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ABSTRACT 

Fuzzy finite element analysis for static displacements of beam 

structures with fuzzy forces is considered in this paper. The 

material properties of the beams are taken as crisp. Fuzzy 

finite element analysis of static problem for the above 

structures converts the problem into fuzzy system of linear 

equations. As such the coefficient matrix and the right hand 

side vector become crisp and fuzzy respectively. Here, a new 

method is proposed to solve the fuzzy system of linear 

equations. Numerical results for the beam structures are 

presented to illustrate the computational aspects of the 

developed method. The results obtained by the proposed 

method are compared with the existing solution method. 
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1. INTRODUCTION 
In the last few decades for various scientific and engineering 
problems finite element method has become a more powerful 
tool for solving the complex systems. In this method the 
complicated structures/domains are discretized into small 
finite elements, giving the element wise behavior. Assembling 
together for all the elements and applying the respective 
conditions, it gives the output. The system parameters 
involved in the traditional finite element method such as mass, 
geometry, material properties, external loads, or boundary 
conditions are considered as crisp or defined exactly. But, 
rather than the particular value we may have only the vague, 
imprecise and incomplete information about the variables and 
parameters being a result of errors in measurement, 
observations, experiment, applying different operating 
conditions or it may be maintenance induced error, etc. which 
are uncertain in nature. Basically these uncertainties can be 
modeled through probabilistic approach, interval analysis and 
fuzzy theory.  

In probabilistic practice, the variables of uncertain nature are 
assumed as random variables with joint probability density 
functions.  If the structural parameters and the external load 
are modeled as random variables with known probability 
density functions, the response of the structure can be 
predicted using the theory of probability and stochastic 
processes [1]. Also the probabilistic concept is already well 
established for the extension of the deterministic finite 
element method towards uncertain assessment. This has led to 
a number of probabilistic and stochastic finite element 
procedures [2, 3]. Unfortunately, probabilistic methods are not 
able to deliver reliable results at the required precision 
without sufficient experimental data. It may be due to the 
probability density functions involved in it. As such in the 
recent decades, interval analysis and fuzzy theory are 
becoming powerful tools for many real life applications. In 

these approaches, the uncertain variables and parameters are 
represented by interval and fuzzy numbers, vectors or 
matrices. 

Various aspects of interval analysis along with applications 
are explained by [4]. If only incomplete information is 
available, it is possible to establish the minimum and 
maximum favorable response of the structures using interval 
analysis or convex models [5, 6]. Moreover structural analysis 
with interval parameters using interval based approach has 
been studied by various authors [7, 8, 9].  

Fuzzy set theoretical concept was developed by [10] which is 
further used in the uncertain analysis of structures in a wide 
range. As discussed above, if the structural parameters and the 
external loads are described in imprecise terms, then fuzzy 
theory can be applied. As such [11] fuzzy logic for the 
numerical modeling of engineering problems has been done. 
An optimization algorithm is developed for fuzzy properties 
[12] based on response surface for the calculation of fuzzy 
envelope and fuzzy response functions of models. Fuzzy 
structural analysis using  level optimization is excellently 

studied by [13]. The transformation method has been applied 
for the simulation and analysis of systems with uncertain 
parameters [14]. Also an important book is written by [15] in 
which applications of fuzzy arithmetic into engineering 
problems are described. Fuzzy behavior of mechanical 
systems with uncertain boundary conditions is investigated by 
[16]. Nonlinear membership function for fuzzy optimization 
of mechanical and structural systems is discussed in [17]. 
When the Finite Element Method (FEM) is described with 
fuzzy theory it is then known as Fuzzy Finite Element Method 
(FFEM).  

Recently various generalized model of uncertainty have been 
applied to finite element method to solve the structural 
problems with fuzzy parameters. Although FEM for structural 
problems [18] is well known and there exits large number of 
papers related to this.  As such few papers that are related to 
fuzzy FEM are discussed here. Fuzzy finite element approach 
is applied to describe structural systems with imprecisely 
defined parameters in an excellent way by [19]. The fuzzy 
finite element analysis technique [20]  to describe the static 
analysis of structures which is based on interval computation. 
Both fuzzy static and dynamic analysis of structures is 
explained by [21] using fuzzy finite element approach. Vertex 
method and VAST software is used in it for the fuzzy finite 
element analysis. Also [22] derived fuzzy finite element 
method for smart structures. Fuzzy finite element method is 
formulated by [23] for mechanics problems. In [24] fuzzy 
arithmetical approach is used for the solution of finite element 
problems with fuzy parameters. Very recently [25, 26] 
investigated the structural problems with fuzzy parameters. 
They have used an interesting approach viz. High 
Dimensional Model Representation (HDMR) along with FEM 
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is for the analysis. Both static and dynamic responses of 
structures is explained by [27] using FFEM with HDMR. 

The design and analysis of many engineering problems 
require the solution of linear systems of equations. For 
example, the finite element formulation of equilibrium and 
steady state problems lead to a set of simultaneous algebraic 
linear equations. Accordingly FFEM converts the problem to 
a Fuzzy System of Linear Equations (FSLE) [28, 29] or Fully 
Fuzzy System of Linear Equations (FFSLE) [30-32] for the 
static analysis of structural problems. There is a difference 
between fuzzy linear system and fully fuzzy linear system. 
The coefficient matrix is treated as crisp in the fuzzy linear 
system, but in the fully fuzzy linear system all the parameters 
and variables are considered to be fuzzy numbers. Various 
solution methods have been proposed for the solution of 
FFSLE [33] and applied in structural mechanics problems. 
Recently [34] has been developed a method to find finite 
element solution of a stepped rectangular bar in presence of 
fuzziness in material properties.   

As such it is an important issue to develop mathematical 

models and numerical techniques that would appropriately 

treat the general fuzzy or fully fuzzy linear systems because 

subtraction and division of fuzzy numbers are not the inverse 

operations of addition and multiplication respectively. So, this 

is an important area of research in the recent years. This paper 

targets to propose new methods for fuzzy and fully fuzzy 

system of linear equations and applied those methods to the 

analysis of structural problems using FFEM.  In the following 

sections first preliminaries is discussed. Then, a new solution 

method for fuzzy system of linear equations is proposed. 

Next, numerical examples of beam with various types of 

uncertain forces are discussed using fuzzy finite element 

method to find fuzzy static responses. Lastly conclusions are 

drawn. 

2. PRILIMINARIES 
In the following paragraph some definitions related to the 

present work are given [35, 36, 38, 39]. 

Definition 2.1 Fuzzy number 

A fuzzy number U
~

is convex normalised fuzzy set U
~

of the 

real line R  such that 

}],1,0[:)({ ~ RxRx
U

  

where,  
U
~  is called the membership function of the fuzzy 

set and it is piecewise continuous. 

Definition 2.2 Triangular fuzzy number (TFN) 

A triangular fuzzy number U
~

 is a convex normalized fuzzy 

set U
~

 of the real line R  such that  

i. there exists exactly one Rx 0  with 1)( 0~ x
U

  ( 0x  

is called the mean value of U
~

), where 
U
~ is called the 

membership function of the fuzzy set. 

ii. )(~ x
U

  is piecewise continuous. 

Let us consider an arbitrary triangular fuzzy number 

),,(
~

cbaU  . The membership function 
U
~  of U

~
may be 

define as follows 
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The triangular fuzzy number ),,(
~

cbaU   can be 

represented with an ordered pair of functions through  cut 

as ])(,)[()](),([ cbcaabuu    

where ]1,0[ . This satisfies the following requirements 

i. )(u  is a bounded left continuous non-decreasing 

function over  ].1,0[  

ii. )(u  is a  bounded right continuous non-increasing 

function over ].1,0[  

iii. .10),()(   uu  

Definition 2.3 Fuzzy arithmetic 

Fuzzy numbers may be transformed into an interval through 

 cut approach. So, for any arbitrary fuzzy number 

)](),([~)],(),([~  yyyxxx   and scalar ,k we have 

the interval based fuzzy arithmetic as 

i. yx ~~   if and only if  )()(  yx  and )()(  yx   

ii. )]()(),()([  yxyxyx   

iii. )]()(),()([~~  yxyxyx   

iv. 
)]()(),()(),()(),()((max

),()(),()(),()(),()((min[~~





yxyxyxyx

yxyxyxyxyx





 

v. 









.0)],(),([

,0)],(),([~

kxkxk

kxkxk
xk




    

The equation of motion with fuzzy parameters of the 

structures obtained by FFEM reduces to fuzzy system of 

linear equations. As such method for fuzzy system of linear 

equations is proposed here to find the fuzzy static response. 

3. PROPOSED METHOD FOR FUZZY 

SYSTEM OF LINEAR EQUATIONS 
The nn  fuzzy system of linear equations may be written as  

11212111

~~~~ bxaxaxa nn    

22222121

~~~~ bxaxaxa nn    

                                 (1) 

nnnnnn bxaxaxa
~~~~

2211    

In matrix notation the above system may be written as 

},
~

{}
~

]{[ bXA   

where, the coefficient matrix njnkaA kj   ,1 ),(][   is 

a crisp real nn   matrix, kbb k  1 },
~

{}
~

{  is a column 

vector of triangular fuzzy number and }~{}
~

{ jxX   is the 

vector of fuzzy unknown. 

The above system, },
~

{}
~

]{[ bXA  can be written as  

                    




n

j

kjkj bxa

1

,
~~

  for .,,2,1 nk                (2) 
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As per the parametric form we may write the real fuzzy 

unknown and the right hand real fuzzy number vector as 

)]( ),([)(~~
j  xxxx jjj   

 and  

)].( ),([)(
~~

 kkkk bbbb   

where, ].1,0[  

Substituting these expressions in  (2), we have 

                 




n

j

kkjkj bbxxa

1

j .)]( ),([)]( ),([        (3) 

In the following a new method is proposed for solving the 

fuzzy system of linear equations as defined in  (1). 

Through  cut form  (2) can be represented as  

                              




n

j

kjkj bxa

1

),(
~

)(~                     (4) 

Now the 1 – cut of the system (4) is solved possibly. The 1-

cut system of (4) can be represented as below 

          




n

j

kjkj bxa

1

)1(
~

)1(~)1(                            (5) 

Above can be equivalently represented as  

                )]1(),1([)]1(),1([

1

kkjj

n

j

kj bbxxa 


.             (6) 

)1(~
jx  is now obtained by solving (5). Here )1(~

jx  is known 

as the core of )(~ jx . It is worth mentioning that (1) in 

general (for triangular fuzzy number matrix) converted to a 

crisp system for finding the core solution. That means (6) is a 

crisp system with triangular fuzzy number. So we have 

)1()1( kk bb   and )1()1( jj xx  . 

Now the solution vector )(~ jx can be represented for 

triangular fuzzy number as 

)]()1(~),()1(~[   jj xx  

where )( and )(  are left and right spreads of the 

solution vector for ].1,0[   

As such (1) can be expressed for triangular fuzzy number 

solutions as  

)](),([)]()1(~),()1(~[

1

 kkjj

n

j

kj bbxxa 


.  

                       (7) 

Hence (7) may equivalently be written as the following two 

equations viz. Eqs. (8) and (9) 

    )()()1(~)()1(~

00

 k

kja

jkjj

kja

kj bxaxa  


      

               (8) 

and 

     

    )()()1(~)()1(~

00

 k

kja

jkjj

kja

kj bxaxa  


 

                    (9) 

Finally (8) and (9)  are solved to find the left and right spread 

viz. )( and )(  of the solution vector. Hence for 

triangular fuzzy number system the solution vector can be 

written as )]()1(~),()1(~[   jj xx . 

4. NUMERICAL EXAMPLES AND 

RESULTS 
The proposed method is used here to compute the fuzzy static 

response of beam structures as shown in the following 

example problems. 

  

Example 1: Let us consider a beam as shown in Fig. 1. Here 

vertical displacement and angle of rotations are denoted by 

ju~  for 5,3,1j and ju~  for 6,4,2j  respectively. The 

loads acting on beam are considered as both crisp and 

triangular fuzzy number for two different cases 1 and 2 to 

compute the static response. Two different uncertain 

uniformly distributed loads p~  and q~ act on elements 1 and 2 

respectively. For each section of the beam Young’s modulus, 

Moment of inertia and length are assumed respectively 

as
28)( /102 mKNE i  , 

46)( 105 mI i   and 

ml i 5)(   for .3,2,1i   

Due to uncertain uniformly distributed load, the fuzzy load 

vector for element one and two can be written respectively as 
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
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1
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F  where pr ~~   

and   


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
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F  where qs ~~  . 

Assembling the above, the load vector will be 

   
   
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Fig. 1. Two element discretization of beam with uniformly 

distributed load 

Case 1: The uniformly distributed loads are considered as 

crisp [37] that is 

mkNpp /12~   and mkNqq /24~  . 

One may obtain the static response by  finite element analysis 

of the above as  

.0803571.0~

,0357142.0~

)6()6(

)4()4(

muu

muu




 

Obtained results for crisp parameters are compared with the 

crisp solution of [37] and found to be similar. 

Case 2: Next, the uniformly distributed loads are taken as 

triangular fuzzy numbers that are  

mkNp /)20,12,4(~   and mkNq /)28,24,20(~  . 

Results are shown by solving the governing fuzzy system of 

linear equations (obtained by using FFEM) in Table 1. 

 

Table 1: Left and right bounds of fuzzy static response for 

triangular fuzzy nodal force for Example 1 

 

This problem is also solved by Chakraverty and Behera [38] 

and Friedman et al. [28] methods. For 5.0 and the 

obtained results are compared in Table 2. 

 

Table 2: Comparison of results obtained by present, 

Chakraverty and Behera [38] and Friedman et al. [28] 

methods for 5.0 (Example 1) 

 

Example 2: In this example both nodal force p~  and 

uniformly distributed load q~  are acting as shown in Fig. 2. 

The beam structure is again discretized in to two elements.   

For each section of the beam, Young’s modulus and moment 

of inertia are respectively considered as 

26)( /10200 mKNE i  , 
46)( 1024 mI i  . 

Length of the first and second elements respectively are 

ml 4)1(  and ml 6)2(  . Due to uncertain nodal force p~  

at node 2, the nodal force vector can be written as 

TrF ]000~00[
~
1    where, pr ~~  . 

Moreover for uncertain uniform distributed load q~ , the load 

vector for element one and two may again be written 

respectively as  
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
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2
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and 
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ls
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F  

where qs ~~  . 

 

Accordingly, the assembled load vector may be obtain as 

   
   
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Fig. 2. Two element discretization of beam with both nodal 

force and uniform distributed load 

Case 1: In this case loads are taken as crisp [37] where, 

kNp 100~   and mkNp /20~  . Using finite element 

analysis one may obtain the static responses as 

  0 0.2 0.8 1 

4
u  -0.0506 -0.0476 -0.0387 -0.0357 

4u  -0.0208 -0.0238 -0.0327 -0.0357 

6
u  0.0774 0.0780 0.0798 0.0804 

6u  0.0833 0.0827 0.0810 0.0804 

5.0  Present 

Method 

Chakraverty 

and Behera 

[38] 

Friedman  

et al. [28] 

4
u  

-0.0432 -0.0432 -0.0432 

4u  
-0.0283 -0.0283 -0.0283 

6
u  

0.0789 0.0789 0.0789 

6u  
0.0818 0.0818 0.0818 
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.1368055.~

,07244438.0~

,32733324.0~

)6()6(

)4()4(

)3()3(

muu

muu

muu







 

Obtained results for crisp parameters are compared with the 

crisp solution of [37] and are found to be similar. 

Case 2: Here triangular fuzzy loads are taken into 

consideration. Thus the values of the fuzzy loads are 

considered as  

kNp )110,100,90(~   and mkNq /)30,20,10(~  . 

Fuzzy finite element method is used again and the 

corresponding governing fuzzy system of linear equations is 

solved by using the proposed method. Obtained results are 

shown in Figs. 3 to 5.  

 

It is worth mentioning that this problems is also solved by the 

methods of [28, 38] and the results obtained are exactly same 

as that of the proposed method. For particular value of 

5.0 computed results are tabulated in Table 3. 

 

Table 3: Comparison of results obtained by present, 

Chakraverty and Behera [38] and Friedman et al. [28] 

methods for 5.0 (Example 2) 

 
Although the results obtained by all the methods are same but 

the present procedure is more straight forward and easy to 

handle. After finding the core solution one may easily find the 

left and right spread of the solution vector by solving the 

corresponding crisp systems. So these may give the final 

solution with the combination of the core solution.   

 
Fig. 3 Left and right bounds of vertical displacement at 

node 2 for triangular fuzzy forces of Example 2 

 
Fig. 4 Left and right bounds of angle of rotation at node 2 

for triangular fuzzy forces of Example 2 

 

Fig. 5 Left and right bounds of angle of rotation at node 3 

for triangular fuzzy forces of Example 2 

5. CONCLUSION 
Static analysis of uncertain beam structures has been studied 

here using fuzzy finite element method. The related fuzzy 

system of linear equations is solved using the proposed 

method which is different from the existing methods to obtain 

the uncertain static response. The proposed methodology is 

simple and easy to handle. Investigation presented here may 

find in real application where the load may not be obtained in 

term of crisp but a vague value in term of fuzzy is known. 

Results are depicted in term of plots and tables to show the 

efficacy of the method. 
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