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ABSTRACT  
Checkpointing is one of the commonly used techniques to 

provide fault tolerance in distributed systems so that the 

system can operate even if one or more components have 

failed. However, mobile computing systems are 

constrained by low bandwidth, mobility, lack of stable 

storage, frequent disconnections and limited battery life. 

Hence checkpointing protocols which have fewer 

checkpoints are preferred in mobile environment. In this 

paper, we propose a minimum-process coordinated 

Checkpointing algorithm for checkpointing deterministic 

distributed applications on mobile systems. We eliminate 

useless checkpoints as well as blocking of processes 

during checkpoints at the cost of logging anti-messages of 

very few messages during Checkpointing. We also try to 

minimize the loss of checkpointing effort. 

 

1. INTRODUCTION  
In deterministic systems, if two processes start in the same 

state, and both receive the identical sequence of inputs, 

they will produce the identical sequence outputs and will 

finish in the same state. The state of a process is thus 

completely determined by its starting state and by 

sequence of messages it has received [10, 11, 12]. Johnson 

and Zwaenepoel [11] proposed sender based message 

logging for deterministic systems, where each message is 

logged in volatile memory on the machine from which the 

message is sent. The massage log is then asynchronously 

written to stable storage, without delaying the 

computation, as part of the sender’s periodic checkpoint. 

Johnson and Zwaenepoel [12] used optimistic message 

logging and checkpointing to determine the maximum 

recoverable state, where every received message is logged. 

David R. Jefferson [10] introduced the concept of anti-

message. Anti-message is exactly like an original message 

in format and content except in one field, its sign. Two 

messages that are identical except for opposite signs are 

called anti-messages of one another. All messages sent 

explicitly by user programs have a positive (+) sign; and 

their anti-messages have a negative sign (-). Whenever a 

message and its anti-message occur in the same queue, 

they immediately annihilate one another. Thus the result of 

enqueueing  a message may be to shorten the queue by one 

message rather than lengthen it by one. We depict the anti-

message of m by m-1.   

In this paper, we propose a minimum-process coordinated 

Checkpointing algorithm for Checkpointing deterministic 

distributed applications on mobile systems. We eliminate 

useless checkpoints as well as blocking of processes 

during checkpoints at the cost of logging anti-messages of 

very few messages during Checkpointing. We also try to 

minimize the loss of checkpointing effort.  Frequent aborts 

of checkpointing procedure may happen in mobile systems 

due to exhausted battery, non-voluntary disconnections of 

MHs, or poor wireless connectivity. Therefore, we propose 

that in the first phase, all concerned MHs will take ad hoc 

checkpoint only. In case of an MH, ad hoc   checkpoint is 

stored on the memory of MH only. In this case, if some 

process fails to take checkpoint in the first phase, then 

MHs need to abort their ad hoc checkpoints only. In this 

way, we try to minimize the loss of checkpointing effort 

when any process fails to take its checkpoint in 

coordination with others. 

 

1.1 Problems in the Existing Algorithms 
  Singh and Cabillic [13] proposed a checkpointing 

algorithm for mobile computing environments on the basis 

of anti-message logging. This algorithm may lead to 

inconsistencies as follows. In Figure 1.1, at time t0, P1 

initiates checkpointing. Since, it has received m1 and  m2 

from P0 and P2, respectively, since its last permanent 

checkpoint C11; therefore, P1 sends checkpoint request to 

P0 and P2. When P0 receives the checkpoint request from 

P1, it finds that it has not sent any message to P1 since its 

last permanent checkpoint C02. Therefore, P0 discards the 

checkpoint request. P2 receives m3 without logging its anti-

message. When P2 receives the checkpoint request from P1, 

it takes its tentative checkpoint C23, because, it has sent m2 

to P1 since its last permanent checkpoint C22. After taking 

its tentative checkpoint, P2 finds that it has received m3 

from P0 and P0 has already been sent the checkpoint 

request; therefore, P2 does not send the checkpoint request 

to P0. In this way, {C02, C12, C23} constitute a recovery 

line, where m3 is an orphan message without its anti-

message being logged at P2. Hence, the algorithm [85] may 

lead to inconsistencies.   
 

 
 

2. THE PROPOSED CHECKPOINTING 

ALGORITHM   

2.1 System Model 
There are n spatially separated sequential processes   

denoted by P0, P1,.., Pn-1, running on MHs or  MSSs, 

constituting a mobile distributed computing system. Each 

MH/MSS has one process running on it.  The processes do 

not share memory or clock. Message passing is the only 

way for processes to communicate with each other. Each 

process progresses at its own speed and messages are 
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exchanged through reliable channels, whose transmission 

delays are finite but arbitrary. We also assume that the 

processes are deterministic as in [11], [12], [13]. 

 

2.2 Basic Idea    
During the checkpointing procedure, a process Pi may 

receive m from Pj such that Pj has taken its tentative 

checkpoint for the current initiation whereas Pi has not 

taken. If Pi processes m and it receives checkpoint request 

later on and takes its checkpoint, then m will become 

orphan in the recorded global state. In order to avoid such 

orphan messages, Cao and Singhal [2] proposed that Pi 

should take a forced checkpoint before processing m. If Pi 

receives a checkpoint request after processing m, then the 

forced checkpoint already taken is converted into tentative 

one. In this way, m will not become orphan. P Kumar [9] 

proposed that such messages should be buffered at the 

receiver end. The receiver should process such messages 

only after taking its checkpoint or after getting conformed 

that it is not going to take its checkpoint in the current 

initiation. Koo-Toueg [4] proposed that Pj should not send 

any computation message to any process after taking its 

checkpoint for the current initiation. Pj starts sending 

messages only after getting conformed that all concerned 

processes have taken their checkpoint for the current 

initiation.   We propose that   the anti-messages of only 

those messages, which can become orphan, should be 

recorded at the receiver end.  In deterministic systems, 

orphan messages are received as duplicate messages on 

recovery. A duplicate message is annihilated by its anti-

message at the receiver end before processing. Hence, in 

deterministic distributed systems, an orphan message in 

global checkpoint does not create any inconsistency during 

recovery if its anti-message is logged at the receiver end. 

By doing so, we avoid the blocking of processes as well as 

the useless checkpoints in minimum-process 

checkpointing. It should be noted that in minimum-process 

coordinated checkpointing, some useless checkpoints are 

taken [2, 8, 14] or blocking of processes takes place [4, 6, 

9]. The overheads of logging a few anti-messages may be 

negligible as compared to taking some useless checkpoints 

or blocking the processes during checkpointing.    

The initiator MSS computes int_vect [subset of the 

minimum set] on the basis of dependencies maintained 

locally; and sends the checkpoint request along with the 

int_vect[] to the relevant MSSs.  On receiving checkpoint 

request, an MSS asks concerned processes to checkpoint 

and computes new processes for the minimum set. By 

using this technique, we have tried to optimize the number 

of messages between MSSs.When the initiator MSS 

commits the checkpointing process, it sends the commit 

request along with the exact minimum set to all MSSs and 

every MSS maintains up-to-date  comm_csn_vect[]. 

comm_csn_vect[] is described in Section 4.5. This enables 

us to maintain exact dependencies among processes. In our 

protocol, cvi[j]=1 only if Pi is directly dependent upon Pj in 

the current CI. Therefore, useless checkpoint requests, as 

occur in [2], are not sent in our algorithm.  

When Pi sends c_req to Pj, it also piggybacks csni[j] [2]. 

When Pj receives c_req, it decides, on the basis of 

piggybacked csni[j], whether c_req is useful. In our 

protocol, no useless c_req is sent, therefore, csni[j] is not 

piggybacked onto c_req.  

In algorithm [2], when a process, say Pj, takes its tentative 

checkpoint, it also finds the processes Pk  such that Pj has 

received m from Pk in the current CI. On the basis of MR, 

received with the checkpoint request, Pj decides the 

following: (i) whether any process has already sent the 

checkpoint request to Pk (ii) whether the earlier checkpoint 

request to Pk is useless.  In our protocol, no useless 

checkpoint request is sent, therefore, data structures MR[] 

is  not piggybacked onto checkpoint requests. The decision 

(i) is taken on the basis of tint_vect, maintained at every 

MSS. tint_vect maintains the local knowledge about the 

minimum set. In our case, instead of MR[], tint_vect is 

piggybacked onto checkpoint requests. The size of the 

tint_vect is negligibly small as compared to MR[]. 

In coordinated checkpointing, if a single process fails to 

take its checkpoint; all the checkpointing effort goes waste, 

because, each process has to abort its tentative checkpoint. 

Furthermore, in order to take the tentative checkpoint, an 

MH needs to transfer large checkpoint data to its local 

MSS over wireless channels. Hence, the loss of 

checkpointing effort may be exceedingly high due to 

frequent aborts of checkpointing algorithms especially in 

mobile systems.  In mobile distributed systems, there 

remain certain issues like: abrupt disconnection, exhausted 

battery power, or failure in wireless bandwidth. So there 

remains a good probability that some MH may fail to take 

its checkpoint in coordination with others. Therefore, we 

propose that in the first phase, all processes in the 

minimum set, take ad hoc checkpoint only. Ad hoc 

checkpoint is stored on the memory of MH only. If some 

process fails to take its checkpoint in the first phase, then 

other MHs need to abort their ad hoc checkpoints only. 

The effort of taking an ad hoc checkpoint is negligible as 

compared to the tentative one. In this second phase, a 

process converts its    ad hoc   checkpoint into tentative 

one. By using this scheme, we try to minimize the loss of 

checkpointing effort in case of abort of checkpointing 

algorithm in the first phase.  

 

2.3   Data Structures 
Here, we describe the data structures used in the 

checkpointing protocol. A process that initiates 

checkpointing, is called initiator process and its local MSS 

is called initiator MSS. If the initiator process is   on an 

MSS, then the MSS is the initiator MSS. Data structures 

are initialized   on the completion of a checkpointing 

process if not mentioned explicitly. We use the term 

potential checkpoint request to an MSS, if at least one 

process takes a checkpoint in its cell to this request.  

 

i) Each process Pi maintains the following data 

structures, which are preferably stored on local MSS: 

p_cni: an integer; it is a process csn;  on  tentative   

checkpoint: p_cni = comm_csn_vect[i]+1 ;                                                                                                   

on commit or abort: after updating 

comm_csn_vect[] , 

p_cni=comm_csn_vect[i]                                                         

; comm_csn_vect[] is described later  

described later  ;                                                                                                                                  

cvi[]:    cvi[j]=1 implies Pi is causally dependent 

upon Pj. cvi[j]  is set to ‘1’ only if  Pi 

processes m received  from Pj  such that 

m.p_cn comm_csn_vect[j]; m.p_cn is the 

p_cn at  Pj at the time of sending m and 

 omm._csn_vect[j] is Pj’s recent 

permanent checkpoint’s  omm._csn_vect; 

initially for Pi, k, cvi[k]=0 and  cvi[i]=1; 

for MHi it is kept at local MSS; 

maintenance of cv[] is described in Section   
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4.5.2; 

tentativei a flag; set to ‘1’ on tentative checkpoint; 

adhoci a flag; set to ‘1’ on ad hoc checkpoint; 

 
 (ii) Initiator MSS (any MSS can be initiator MSS) 

maintains the following Data structures: 

int_vect[]  a bit vector of size n; int_vect[k]=1 

implies Pk belongs to the minimum set; 

initially, int_vect[]  (subset of the 

minimum set ) is computed by using cv 

vectors maintained at the initiator MSS ; 

on receiving response() from some MSS: 

int_vect=int_vect np_int_vect; after  

receiving responses from all relevant 

processes, int_vect[] contains the exact 

minimum set; ‘’, is a operator for bitwise 

logical OR; np_int_vect  is described later; 

R[]:          a bit vector of length n; R[i]=1 implies  Pi 

has taken its  ad hoc  checkpoint; 

timer1: a flag; initialized to ‘0’ when   the timer is 

set; set to ‘1’ when   maximum allowable 

time for collecting coordinated  checkpoint 

expires; 

T[] a bit vector of length n; T[i]=1 implies  Pi 

has taken its  tentative   checkpoint; 

  

(iii) Each MSS (including initiator MSS) maintains the 

following data structures:   

D[]: a bit vector of length n; D[i]=1 implies   Pi is 

running in the cell of  MSS; it also includes the 

disconnected MHs supported by this MSS;  

EE[]: a bit vector of length n; EE[i] is set to ‘1’ if Pi is in 

its cell and it has taken its ad hoc  checkpoint; 

E[]: a  bit vector of length n; E[i] is set to ‘1’ if ad hoc 

checkpoint checkpoint request  is sent to Pi  and Pi 

is in the cell; 

F[]  a  bit vector of length n; F[i] is set to ‘1’ if  the 

tentative  checkpoint request  is sent to Pi; 

FF[] a bit vector of length n; FF[i] is set to ‘1’ if P i is in 

its  cell and it has taken its tentative   checkpoint; 

s_bit: a flag; set to ‘1’ when some relevant process in its 

cell  fails to take   its tentative checkpoint;    

Pin: initiator process identification; 

MSSin  initiator MSS identification; 

p_cnin P_Cnof initiator process;   

comm_csn_v

ect[]      

an array of length n for n processes; 

comm_csn_vect[j] denotes the Pj’s most recent 

committed checkpoint’s csn; on commit, for all j, 

(if int_vect [j]==1) comm_csn_vect[j]++; 

int_vect[] is the exact minimum set received along 

with the commit request; comm_csn_vect[] is not 

updated on tentative or ad hoc  checkpoints; we 

maintain one comm_csn_vect array for each MSS 

and not for each process; 

tnp_int_vect a bit vector of length n; it contains the new 

processes found for the minimum set while 

executing  a potential  checkpoint request [Refer 

Section 4.5.1]; 

np_int_vect a bit vector of length n; it contains all new 

processes found for the minimum set at the MSS; 

on each potential checkpoint request: if 

(tnp_int_vect≠) np_int_vect= np_int_vect 

tnp_int_vect 

tint_vect  a bit vector of length n; tint_vect[k]=1 implies Pk 

belongs to the minimum set; it maintains the local 

knowledge of the minimum set; on receiving 

tint_vect, int_vect, tnp_int_vect along with ad_req 

(checkpoint request): tint_vect=tint_vect 

ad_req.tint_vect,  tint_vect=tint_vect 

ad_req.int_vect,  tint_vect=tint_vect 

ad_req.tnp_int_vect; on each potential 

checkpoint request, tnp_int_vect is computed, if 

(tnp_int_vect≠) tint_vect= tint_vect 

tnp_int_vect ; 

chkpt a flag; set to 1 when the MSS learns that some 

checkpointing process is going on; 

ad_req a checkpoint request; when MSSin sends ad hoc 

checkpoint request (ad_req ) to MSSp, it 

piggybacks the data structures: Pin, MSSin, p_cnin, 

MSSp, int_vect; any other MSS piggybacks 

tint_vect, tnp_int_vect in place of int_vect; 

 

2.3.1 Computation of int_vect or 

tnp_int_vect: 
Let D be the bit dependency matrix of n*n, where jth row 

denote the cv[] of Pj. For making dependency matrix at an 

MSS, if a process, say Pk, is not in the cell of MSS, then its 

initial cv[] vector is  assumed. Initial cv[] of Pk is: i, 

cv[i]=0; cv[k]=1.   

(a) Computation of int_vect[]: Let Pi be the initiator 

process.  

          A= cvi[]; int_vect=cvi[]; A=A×D; 

         While (A≠int_vect[]) do { int_vect=A; A= 

A×D;} 

(b) Computation of tnp_int_vect: 

  A=tint_vect; B=tint_vect; B=B×D; 

        While (A≠B) do { A=B; B= B×D;} 

          Initialize tnp_int_vect; 

       for(i=0;i<n;i++) 

            If(A[i]==1tint_vect[i]==0) 

tnp_int_vect[i]=1; 

   

Brief Description of the Algorithm along with an 

Example  

 

We explain our checkpointing algorithm with the help of 

an example. In Figure 2, at time t1, P2 initiates 

checkpointing process. cv2[1]=1 due to m1; and cv1[4]=1 

due to m2. On the receipt of m0, P2 does not set cv2 [3] =1, 

because, P3 has taken its permanent checkpoint after 

sending m0.  We assume that P1 and P2 are in the cell of the 

same MSS, say MSSin. MSSin computes int_vect (subset of 

minimum set) on the basis of cv vectors maintained at 

MSSin, which in case of Figure 4.2 is {P1, P2, P4}. 

Therefore, P2 sends ad hoc checkpoint request to P1 and P4 

and takes its own ad hoc checkpoint. After taking its ad 

hoc checkpoint, P1 sends m4 to P4.  P4 logs  m4
-1 [Refer 

Section 4.7 and 4.9]. In this case, P1 has taken its 

checkpoint before sending m4; at the time of receiving m4, 

P4 has not taken its checkpoint for the current initiation. If 

P4 takes checkpoint after receiving m4, them m4 will 

become orphan. Therefore P4 logs m4
-1. On recovery, P4 

will receive m4 as duplicate message because the processes 

are deterministic and m4 will be annihilated by m4
-1. Hence 

receive of m4 as duplicate message will not cause any 

inconsistency. It should be noted that this scheme is not 

applicable for non-deterministic systems. After taking its 

ad hoc checkpoint C41, P4 also finds that it was dependent 

upon P5 before taking the  checkpoint due to m6 and P5 is 

not in the minimum set computed so far. Therefore, P4 

sends ad hoc checkpoint request to P5. On receiving the 

checkpoint request, P5 takes its ad hoc checkpoint.  At time 

t2, P2 receives responses from all relevant processes and 
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sends the tentative checkpoint request along with the 

minimum set [{P1, P2, P4, P5}] to all processes. When a 

process, in the minimum set, receives the tentative 

checkpoint request, it converts its ad hoc checkpoint into 

tentative one. Finally, at time t3, P2 sends the commit 

message to all concerned processes.  In this example, {C00, 

C11, C21, C30, C41, C51, m4
-1} constitute a recovery line. It 

should be noted that, in the recorded global state, m4 is an 

orphan message and its anti-message is also recorded at the 

receiver end. 

 

  

   

2.3.2 The Proposed Checkpointing 

Algorithm   

 

When an MH sends an application message, it needs to 

first send to its local MSS over the wireless cell. The MSS 

can piggyback appropriate information onto the 

application message, and then route it to the appropriate 

destination. Conversely, when the MSS receives an 

application message to be forwarded to a local MH, it first 

updates the relevant vectors that it maintains for the MH, 

strips all piggybacked information from the message, and 

then forwards it to the MH. Thus, an MH sends and 

receives application messages that do not contain any 

additional information; it is only responsible for 

checkpointing its local state appropriately and transferring 

it to the MSS.     

 Each process Pi can initiate the checkpointing 

process.  Initiator MSS (say MSSin) initiates and 

coordinates checkpointing process on behalf of MHi. It 

computes int_vect (subset of the minimum set on the basis 

of direct dependencies maintained locally) ; and  sends  ad 

hoc checkpoint request (say ad-req)   along with int_vect 

to an MSS if the later  supports at least one process in the 

int_vect. It also updates its tint_vect on the basis of 

int_vect. We assume that concurrent invocations of the 

algorithm do not occur. 

 

 

On receiving the ad-req, along with the int_vect from the 

initiator MSS, an MSS, say MSSi, takes the following 

actions. It updates its tint_vect on the basis of int_vect. It 

sends the ad_req  to  Pi if the following conditions are met: 

(i) Pi  is running in its cell  (ii) Pi is a member of the 

int_vect and (iii) ad_req has not been sent to Pi. If no such 

process is found, MSSi ignores the ad_req. Otherwise, on 

the basis of tint_vect, cv vectors of processes in its cell, 

initial cv vectors of other processes, it computes 

tnp_int_vect.  If tnp_int_vect is not empty, MSSi  sends  

ad_req along with tint_vect, tnp_int_vect  to an MSS, if 

the later  supports at least one process in the tnp_int_vect. 

MSSi updates np_int_vect, tint_vect on the basis of 

tnp_int_vect and  initializes tnp_int_vect. 

On receiving ad_req along with tint_vect, tnp_int_vect 

from some MSS, an MSS, say MSSj, takes the following 

actions. It updates its own tint_vect  on the basis of 

received tint_vect, tnp_int_vect and finds any process Pk 

such that Pk is running in its cell, Pk has not been sent 

ad_req  and Pk is in tnp_int_vect. If no such process exists, 

it simply ignores this request. Otherwise, it sends the ad 

hoc checkpoint request to Pk. On the basis of tint_vect, 

cv[] of its processes and initial cv[] of other processes, it 

computes   tnp_int_vect. If tnp_int_vect is not empty, 

MSSj  sends the checkpoint request along with tint_vect, 

tnp_int_vect to an MSS, which supports at least one 

process in the tnp_int_vect.  MSSj updates np_int_vect, 

tint_vect on the basis of tnp_int_vect. It also initializes 

tnp_int_vect. 

For a disconnected MH, that is a member of minimum set, 

the MSS that has its disconnected checkpoint, converts its 

disconnected checkpoint into the required one.  

 When an MSS learns that all of its relevant processes have 

taken their ad hoc  checkpoints successfully or at least one 

of its processes has failed to take its  adhoc  checkpoint, it 

sends the response message along with the np_int_vect   to 

the initiator MSS. If, after sending the response message, 

an MSS receives the checkpoint request along with the 

tnp_int_vect, and learns that there is at least one process in 

tnp_int_vect running in its cell and it has not taken its 

tentative checkpoint, then the MSS requests such process 

to take checkpoint. It again sends the response message to 

the initiator MSS. 

When the initiator MSS receives a response from some 

MSS, it updates its int_vect on the basis of np_int_vect, 

received along with the response. Finally, initiator MSS 

sends tentative checkpoint request  to all the processes of 

the minimum set . In this case, if some process fails to take 

ad hoc  checkpoint in the first phase, then concerned MHs 

need to abort their ad hoc  checkpoints only. The effort of 

taking an ad hoc  checkpoint is insignificant  as compared 

to the tentative one. In this way, the loss of checkpointing 

effort, in case of an abort of the checkpointing procedure, 

is significantly low.   

When a process in the minimum set receives the tentative 

checkpoint  request, it converts its ad hoc  checkpoint into 

tentative  one. In the third phase, initiator MSS sends 

commit or abort to all processes. On receiving abort, a 

process discards its tentative checkpoint, if any, and 

undoes the updating of data structures. On receiving 

commit, processes, in the int_vect [], convert their tentative 

checkpoints into permanent ones. On receiving commit or 

abort, all processes update their dependency  vectors and 

other data structures.  
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2.3.3 Handling Node Mobility and 

Disconnections  

 

Disconnection of an MH is a voluntary operation, and 

frequent disconnections of MHs is an expected feature of a 

mobile distributed system. Abrupt disconnections due to 

battery failure, process failure, or network failure are 

different from voluntary disconnections [1].  

An MH may be disconnected from the network for an 

arbitrary period of time. The Checkpointing algorithm may 

generate a request for such MH to take a checkpoint. 

Delaying a response may significantly increase the 

completion time of the checkpointing algorithm.  We 

propose the following solution to deal with disconnections 

that may lead to infinite wait state [1].  

Suppose, an MH, say MHi, disconnects from the MSS, say 

MSSk. MHi takes its checkpoint, say d_ckpti, and transfers 

it to MSSk. MSSk stores all the relevant data structures and 

d_ckpti of MHi on stable storage.  If MHi is in the 

int_vect[],  d_ckpti is considered as MHi’s checkpoint for 

the current initiation. On commit, MSSk also updates 

MHi’s data structures, e.g., cv[], send, etc.  On the receipt 

of messages for MHi, MSSk does not update  MHi’s cv[], 

but maintains  a message queue to store the messages. 

When MHi enters in the cell of MSSj, it is connected to the 

MSSj if no checkpointing process is going on. Before 

connection, MSSj collects   its cv[], buffered messages, etc.   

from MSSk; and MSSk discards MHi’s support information 

and d_ckpti. The stored messages are processed by MHi, in 

the order of their receipt at the MSS.   MHi’s cv[] is 

updated on the processing of buffered  messages. If a node 

does not reconnect in a stipulated time, then its 

computation can be restarted from its d_ckpt. 

 

3.  HANDLING FAILURES DURING 

CHECKPOINTING  
 

Since MHs are prone to failure, an MH may fail during 

checkpointing process. Sudden or abrupt   disconnection of 

an MH is also termed as a fault [1]. Suppose, Pi is waiting 

for a message from Pj and Pj has failed, then Pi times out 

and detects the failure of Pj. If the failed process is not 

required to checkpoint in the current initiation or the failed 

process has already taken its tentative checkpoint, the 

checkpointing process can be completed uninterruptedly. If 

the failed process is not the initiator, one way to deal with 

the failure is to discard the whole checkpointing process 

similar to the approach in [4], [5]. The failed process will 

not be able to respond to the initiator’s requests and 

initiator will detect the failure by timeout and will abort 

the current checkpointing process. If the initiator fails after 

sending commit or abort message, it has nothing to do for 

the current initiation. Suppose, the initiator fails before 

sending commit or abort message. Some process, waiting 

for the checkpoint/commit request, will timeout and will 

detect the failure of the initiator. It will send abort request 

to all processes discarding the current checkpointing 

process. 

 

The above approach seems to be inefficient, because, the 

whole checkpointing process is discarded even when only 

one participating process fails. In our scheme, if any 

process fails to take its ad hoc checkpoint in the first 

phase, all concerned processes abort their ad hoc 

checkpoints only; and the loss of checkpointing effort is 

quite low as compared to other protocols [2, 4, 3, 6], in 

which every concerned process is forced to abort its 

tentative checkpoint. In our scheme, if any process fails to 

convert its ad hoc checkpoint into tentative one, then we 

propose to follow the technique proposed by Kim & Park 

[7] in which a process commits its tentative checkpoints if 

none of the processes, on which it transitively depends, 

fails; and the consistent recovery line is advanced for those 

processes that committed their checkpoints. The initiator 

and other processes, which transitively depend on the 

failed process, have to abort their tentative checkpoints. 

Thus, in case of a node failure during second phase of 

checkpointing, total abort of the checkpointing is avoided.  

 

4.  PERFORMANCE EVALUATION  

 

We use following notations to compare our algorithm with 

other algorithms: 

Nmss:      number of MSSs. 

Nmh:      number of MHs.   

Cpp:      cost of sending a message from one process to 

another     

 Cst:       cost of sending a message between any two MSSs. 

Cwl:      cost of sending a message from an MH to its local 

MSS     (or vice versa). 

Cbst:      cost of broadcasting a message over static 

network. 

Csearch:  cost incurred to locate an MH and forward a 

message to its current    local MSS, from a source MSS. 

Tst:        average message delay in static network. 

Twl:       average message delay in the wireless network. 

Tch:       average delay to save a checkpoint on the stable 

storage. It also includes the time to transfer the checkpoint 

from an MH to its local MSS. 

N:         total number of processes 

Nmin: number of minimum processes required to take 

checkpoints.       

Nmut:     number of useless mutable checkpoints [2].    

Nind:      number of useless mutable checkpoints in the 

proposed protocol.   

Tsearch:   average delay incurred to locate an MH and 

forward a message to its current local MSS. 

Nucr:       average number of useless checkpoint requests in 

[2]. 

Ndep:    average number of processes on which a process 

depends. 

 

 

The Synchronization message overhead:  

In the first phase, a process taking an ad hoc  checkpoint 

needs two system messages: request and reply. However, 

we have used some techniques to reduce the duplicate 

checkpoint requests. Thus the system overhead is 

approximately 2*Nmin*Cpp in the first phase. Similarly, 

system overhead in the second phase is: 2*Nmin*Cpp.  In the 

first phase we broadcast the adhoc checkpoint request. In 

the second phase, the tentative requested is broadcasted on 

the static network; and the system overhead is Cbst.  In the 

third phase, we broadcast the commit request. The total 

message overhead comes out to be: 4*Nmin*Cpp+ 3Cbst 

 Number of processes taking checkpoints: It requires only 

minimum number of processes to take their checkpoints. 

In minimum-process coordinated checkpointing, some 

useless checkpoints are taken which are discarded on 

commit [2, 8, 14]; or some blocking of processes takes 

place during checkpointing [4, 6, 9]. In the proposed 

scheme, no useless checkpoints are taken and no blocking 

of processes takes place. We log anti-messages of very few 
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messages at the receiver’s end only during the 

checkpointing period. The effort of logging few anti-

messages may be negligibly small as compared to taking 

some useless checkpoints or blocking some processes 

during checkpointing especially in mobile distributed 

systems.   

The blocking time of the Koo-Toueg [4] protocol is 

highest, followed by Cao-Singhal [6] algorithm.  The other 

schemes are non-blocking [2, 3, 13], like the proposed one.  

In Elnozahy et al [3] algorithm, all processes are required 

to take their checkpoints in an initiation. In the protocols 

[6], [4], and the proposed one, only minimum numbers of 

processes record their checkpoints.  

 

Table 1 A Comparison of System Performance 

 Cao-

Singhal 

[6] 

Koo-

Toeg 

Algorith

m [4] 

Elnozah

y 

et al [3] 

Propos

ed  

Algorit

hm 

Avg. 

blocking 

Time 

2Tst Nmin*Tch 0 0 

Average 

No. of 

checkpoints 

Nmin Nmin N Nmin 

 

Average  

Message 

Overhead 

3Cbst+ 

2Cwireless+ 

2Nmss*Cst 

+3Nmh* 

Cwl 

3*Nmin* 

Cpp* Ndep 

2*Cbst + 

N *Cpp   

4*Nmin* 

Cpp + 

3Cbst 

 

The message overhead in the proposed protocol is greater 

than [2, 3, 4, 6] due to the fact that the proposed scheme is 

a three phase algorithm. Our algorithm is a three phase 

algorithm; therefore it suffers from extra message 

overhead of Cbst +2Nmin*Cwl. By doing so, we are able to 

reduce the loss of checkpointing effort in case of abort of 

the checkpointing procedure in the first phase. In other 

algorithms [2, 3, 4, 6, 13], in case of abort in the first 

phase, all concerned processes are forced to abort their 

tentative checkpoint whereas in the proposed scheme, all 

relevant processes abort their ad hoc checkpoints only. The 

effort of taking an ad hoc checkpoint is negligible as 

compared to tentative one in the mobile distributed system 

[2]. Frequent abort of checkpointing algorithms, due to 

exhausted battery power, abrupt disconnections etc., may 

significantly increase the checkpointing overhead in two-

phase algorithms.  We try to minimize the same by 

designing the three phase algorithm at the cost of slight 

increase in message overhead.   

The algorithms proposed in [2, 3, 4, 6, 8, 9] assume that 

the processes are non-deterministic, whereas, we assume in 

the proposed algorithm that the processes are deterministic 

in nature as in [13].   

    

                    

5. CONCLUSIONS  

In this chapter, we have proposed a minimum-process non-

intrusive checkpointing protocol for deterministic mobile 

distributed systems, where no useless checkpoints are 

taken and no blocking of processes takes place. In 

minimum-process checkpointing protocols, some useless 

checkpoints are taken or blocking of processes takes place; 

we eliminate both by logging anti-messages of selective 

messages at the receiver end only during the checkpointing 

period. The overheads of logging a few anti-messages may 

be negligible as compared to taking some useless 

checkpoints or blocking the processes during 

checkpointing especially in mobile distributed system. We 

also try to reduce the loss of checkpointing effort when 

any process fails to take its checkpoint in coordination 

with others in the first phase. In case of a failure during 

checkpointing in the first phase, all concerned processes 

need to abort their ad hoc checkpoints only. The cost of 

taking an ad hoc checkpoint is negligibly small as 

compared to the tentative one especially in case of mobile 

distributed systems.  In case, some process fails to convert 

its ad hoc checkpoint into tentative one, then we follow the 

selective commit mechanism, in which a process commits 

its checkpoint if none of the process, it causally depends 

upon, fails to take its tentative checkpoint. We disallow 

concurrent executions in spite of concurrent initiations of 

the proposed protocol.     
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