

past data (2) Indexing the current data (3) Indexing the future

data and (4) Indexing data at all points of time. All the above

categories are having set of indexing structure algorithms [1-

4, 10, 13]. The server store all updates from the moving

objects so that it is capable of answering queries about the

past [4, 5, 8, 9, 15]. To predict future positions of moving

objects, the spatio-temporal database server may need to store

auxiliary information, e.g., the objects’ velocities [7, 17].

Many query types are maintained by a spatio-temporal

database server, e.g., range queries “Find all objects that

intersect a certain spatial range during a given time interval”,

k-nearest neighbor queries “Find k restaurants that are closest

to a given moving point”, or trajectory queries “Find the

trajectory of a given object for the past hour”. These queries

may execute on past, current, or future time data. A large

number of spatio-temporal index structures have been

proposed to support spatio-temporal queries efficiently [12,

13]. The online moving object index tuning method also

contribute to improve the performance [22].

2. POBBx index Structure

The POBBx-index consists of nodes that consist of entries,

each of which is of the form (x _rep; tstart; tend; pointer.) For

leaf nodes, pointer points to the objects with the equivalent

x_rep, where x_rep is obtained from the space-filling curve;

tstart denotes the time when the object was inserted into the

database and tend denotes the time that the position was

deleted, updated, or migrated (migration pass on to the update

of a position done by the system automatically). For non-leaf

nodes, pointer points to a (child) node at the next level of the

index: tstart and tend are the minimum and maximum tstart

and tend values of all the entries in the child node,

respectively. In addition, each node contains a pointer to its

right sibling to facilitate query processing. Unlike the Bx-tree,

the POBBx-index is a collection of trees, with each tree

having an associated timestamp signature tsg and a lifespan.

The timestamp signature parallels the value tlab from the Bx-

tree and is obtained by partitioning the time axis in the same

way as for the Bx-tree. The lifespan of each tree corresponds

to the minimum and maximum lifespan of objects indexed in

the tree. The roots of the trees are stored in an array, and they

can be accessed efficiently according to their lifespan. This

array is relatively small and can usually be stored in main

memory.

Objects inserted during the same phase will be stored in the

tree with the tsg that is equal to the end timestamp of that

phase. In particular, an update with timestamp tstart is

assigned a timestamp signature tsg = [tstart]t, where x[t]

returns the smallest timestamp signature that does not precede

x. Using space-filling curve the position of an object is

represented by a single-dimensional value x_rep. In order to

retain the proximity-preserving property of the space-filling

curve, we index objects within a time interval by their

positions as of the time given by the timestamp signature of

this interval. Hence, we need to determine an object’s position

at the timestamp signature according to its moving function

[6].

The maximum update interval value is making as twice for

interval. Figure 1 shows a POBBx-index with n = 2. Objects

inserted between timestamps 0 and 0:5tmu are stored in tree

T1 with their positions as of time 0:5tmu; those inserted

between timestamp 0:5tmu and tmu are stored in tree T2 with

their positions as of time tmu; and so on. Each tree has a

maximum lifespan: T1’s lifespan is from 0 to 1:5tmu because

objects are inserted starting at timestamp 0 and because those

inserted at timestamp 0:5tmu may be alive throughout the

maximum update interval tmu, which is thus until 1:5tmu; the

same applies to the other trees. In case of POBBx index [21]

unlike BBx index method the searching is less overhead. That

means, the object is moved from one tree to another along

with last tree value and the position in that tree. So during

updation or migration the searching process is not complex.

1. Find out the maximum update interval for each

object and the maximum interval value is stored in

ui.

2. The maximum update interval Ui is multiplied by

two and then based on this scalability the linear

array is formed for ts1,ts2,ts3, etc.,

3. Array of n equal intervals of ts1, ts2, ts3, etc

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.16, May 2013

26

4. Each object lifespan are find out that is stored in

LE. In this Multi dimensional points representing

object paths by Hilbert curve coordinates.

5. Based on the lifespan the data are stored in the tree.

6. If the insertion node C is lesser than the node N then

the node C inserted on left else inserted on right. If

already the nodes are there the same way created

and stored. The insertion time for each object is

stored in the variable Arr and total object is inserted

is stored in the variable Tot

7. For each move from one tree to another, While Arr

not equal to Null, it is checked whether all the

moving objects are reached to the new tree or not, if

it is reached call the function update or else all the

function migration.

Fig 1: Algorithm to Tree Construction, Object Insertion,

Updation and Migration

Update Node[i] to ts[Pos-1]

Algorithm Update(Eo; En)

Input: Eo and En are old and new objects respectively

Oodum

Thisarr

Curpos

Curtim

Curarr
contains Curtim.

Remove the object Eo from the tree Thisarr of the position

Oodum.

Locate object En in the tree Curarr of the position Curpos.

Oodum

Thisarr

Fig 2 : Algorithm for Update

Migrate Node[i] to ts[Pos-1]

Algorithm Migrate(Eo; En)

Input: Eo and En are old and new objects respectively

Oodum

Thisarr

Curpos

Curtim object En

Curarr

contains Curtim.

Fig 3 : Algorithm for Migrate

3. Statement of Problem

Though POBBx indexing method reduces the processing time,

migration hits, storage requirement and node accessibility, it

may have the following problems in some scenarios:

 1. Larger tree leads to a higher in query cost, while

a smaller tree may introduce extra migration cost.

 2. Both the updation time and migration time has

larger in case of high density in a tree.

4. Proposed Algorithm

The main aim of the proposed work is to improve the

performance in superior level than POBBx indexing

technique. In this proposed work, the conversion of

multidimensional data into single, the interval value,

searching technique are all same as POBBx index method.

The major work concentrate in node updation in the trees. The

new technique applied are called Crossbreed update. In

Moving object indexing, the following three factors plays the

important role for effective indexing and they can change

frequently based on time 1. Location of Objects, 2.

Distribution of Objects, and 3. Workload. In order to avoid

migration as much as possible while keeping the tree size

relatively small, we have applied Crossbreed Update

technique in POBBx indexing.

Crossbreed Update :

 The principle of Crossbreed update is to update as

many objects as possible without increasing the number of

input/output accesses. That means, the object identity, current

location and velocity for each moving object is known. Based

on this information the future is predicted and applied

Crossbreed update. So, some of the objects are shifted from

current tree to some distanced tree instead of next immediate

tree. So less objects are in the old tree and there is more

chance to reduce the migration process. Crossbreed Update

accesses the same tree nodes as regular update. In a Time t,

more objects are updated to the tree than usual. Fewer objects

are left in the older sub tree and the migration cost decreases.

It saves the cost of regular update as well. Another kind of

performance improvisation by considering the density of the

object. Intrinsically, moving objects are spatial objects whose

positions change with time. Here, once the time is splited with

the maximum update time interval, the objects are accessed

based on the density in tree. Due to this, dense area can attain

more attention than the sparse areas. So that We can

effectively index the moving objects than POBx indexing

method nearly 15-25% of efficiency. Updatation cost and

migration costs are reduced upto 20-30% when compared to

POBBx indexing method.

The proposed algorithm of SOBBx index is as follows,

1. Find out the maximum update interval for each

object and the maximum interval value is stored in

ui.

2. The maximum update interval Ui is make it as

twice and then based on this interval the linear array

is formed for ts1,ts2,ts3, etc.,

3. Array of n equal intervals of ts1, ts2, ts3, etc

4. Each object lifespan are find out that is stored in

LE. In this Multi dimensional points representing

object paths by Hilbert curve coordinates.

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.16, May 2013

27

5. For each lifespan the data are stored in the tree.

Crossbreed Update of Node[i] with object identity,

Current location and velocity of the object. If the

insertion node C is lesser than the node N then the

node C inserted on left else inserted on right. If

already the nodes are there the same way created

and stored. The insertion time for each object is

stored in the variable Arr and total object is inserted

is stored in the variable Tot

6. For each move from one tree to another, While Arr

not equal to Null, it is checked whether all the

moving objects are reached to the new tree or not, if

it is reached, count count the number of

objects in T.

 Region find regions based on space present in

T.

 while(Region) do

 Slice the tree with density level.

 end

 If Node[i] is in ts[Pos]

 Begin

 Crossbreed Update of Node[i] with object

identity, Current location

 and velocity of the object.

 Update Node[i] to ts[Pos] with

position value

 End

 Else call Migrate Node[i] to ts[Pos] with

position value

 End

Fig 4: Algorithm to Tree Construction, Object Insertion,

Updation and Migration

Crossbreed Update of Node[i] with object

identity, Current location and velocity of the

object: (oid, x,v)

oid

x

v

L

oldtree

oldkey
the object.

curtim ent time of the object.

x'
velocity of object].

newtree ree value which contains the location x'.

newkey = computeKey(x');

Delete the object from the tree oldtree of the position oldkey.

Insert the object in the tree newtree at the position of newkey.

Fig 5 : Algorithm for Crossbreed Update.

Migrate Node[i] to ts[Pos-1]

Algorithm Migrate(Eo; En)

Input: Eo and En are old and new objects respectively

Oodum

Thisarr

Curpos

Curtim

Curarr
contains Curtim.

Remove the object Eo from the tree Thisarr of the position

Oodum.

Fig 6 : Algorithm for Migrate

5. Performance Studies

The figure 7 shows how the objects moving randomly in

vague path and it describes the clear path of the every moving

objects. In this example 4 moving objects are consider for

indexing. The starting time is 13 ms and the ending time is

187.93755639 ms, this is clearly shown in the figure 7. In

figure 7 the x axis is time and y axis is points i.e. by Hilbert

curve the multidimensional data is converted as points (single

dimensional data).

Fig 7 : This figure shows how the objects moving

randomly in un specified path. And It describes the clear

path of the every moving objects.

The figure 8 shows how the processing speed are vary for all

the four cases. The SOBBx index performance is better than

other methods.

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.16, May 2013

28

Fig 8 : Comparison of processing speed of BBx,OBBx ,

POBBx and SOBBx

Actually in this strategy the number of created tree is same in

OBBx index method, POBBx Index and SOBBx techniques.

But vary in BBx index method because of interval. This is

clearly shown in the figure 9.

Fig 9 : Comparison of creation of number of trees in

BBx,OBBx , POBBx and SOBBx

The figure 10 shows the number of migration hits in all the

four cases. The number of migration hits are same in OBBx

index method, POBBx Index and SOBBx techniques. But

vary in BBx index method because of interval.

Fig 10 : Comparison of number of migration hits of

BBx,OBBx , POBBx and SOBBx

The figure 11 shows the number of node access in all the four

cases. In SOBBx the number of node access is very less than

other methods. This is because of Crossbreed update and the

objects are accessed based on the density in tree. Due to this,

dense area can attain more attention than the sparse areas.

Fig 11 : Comparison of number of node access of

BBx,OBBx , POBBx and SOBBx

The figure 12 shows the storage requirement of all the four

cases. In SOBBx index method the storage requirement is

less when compared with other three methods, so

automatically the storage requirement also very less than other

methods.

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.16, May 2013

29

Fig 12 : Comparison of storage requirement of BBx,OBBx

, POBBx and SOBBx

The figure 13 shows the total update time of all the four

methods. The SOBBx Index method update time is very less

than other methods.

Table 1 : comparison of BBx , OBBx and POBBx

Figu 13 : Total Updation Time

The figure 14 shows the total Migration time of all the four

methods. The SOBBx Index method Migration time is very

less than other methods.

 Fig 14 : Total Migration Time

6. Results

Using MATLAB the following results are produced.

The number of Moving Objects consider is : 4

Starting Time : 13.00000000

Ending Time : 187.93755639

For BBX, Maximum Anticipated Time Interval : 6.34004697

For OBX, Maximum Anticipated Time Interval :

12.68009393

7. Conclusion

This paper applied a new advanced indexing technique, the

SOBBx-index (Space Based Optimal BBx-index), which can

answer queries about the past, the present and the future. The

SOBBx -index is based on the concepts underlying the

POBBx-index. Besides the SOBBx -index is compared with

BBx index, OBBx index and POBBx index methods under 7

different aspects that is mentioned in table 1. There is no

change in number of trees created, number of migration hits in

Aspects BB
x
 OBB

x
 POBB

x
 SOBBx

Processing Time 7.768861e+000 4.365904e+000 4.404340e+000

3.466709e+000

No. of Trees 28 14 14 14

Migration Hits 73 37 37 37

Node Accesses 4.893000e+002 3.719000e+002 3.323000e+002 3.288220e+002

Storage Requirement 4.740000e+001 1.660000e+001 1.380000e+001 1.240000e+001

Updation Time 3.280862e+000 2.541900e+000 2.468457e+000 1.260982e+000

Migration Time 4.619041e-001 4.516481e-001 3.683524e-001 2.654879e-001

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.16, May 2013

30

OBBx-index, POBBx-index and SOBBx index methods. The

SOBBx -index performance is better than other three methods

in all the aspects like the processing speed, update time,

migration time, storage requirement and node accesses. The

Future work is planed to improve the performance in non-

linear function.

 8. REFERENCES

[1] Long-Van Nguyen-Dinh, Walid G. Aref, Mohamed

F. Mokbel 2010. Spatio-Temporal Access

Methods: Part 2 (2003 - 2010). Bulletin of the IEEE

Computer SocietyTechnical Committee on Data

Engineering

[2] M. Pelanis, S. ˇ Saltenis, and C. Jensen. Indexing

the past, present, and anticipated future positions of

moving objects.TODS, 31(1):255–298, 2006.

[3] Z.-H. Liu, X.-L. Liu, J.-W. Ge, and H.-Y. Bae.

Indexing large moving objects from past to future

with PCFI+-index. In COMAD, pages 131–137,

2005.

[4] V. Chakka, A. Everspaugh, and J. Patel. Indexing

large trajectory data sets with SETI. In CIDR, 2003

[5] Y. Tao, D. Papadias, and J. Sun. The TPR*-tree: An

optimized spatio-temporal access method for

predictive queries. In VLDB, 2003.

[6] C. Jensen, D. Lin, and B. Ooi. Query and update

efficient B+-tree based indexing of moving objects.

In VLDB, 2004

[7] M. Mokbel, T. Ghanem, andW. G. Aref. Spatio-

temporal access methods. IEEE Data Eng. Bull.,

26(2):40–49, 2003.

[8] J. Ni and C. V. Ravishankar. PA-tree: A parametric

indexing scheme for spatio-temporal trajectories. In

SSTD, 2005.

[9] P. Zhou, D. Zhang, B. Salzberg, G. Cooperman,

and G. Kollios. Close pair queries in moving object

databases. In GIS, pages 2–11, 2005.

[10] Dan Lin, Christian S. Jensen, Beng Chin Ooi,

Simonas Sˇ altenis, BBx index :Efficient Indexing

of the Historical, Present, and Future Positions of

Moving Objects, MDM 2005 Ayia Napa Cyprus

[11] P. K. Agarwal and C. M. Procopiuc. Advances in

Indexing for Mobile Objects. IEEE Data Eng. Bull.,

25(2): 25–34, 2002.

[12] G. Kollios, D. Gunopulos, V. J. Tsotras. On

Indexing Mobile Objects. In Proc. PODS, pp. 261–

272, 1999.

[13] K.Appathurai, Dr. S. Karthikeyan. A Survey on

Spatiotemporal Access Methods.International

Journal of Computer Appliations. Volume 18, No 4,

2011.

[14] Mohamed F. Mokbel, Xiaopeng Xiong, oustafa A.

Hammad, and Walid G. Aref, Continuous Query

Processing of Spatio-temporal Data Streams in

PLACE, 2004 Kluwer Academic Publishers.

Printed in the Netherlands

[15] Su Chen · Beng Chin Ooi · Zhenjie Zhang, An

Adaptive Updating Protocol for Reducing

Moving Object Database Workload.

[16] Yongquan Xia, Weili Li , and Shaohui Ning,

Moving Object Detection Algorithm Based

on Variance Analysis, 2009, Second International

Workshop on Computer Science and

Engineering Qingdao, China

[17] Arash Gholami Rad, Abbas Dehghani and

Mohamed Rehan Karim, Vehicle speed detection in

video image sequences using CVS method, 2010,

International Journal of the Physical

Sciences Vol. 5(17), pp. 2555-2563.

[18] M. A. Nascimento and J. R. O. Silva. owards

Historical R-trees. In Proc. ACM

Symposium on Applied Computing, pp. 235–240,

1998.

[19] Y. Tao and D. Papadias. MV3R-Tree: A Spatio-

Temporal Access Method for Timestamp

and Interval Queries. In Proc. VLDB, pp. 431–440,

2001.

[20] J. Sun, D. Papadias, Y. Tao, and B. Liu. Querying

about the Past, the Present, and the Future

in Spatio-Temporal Databases. In Proc. ICDE, pp.

202–213, 2004.

[21] K. Appathurai, Dr. S. Karthikeyan 2012, “A New

Proposed Algorithm for OBBx-index

Structure”, International Journal of Computer

Applications, Vol. 50[11], 0975 – 8887.

[22] SU CHEN, BENG CHIN OOI and KIAN-LEE

TAN, “Continuous Online Index Tuning in Moving

Object Databases”, ACM Transactions on Database

Systems, Vol. V, No. N, Month 20YY, Pages 1–45.

AUTHOR’S PROFILE
K. Appathurai was born on 12th May 1974. He received his

Master degree in Computer Applications from University of

Bharathidasn in 1998. He completed his M.Phil from

Manonmaniam Sundaranar University in 2003. He is

working as an Asst. Professor and Head of the Department of

Information Technology at Karpagam University,

Coimbatore. Currently He is pursuing Ph.D. His fields of

interest are Spatial Database.

Dr. S. Karthikeyan received the Ph.D. Degree in Computer

Science and Engineering from Alagappa University,

Karaikudi in 2008. He is working as a Professor and Director

in School of Computer Science and Applications, Karpagam

University, Coimbatore. At present he is in deputation and

working as Assistant Professor in Information Technology,

College of Applied Sciences, Sohar, Sulatanate of Oman. He

has published more than 14 papers in Natrional/International

Journals. His research interests include Cryptography and

Network Security.

http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Yongquan%20Xia
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Weili%20Li
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Shaohui%20Ning

