
International Journal of Computer Applications (0975 – 8887)  

Volume 69– No.16, May 2013 

13 

Modelling of LFM Spectrum as Rectangle using Steepest 

Descent Method 
 

A.NagaJyothi 
Research Scholar 

Department of Electronics and Communication 
Engineering 

Andhra University college of Engineering (A), 
Visakhapatnam 

K.Raja Rajeswari 
Professor 

Department of Electronics and Communication 
Engineering 

Andhra University college of Engineering (A), 
Visakhapatnam 

ABSTRACT 

The chirp or LFM waveform has superior performance in 

radars since they can be easily processed and generated. The 

amount of compression in pulse compression radar is 

determined by time-bandwidth product. The LFM waveform 

exhibits very high time-bandwidth product. The transform of 

this LFM waveform is flat over its range of frequencies. The 

signal spectrum will become fairly rectangular if time-

bandwidth product is increased. The bigger the time-

bandwidth product the higher is the robustness of radar 

transmitter. 

The focus of this paper is on steepest descent method which 

when applied to the LFM wave form gets the signal spectrum 

as a rectangle i.e totally flat over its range of frequencies. By 

using this method a ideal rectangle spectrum is achieved, 

which utilizes the total pulse and offers an optimal spectral 

density. This steepest descent approximated LFM waveform 

offer high resolution on the time axis and is therefore best 

suited for ranging. 
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1. INTRODUCTION 
One of the fundamental and important issue in designing a 

good radar is its ability to differentiate two targets that are 

located at very long range and separation between them are 

very small. A radar transmits a long pulse with high energy to 

detect small targets, which in turn degrades range resolution. 

A short pulse is required to maintain range resolution. Pulse 

compression is a technique which allows the radar to achieve 

the range resolution of short pulse and energy of the long 

pulse simultaneously [1,2,3] .A simple pulse will be having 

two parameters one is the amplitude A and other is duration τ. 

The range resolution ΔR is given by equation 1.  

 2/τc=RΔ .  (1) 

It can be clearly seen that range resolution is directly 

proportional to τ; so better resolution required shorter pulse. 

The energy in the pulse is given by equation 2 

 τA=E 2 .  (2) 

 

Where energy is also proportional to τ; so when the energy is 

high the detection performance is improved and range 

resolution is improved by short pulse [3,4,5]. The pulse 

compression waveform has a BT product much greater than 

one. A radar transmits a waveform which may defined as  

 )]t(θ+)t(ωsin[)t(A=)t(x .  (3) 

The ω in the above said equation 3  is the radio frequency in 

radians per second. A(t) represents amplitude modulation of 

radio frequency carrier . The term θ(t) represents phase or 

frequency modulation of the carrier signal and it can be zero, 

non zero or nontrivial function. Commonly used waveforms 

in pulsed radar are simple pulse, frequency coded pulses and 

phase coded pulses. Fig. 1(a) is an example of simple pulse of 

constant amplitude burst signal at the radio frequency. Fig. 

1(b) is a LFM waveform and here the frequency increases 

linearly w.r.t the time.        Fig. 1(c) is an example of binary 

phase-coded waveform. In this θ(t) varies in between the 

zeros and π at different time within the pulse.  

 

Fig. 1(a).Simple pulsed waveform 
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Fig. 1(b). Linear Frequency Modulation(LFM) 

 

 

Fig. 1(c). Binary phase coded waveform  

The real value of the equation 1 can be written by complex 

envelope of the waveform 
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It can be further given as considering complex envelope of the 

waveform after demodulation and given by x(t) 

 )t(θ je )t(A= )t(x .  (5) 

The LFM waveform has superior performance in radar since 

they can be easily processed and generated. This paper has 

been prepared in the following manner: linear frequency 

modulation, effects of BT product on the LFM spectrum, the 

method of steepest descent, results, and conclusion.   

2. Linear Frequency Modulation 
The LFM waveform is mostly discussed in literature and 

extensively used in practice [3,4,9]. A LFM modulation wave 

can be given by  

 τ≤t≤0                    )t
τ

β
∏cos(=)t(x 2 .  (6) 

Where β is bandwidth =1/τ hertz. The real value of the 

equation 6 can be written by the complex envelop of the 

waveform and given by equation 7.  

 τ≤t≤0    e= e = )t(x )t(θj τ/tβ∏j 2

.  (7) 

 

 
Fig. 2. Instantaneous frequency of LFM waveform   

 

The derivative of the phase function w.r.t. time gives 

instantaneous frequency: 

 
dt

)θ(d

∏2

1
=)t(F .  (8) 

 

Instantaneous frequency sweeps linearly across the total 

bandwidth of β Hz during the pulse duration τ seconds as 

shown in Fig. 2. If β is positive, the pulse may be called as 

upchirp and if β is negative it is called as downchirp. 

2.1 Effects of BT Product on LFM 

Spectrum 
The LFM waveform exhibits an important property of 

possessing high BT product [4,6,3]. The transform of 

this waveform is flat over its range of frequencies. If 

the BT product of the LFM waveform increases , the 

signal spectrum will become more rectangular in shape. 

As the waveform spreads the energy uniformly across 

the spectrum this seems naturally reasonable to 

consider the spectrum as optimal spectrum .The 

spectrum of LFM chirps which are generated using 

MATLAB are shown in this paper. In all their cases, 

the duration of the pulse is considered to be 1μs. 

TABLE1 shows different BT product.  

TABLE. 1.Different BT which are considered in this 

paper. 

 

S.No Pulse Length(τ) 

in μs 

Bandwidth(β)            

in MHz 

BT 

Product 

1 1 5 5 

2 1 10 10 

3 1 50 150 

4 1 100 200 
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By observing the Fig. 3 and Fig. 4 one may 

conclude that for BT=5 have a spectrum which is very 

poorly approximated to a rectangular shape. If BT is 

increased it gives more rectangular spectral magnitude. 

A BT product of 100 or above is considered to model 

the LFM spectral as a rectangular shape in practice. 

Here for all the cases shown in TABLE.1 the amplitude 

of the spectrum is considered equal and the proof for 

same is given in section 3.1. 

 
Fig.3. Spectrum of LFM waveform for BT=10   

 

 
Fig. 4.  Spectrum of LFM waveform for BT=100   

. 

 
Fig.5. Spectrum of LFM waveform for different BT 

Fig.5 shows a comparison of four chirps with different 

BT products. Here we can conclude that higher the BT  

it takes the rectangular shape .LFM waveform exhibits 

an important property of possessing high BT product 

[4,6,3].  

3. The Method of Steepest Descend 
The Fourier transform of equation 7 derived by [7,8] is 

complex due to sine integral Si(β) function. A very simple and 

useful approximation can be given by using the method of 

steepest descent which is an advanced technique in Fourier 

analysis. This method is useful in evaluating the integrals 

which will be having highly oscillatory integrands; therefore 

this is particularly applied well to Fourier transforms.  

equation 7 can be represented in terms of amplitude and phase 

as  

 )]t(θjexp[)t(A=)t(x .  (9) 

Fourier transform of above equation can be written as  

 ∫
∞

∞ -
dt

tωj-
e

)t(θj
e)t(A =)ω(X .  (10) 

 dt∫
∞

∞

]tω-)t(θ[j
e)t(A=)ω(X

 -
.  (11) 

 ∫
∞

∞-

)t,θ(j
e)t(A =)ω(X .  (12) 

Where     



 


otherwise          0

/2t/2-      1
  )(


tA   

The Fourier transform is known for many signals having 

relatively simple phase function θ(t).Defining a point in the 

integral as a value (t=t0) such that Φ`(t0,ω) = 0.That is the first 

derivate in the above integral is 0. The term X(ω) can be 

rewritten as [8] 

 )ω,t(θj
0

0

0e)t(x 
)ω,t(''φ2

∏-
=)ω(X .  (13) 

 

Where Φ``(t,ω) is second derivate of Φ(t,ω). 

The method of steepest descent can be applied to estimate the 

spectrum of the LFM waveform. The LFM waveform can be 

defined by  

 
2tαe)t(A=)t(x .  (14) 

 where α = π*β/τ,Now substituting value of α in equation 14 

we get  

 ∫
∞

∞ -

)tω -2tα(j
e)t(x =)ω(X .  (15) 

Integrand phase Φ(t,ω) and its derivative are given as  

 ttt  
2

),( .  (16) 

   tt 2),(' .  (17) 

 
2

),('' tt   .  (18) 

Now by setting Φ``(t,ω)=0 and solving with respect t0 we get 
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value of t0 where (t=t0) and Φ`(t0,ω) = 0 

Then t0 = ω/2α 

Now inserting the above t0 value in equation (13) we get  

 
)ω,0t(φje)0t(X

)ω,0t(''φ2

∏-
 α )ω(X .  (19) 
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Now the signal envelope A(t), the term (ω/2α) becomes (using 

α=πβ/τ)  
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A .  (23) 

3.1 Spectral Amplitudes of Four Chirps 
Here is the proof for considering equal amplitude of the four 

chirps. Here the bandwidth of each and every chirp differs; 

therefore the sampling rate T for each of the chirp is also 

different. The sampling rates and the corresponding sampling 

intervals of the chirps are given by equation 9  

 

n
kn

T
n

ksnF



1

   ⇒          .  (24) 

Each of the pulse shares 1μs and bandwidth varies so the 

samples in of the each pulse are also different and 

proportional to bandwidth β: 

 
nτβk=snFτ=

nT

τ
=nN .  (25) 

Bandwidth of each signal can be computed in frequency units. 

Individual bandwidths are given by βn Hz and the spectrum 

normally looks like a rectangular function with the limits - βn 

Hz to +βn Hz. Digitizing these we get 

     nTω=nω .  (26) 

Combining equation 24 and equation 26 we can get 
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Note: Cutoff frequency is depending on Π and k and same for 

all of the four chirps. That is the reason why their DFT’s for 

all the four chirps have same nominal cutoff frequencies, 

when we plot all together despite of different bandwidths. 

Now considering the energy in each chirp we get 

 ∑
1

0

2
][

N

m n
k

n
NmxE


  .  (28) 

From Parseval’s theorem we can express energy in terms of 

signal spectrum as 

 
ndnXE 

2

∫
∏

∏
)(

∏2

1
 .  (29) 

Now considering equation 25, equation 27 and Steepest 

descent approximation X(ω) we can say that it is an 

rectangular function with an amplitude as given below. 

 21
∫
/∏

/∏

2

∏2

1

n
A

k
nd

k

k n
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n
kE   .  (30) 

 k
n

A  .  (31) 

Since all the four chirps have same k,τ and the time-domain 

amplitude considered to be 1 same as in Steepest descent 

method. Now with this we can justify that the individual 

spectra will have amplitudes proportional to the square root of 

their individual BT product , so therefore to model the 

spectrum as rectangle it is necessary to normalize all he 

spectrum w.r.t square root of BT product which will be 

convenient for plotting. 

4. Results 
Using method of the steepest descent approximation X(ω) is 

approximately a rectangle function of an amplitude A which 

is proportional to square root of BT product and k in the 

frequency intervals (+β/2 , -β/2). In the Fig.6 comparison of 

LFM spectrum with βT = 100 and X(ω) by using method of 

the steepest descent is given .It is observed that X(w) is 

constant over the range (+β/2 , -β/2) and is zero outside the 

range.  

 

Fig. 6. Comparison of Steepest descent method and 

LFM waveform with BT=100 

In order to have the spectrum occupied most of the plot 

area, the data is oversampled by a factor of k=1.2 (which 

is nearly 20%) in each of the case to make the spectral 

details clearer. In this paper it is shown that the range over 

which the instantaneous frequency F of the LFM pulse 

sweeps linearly across the total bandwidth of β Hz during 

the pulse duration τ, is consistent with the increasing 

rectangular shape in the frequency domain. By considering 

this method a ideal rectangular spectrum is achieved 

which uses the total pulse and offers an optimal spectrum. 

5. Conclusions 
This paper gives a detailed description of LFM waveform 

spectrum. The important characteristics of LFM waveform 

comprise linear frequency ramp, flat topped rectangle 
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spectrum. Here it is clearly shown that the LFM waveform 

with a BT product of 5 has a spectrum which is an very poor 

approximation to a rectangle spectrum. The BT product of 

100 gives a good approximation to a rectangular spectrum. In 

order to model the LFM waveform spectrum as a rectangle 

usually BT product of 100 or above is considered. 

The steepest descent method can be applied to estimate LFM 

waveform spectrum. X(ω) is constant over the range of 

frequencies from ±β/2 hertz, and zero outside this range. This 

is naturally satisfying, since this is exactly the range of 

frequencies over which the instantaneous frequency of the 

LFM waveform sweeps, and is consistent with the rectangular 

shape of the actual spectrum observed in      Fig.5 as the BT 

product increases. The steepest descent method result gives an 

approximation of the phase of the spectrum which is like the 

phase of the LFM waveform.    
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