
International Journal of Computer Applications (0975 – 8887)

Volume 69– No.14, May 2013

21

Anti-message Logging based Check Pointing
Algorithm for Mobile Distributed Systems

Monika Nagpal, PhD.

CMJ university

Praveen Kumar, PhD.

MIET
Meerut (India)

ABSTRACT
Checkpointing is one of the commonly used techniques to

provide fault tolerance in distributed systems so that the

system can operate even if one or more components have

failed. However, mobile computing systems are

constrained by low bandwidth, mobility, lack of stable

storage, frequent disconnections and limited battery life.

Hence checkpointing protocols which have fewer

checkpoints are preferred in mobile environment. In this

paper, we propose a minimum-process coordinated

Checkpointing algorithm for checkpointing deterministic

distributed applications on mobile systems. We eliminate

useless checkpoints as well as blocking of processes

during checkpoints at the cost of logging anti-messages of

very few messages during Checkpointing. We also try to

minimize the loss of checkpointing effort.

1. INTRODUCTION
In deterministic systems, if two processes start in the same

state, and both receive the identical sequence of inputs,

they will produce the identical sequence outputs and will

finish in the same state. The state of a process is thus

completely determined by its starting state and by

sequence of messages it has received [10, 11, 12]. Johnson

and Zwaenepoel [11] proposed sender based message

logging for deterministic systems, where each message is

logged in volatile memory on the machine from which the

message is sent. The massage log is then asynchronously

written to stable storage, without delaying the

computation, as part of the sender’s periodic checkpoint.

Johnson and Zwaenepoel [12] used optimistic message

logging and checkpointing to determine the maximum

recoverable state, where every received message is logged.

David R. Jefferson [10] introduced the concept of anti-

message. Anti-message is exactly like an original message

in format and content except in one field, its sign. Two

messages that are identical except for opposite signs are

called anti-messages of one another. All messages sent

explicitly by user programs have a positive (+) sign; and

their anti-messages have a negative sign (-). Whenever a

message and its anti-message occur in the same queue,

they immediately annihilate one another. Thus the result of

enqueueing a message may be to shorten the queue by one

message rather than lengthen it by one. We depict the anti-

message of m by m-1.

In this paper, we propose a minimum-process coordinated

Checkpointing algorithm for Checkpointing deterministic

distributed applications on mobile systems. We eliminate

useless checkpoints as well as blocking of processes

during checkpoints at the cost of logging anti-messages of

very few messages during Checkpointing. We also try to

minimize the loss of checkpointing effort. Frequent aborts

of checkpointing procedure may happen in mobile systems

due to exhausted battery, non-voluntary disconnections of

MHs, or poor wireless connectivity. Therefore, we propose

that in the first phase, all concerned MHs will take ad hoc

checkpoint only. In case of an MH, ad hoc checkpoint is

stored on the memory of MH only. In this case, if some

process fails to take checkpoint in the first phase, then

MHs need to abort their ad hoc checkpoints only. In this

way, we try to minimize the loss of checkpointing effort

when any process fails to take its checkpoint in

coordination with others.

1.1 Problems in the Existing Algorithms
 Singh and Cabillic [13] proposed a checkpointing

algorithm for mobile computing environments on the basis

of anti-message logging. This algorithm may lead to

inconsistencies as follows. In Figure 1.1, at time t0, P1

initiates checkpointing. Since, it has received m1 and m2

from P0 and P2, respectively, since its last permanent

checkpoint C11; therefore, P1 sends checkpoint request to

P0 and P2. When P0 receives the checkpoint request from

P1, it finds that it has not sent any message to P1 since its

last permanent checkpoint C02. Therefore, P0 discards the

checkpoint request. P2 receives m3 without logging its anti-

message. When P2 receives the checkpoint request from P1,

it takes its tentative checkpoint C23, because, it has sent m2

to P1 since its last permanent checkpoint C22. After taking

its tentative checkpoint, P2 finds that it has received m3

from P0 and P0 has already been sent the checkpoint

request; therefore, P2 does not send the checkpoint request

to P0. In this way, {C02, C12, C23} constitute a recovery

line, where m3 is an orphan message without its anti-

message being logged at P2. Hence, the algorithm [85] may

lead to inconsistencies.

2. THE PROPOSED CHECKPOINTING

ALGORITHM

2.1 System Model
There are n spatially separated sequential processes

denoted by P0, P1,.., Pn-1, running on MHs or MSSs,

constituting a mobile distributed computing system. Each

MH/MSS has one process running on it. The processes do

not share memory or clock. Message passing is the only

way for processes to communicate with each other. Each

process progresses at its own speed and messages are

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.14, May 2013

22

exchanged through reliable channels, whose transmission

delays are finite but arbitrary. We also assume that the

processes are deterministic as in [11], [12], [13].

2.2 Basic Idea
During the checkpointing procedure, a process Pi may

receive m from Pj such that Pj has taken its tentative

checkpoint for the current initiation whereas Pi has not

taken. If Pi processes m and it receives checkpoint request

later on and takes its checkpoint, then m will become

orphan in the recorded global state. In order to avoid such

orphan messages, Cao and Singhal [2] proposed that Pi

should take a forced checkpoint before processing m. If Pi

receives a checkpoint request after processing m, then the

forced checkpoint already taken is converted into tentative

one. In this way, m will not become orphan. P Kumar [9]

proposed that such messages should be buffered at the

receiver end. The receiver should process such messages

only after taking its checkpoint or after getting conformed

that it is not going to take its checkpoint in the current

initiation. Koo-Toueg [4] proposed that Pj should not send

any computation message to any process after taking its

checkpoint for the current initiation. Pj starts sending

messages only after getting conformed that all concerned

processes have taken their checkpoint for the current

initiation. We propose that the anti-messages of only

those messages, which can become orphan, should be

recorded at the receiver end. In deterministic systems,

orphan messages are received as duplicate messages on

recovery. A duplicate message is annihilated by its anti-

message at the receiver end before processing. Hence, in

deterministic distributed systems, an orphan message in

global checkpoint does not create any inconsistency during

recovery if its anti-message is logged at the receiver end.

By doing so, we avoid the blocking of processes as well as

the useless checkpoints in minimum-process

checkpointing. It should be noted that in minimum-process

coordinated checkpointing, some useless checkpoints are

taken [2, 8, 14] or blocking of processes takes place [4, 6,

9]. The overheads of logging a few anti-messages may be

negligible as compared to taking some useless checkpoints

or blocking the processes during checkpointing.

The initiator MSS computes int_vect [subset of the

minimum set] on the basis of dependencies maintained

locally; and sends the checkpoint request along with the

int_vect[] to the relevant MSSs. On receiving checkpoint

request, an MSS asks concerned processes to checkpoint

and computes new processes for the minimum set. By

using this technique, we have tried to optimize the number

of messages between MSSs.When the initiator MSS

commits the checkpointing process, it sends the commit

request along with the exact minimum set to all MSSs and

every MSS maintains up-to-date comm_csn_vect[].

comm_csn_vect[] is described in Section 4.5. This enables

us to maintain exact dependencies among processes. In our

protocol, cvi[j]=1 only if Pi is directly dependent upon Pj in

the current CI. Therefore, useless checkpoint requests, as

occur in [2], are not sent in our algorithm.

When Pi sends c_req to Pj, it also piggybacks csni[j] [2].

When Pj receives c_req, it decides, on the basis of

piggybacked csni[j], whether c_req is useful. In our

protocol, no useless c_req is sent, therefore, csni[j] is not

piggybacked onto c_req.

In algorithm [2], when a process, say Pj, takes its tentative

checkpoint, it also finds the processes Pk such that Pj has

received m from Pk in the current CI. On the basis of MR,

received with the checkpoint request, Pj decides the

following: (i) whether any process has already sent the

checkpoint request to Pk (ii) whether the earlier checkpoint

request to Pk is useless. In our protocol, no useless

checkpoint request is sent, therefore, data structures MR[]

is not piggybacked onto checkpoint requests. The decision

(i) is taken on the basis of tint_vect, maintained at every

MSS. tint_vect maintains the local knowledge about the

minimum set. In our case, instead of MR[], tint_vect is

piggybacked onto checkpoint requests. The size of the

tint_vect is negligibly small as compared to MR[].

In coordinated checkpointing, if a single process fails to

take its checkpoint; all the checkpointing effort goes waste,

because, each process has to abort its tentative checkpoint.

Furthermore, in order to take the tentative checkpoint, an

MH needs to transfer large checkpoint data to its local

MSS over wireless channels. Hence, the loss of

checkpointing effort may be exceedingly high due to

frequent aborts of checkpointing algorithms especially in

mobile systems. In mobile distributed systems, there

remain certain issues like: abrupt disconnection, exhausted

battery power, or failure in wireless bandwidth. So there

remains a good probability that some MH may fail to take

its checkpoint in coordination with others. Therefore, we

propose that in the first phase, all processes in the

minimum set, take ad hoc checkpoint only. Ad hoc

checkpoint is stored on the memory of MH only. If some

process fails to take its checkpoint in the first phase, then

other MHs need to abort their ad hoc checkpoints only.

The effort of taking an ad hoc checkpoint is negligible as

compared to the tentative one. In this second phase, a

process converts its ad hoc checkpoint into tentative

one. By using this scheme, we try to minimize the loss of

checkpointing effort in case of abort of checkpointing

algorithm in the first phase.

2.3 Data Structures
Here, we describe the data structures used in the

checkpointing protocol. A process that initiates

checkpointing, is called initiator process and its local MSS

is called initiator MSS. If the initiator process is on an

MSS, then the MSS is the initiator MSS. Data structures

are initialized on the completion of a checkpointing

process if not mentioned explicitly. We use the term

potential checkpoint request to an MSS, if at least one

process takes a checkpoint in its cell to this request.

i) Each process Pi maintains the following data

structures, which are preferably stored on local MSS:

p_cni: an integer; it is a process csn; on tentative

checkpoint: p_cni = comm_csn_vect[i]+1 ;

on commit or abort: after updating

comm_csn_vect[] ,

p_cni=comm_csn_vect[i]

; comm_csn_vect[] is described later

described later ;

cvi[]: cvi[j]=1 implies Pi is causally dependent

upon Pj. cvi[j] is set to ‘1’ only if Pi

processes m received from Pj such that

m.p_cn comm_csn_vect[j]; m.p_cn is the

p_cn at Pj at the time of sending m and

 omm._csn_vect[j] is Pj’s recent

permanent checkpoint’s omm._csn_vect;

initially for Pi, k, cvi[k]=0 and cvi[i]=1;

for MHi it is kept at local MSS;

maintenance of cv[] is described in Section

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.14, May 2013

23

4.5.2;

tentativei a flag; set to ‘1’ on tentative checkpoint;

adhoci a flag; set to ‘1’ on ad hoc checkpoint;

 (ii) Initiator MSS (any MSS can be initiator MSS)

maintains the following Data structures:

int_vect[] a bit vector of size n; int_vect[k]=1

implies Pk belongs to the minimum set;

initially, int_vect[] (subset of the

minimum set) is computed by using cv

vectors maintained at the initiator MSS ;

on receiving response() from some MSS:

int_vect=int_vect np_int_vect; after

receiving responses from all relevant

processes, int_vect[] contains the exact

minimum set; ‘’, is a operator for bitwise

logical OR; np_int_vect is described later;

R[]: a bit vector of length n; R[i]=1 implies Pi

has taken its ad hoc checkpoint;

timer1: a flag; initialized to ‘0’ when the timer is

set; set to ‘1’ when maximum allowable

time for collecting coordinated checkpoint

expires;

T[] a bit vector of length n; T[i]=1 implies Pi

has taken its tentative checkpoint;

(iii) Each MSS (including initiator MSS) maintains the

following data structures:

D[]: a bit vector of length n; D[i]=1 implies Pi is

running in the cell of MSS; it also includes the

disconnected MHs supported by this MSS;

EE[]: a bit vector of length n; EE[i] is set to ‘1’ if Pi is in

its cell and it has taken its ad hoc checkpoint;

E[]: a bit vector of length n; E[i] is set to ‘1’ if ad hoc

checkpoint checkpoint request is sent to Pi and Pi

is in the cell;

F[] a bit vector of length n; F[i] is set to ‘1’ if the

tentative checkpoint request is sent to Pi;

FF[] a bit vector of length n; FF[i] is set to ‘1’ if P i is in

its cell and it has taken its tentative checkpoint;

s_bit: a flag; set to ‘1’ when some relevant process in its

cell fails to take its tentative checkpoint;

Pin: initiator process identification;

MSSin initiator MSS identification;

p_cnin P_Cnof initiator process;

comm_csn_v

ect[]

an array of length n for n processes;

comm_csn_vect[j] denotes the Pj’s most recent

committed checkpoint’s csn; on commit, for all j,

(if int_vect [j]==1) comm_csn_vect[j]++;

int_vect[] is the exact minimum set received along

with the commit request; comm_csn_vect[] is not

updated on tentative or ad hoc checkpoints; we

maintain one comm_csn_vect array for each MSS

and not for each process;

tnp_int_vect a bit vector of length n; it contains the new

processes found for the minimum set while

executing a potential checkpoint request [Refer

Section 4.5.1];

np_int_vect a bit vector of length n; it contains all new

processes found for the minimum set at the MSS;

on each potential checkpoint request: if

(tnp_int_vect≠) np_int_vect= np_int_vect

tnp_int_vect

tint_vect a bit vector of length n; tint_vect[k]=1 implies Pk

belongs to the minimum set; it maintains the local

knowledge of the minimum set; on receiving

tint_vect, int_vect, tnp_int_vect along with ad_req

(checkpoint request): tint_vect=tint_vect

ad_req.tint_vect, tint_vect=tint_vect

ad_req.int_vect, tint_vect=tint_vect

ad_req.tnp_int_vect; on each potential

checkpoint request, tnp_int_vect is computed, if

(tnp_int_vect≠) tint_vect= tint_vect

tnp_int_vect ;

chkpt a flag; set to 1 when the MSS learns that some

checkpointing process is going on;

ad_req a checkpoint request; when MSSin sends ad hoc

checkpoint request (ad_req) to MSSp, it

piggybacks the data structures: Pin, MSSin, p_cnin,

MSSp, int_vect; any other MSS piggybacks

tint_vect, tnp_int_vect in place of int_vect;

2.3.1 Computation of int_vect or

tnp_int_vect:
Let D be the bit dependency matrix of n*n, where jth row

denote the cv[] of Pj. For making dependency matrix at an

MSS, if a process, say Pk, is not in the cell of MSS, then its

initial cv[] vector is assumed. Initial cv[] of Pk is: i,

cv[i]=0; cv[k]=1.

(a) Computation of int_vect[]: Let Pi be the initiator

process.

 A= cvi[]; int_vect=cvi[]; A=A×D;

 While (A≠int_vect[]) do { int_vect=A; A=

A×D;}

(b) Computation of tnp_int_vect:

 A=tint_vect; B=tint_vect; B=B×D;

 While (A≠B) do { A=B; B= B×D;}

 Initialize tnp_int_vect;

 for(i=0;i<n;i++)

 If(A[i]==1tint_vect[i]==0)

tnp_int_vect[i]=1;

Brief Description of the Algorithm along with an

Example

We explain our checkpointing algorithm with the help of

an example. In Figure 2, at time t1, P2 initiates

checkpointing process. cv2[1]=1 due to m1; and cv1[4]=1

due to m2. On the receipt of m0, P2 does not set cv2 [3] =1,

because, P3 has taken its permanent checkpoint after

sending m0. We assume that P1 and P2 are in the cell of the

same MSS, say MSSin. MSSin computes int_vect (subset of

minimum set) on the basis of cv vectors maintained at

MSSin, which in case of Figure 4.2 is {P1, P2, P4}.

Therefore, P2 sends ad hoc checkpoint request to P1 and P4

and takes its own ad hoc checkpoint. After taking its ad

hoc checkpoint, P1 sends m4 to P4. P4 logs m4
-1 [Refer

Section 4.7 and 4.9]. In this case, P1 has taken its

checkpoint before sending m4; at the time of receiving m4,

P4 has not taken its checkpoint for the current initiation. If

P4 takes checkpoint after receiving m4, them m4 will

become orphan. Therefore P4 logs m4
-1. On recovery, P4

will receive m4 as duplicate message because the processes

are deterministic and m4 will be annihilated by m4
-1. Hence

receive of m4 as duplicate message will not cause any

inconsistency. It should be noted that this scheme is not

applicable for non-deterministic systems. After taking its

ad hoc checkpoint C41, P4 also finds that it was dependent

upon P5 before taking the checkpoint due to m6 and P5 is

not in the minimum set computed so far. Therefore, P4

sends ad hoc checkpoint request to P5. On receiving the

checkpoint request, P5 takes its ad hoc checkpoint. At time

t2, P2 receives responses from all relevant processes and

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.14, May 2013

24

sends the tentative checkpoint request along with the

minimum set [{P1, P2, P4, P5}] to all processes. When a

process, in the minimum set, receives the tentative

checkpoint request, it converts its ad hoc checkpoint into

tentative one. Finally, at time t3, P2 sends the commit

message to all concerned processes. In this example, {C00,

C11, C21, C30, C41, C51, m4
-1} constitute a recovery line. It

should be noted that, in the recorded global state, m4 is an

orphan message and its anti-message is also recorded at the

receiver end.

2.3.2 The Proposed Checkpointing

Algorithm

When an MH sends an application message, it needs to

first send to its local MSS over the wireless cell. The MSS

can piggyback appropriate information onto the

application message, and then route it to the appropriate

destination. Conversely, when the MSS receives an

application message to be forwarded to a local MH, it first

updates the relevant vectors that it maintains for the MH,

strips all piggybacked information from the message, and

then forwards it to the MH. Thus, an MH sends and

receives application messages that do not contain any

additional information; it is only responsible for

checkpointing its local state appropriately and transferring

it to the MSS.

 Each process Pi can initiate the checkpointing

process. Initiator MSS (say MSSin) initiates and

coordinates checkpointing process on behalf of MHi. It

computes int_vect (subset of the minimum set on the basis

of direct dependencies maintained locally) ; and sends ad

hoc checkpoint request (say ad-req) along with int_vect

to an MSS if the later supports at least one process in the

int_vect. It also updates its tint_vect on the basis of

int_vect. We assume that concurrent invocations of the

algorithm do not occur.

On receiving the ad-req, along with the int_vect from the

initiator MSS, an MSS, say MSSi, takes the following

actions. It updates its tint_vect on the basis of int_vect. It

sends the ad_req to Pi if the following conditions are met:

(i) Pi is running in its cell (ii) Pi is a member of the

int_vect and (iii) ad_req has not been sent to Pi. If no such

process is found, MSSi ignores the ad_req. Otherwise, on

the basis of tint_vect, cv vectors of processes in its cell,

initial cv vectors of other processes, it computes

tnp_int_vect. If tnp_int_vect is not empty, MSSi sends

ad_req along with tint_vect, tnp_int_vect to an MSS, if

the later supports at least one process in the tnp_int_vect.

MSSi updates np_int_vect, tint_vect on the basis of

tnp_int_vect and initializes tnp_int_vect.

On receiving ad_req along with tint_vect, tnp_int_vect

from some MSS, an MSS, say MSSj, takes the following

actions. It updates its own tint_vect on the basis of

received tint_vect, tnp_int_vect and finds any process Pk

such that Pk is running in its cell, Pk has not been sent

ad_req and Pk is in tnp_int_vect. If no such process exists,

it simply ignores this request. Otherwise, it sends the ad

hoc checkpoint request to Pk. On the basis of tint_vect,

cv[] of its processes and initial cv[] of other processes, it

computes tnp_int_vect. If tnp_int_vect is not empty,

MSSj sends the checkpoint request along with tint_vect,

tnp_int_vect to an MSS, which supports at least one

process in the tnp_int_vect. MSSj updates np_int_vect,

tint_vect on the basis of tnp_int_vect. It also initializes

tnp_int_vect.

For a disconnected MH, that is a member of minimum set,

the MSS that has its disconnected checkpoint, converts its

disconnected checkpoint into the required one.

 When an MSS learns that all of its relevant processes have

taken their ad hoc checkpoints successfully or at least one

of its processes has failed to take its adhoc checkpoint, it

sends the response message along with the np_int_vect to

the initiator MSS. If, after sending the response message,

an MSS receives the checkpoint request along with the

tnp_int_vect, and learns that there is at least one process in

tnp_int_vect running in its cell and it has not taken its

tentative checkpoint, then the MSS requests such process

to take checkpoint. It again sends the response message to

the initiator MSS.

When the initiator MSS receives a response from some

MSS, it updates its int_vect on the basis of np_int_vect,

received along with the response. Finally, initiator MSS

sends tentative checkpoint request to all the processes of

the minimum set . In this case, if some process fails to take

ad hoc checkpoint in the first phase, then concerned MHs

need to abort their ad hoc checkpoints only. The effort of

taking an ad hoc checkpoint is insignificant as compared

to the tentative one. In this way, the loss of checkpointing

effort, in case of an abort of the checkpointing procedure,

is significantly low.

When a process in the minimum set receives the tentative

checkpoint request, it converts its ad hoc checkpoint into

tentative one. In the third phase, initiator MSS sends

commit or abort to all processes. On receiving abort, a

process discards its tentative checkpoint, if any, and

undoes the updating of data structures. On receiving

commit, processes, in the int_vect [], convert their tentative

checkpoints into permanent ones. On receiving commit or

abort, all processes update their dependency vectors and

other data structures.

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.14, May 2013

25

2.3.3 Handling Node Mobility and

Disconnections

Disconnection of an MH is a voluntary operation, and

frequent disconnections of MHs is an expected feature of a

mobile distributed system. Abrupt disconnections due to

battery failure, process failure, or network failure are

different from voluntary disconnections [1].

An MH may be disconnected from the network for an

arbitrary period of time. The Checkpointing algorithm may

generate a request for such MH to take a checkpoint.

Delaying a response may significantly increase the

completion time of the checkpointing algorithm. We

propose the following solution to deal with disconnections

that may lead to infinite wait state [1].

Suppose, an MH, say MHi, disconnects from the MSS, say

MSSk. MHi takes its checkpoint, say d_ckpti, and transfers

it to MSSk. MSSk stores all the relevant data structures and

d_ckpti of MHi on stable storage. If MHi is in the

int_vect[], d_ckpti is considered as MHi’s checkpoint for

the current initiation. On commit, MSSk also updates

MHi’s data structures, e.g., cv[], send, etc. On the receipt

of messages for MHi, MSSk does not update MHi’s cv[],

but maintains a message queue to store the messages.

When MHi enters in the cell of MSSj, it is connected to the

MSSj if no checkpointing process is going on. Before

connection, MSSj collects its cv[], buffered messages, etc.

from MSSk; and MSSk discards MHi’s support information

and d_ckpti. The stored messages are processed by MHi, in

the order of their receipt at the MSS. MHi’s cv[] is

updated on the processing of buffered messages. If a node

does not reconnect in a stipulated time, then its

computation can be restarted from its d_ckpt.

3. HANDLING FAILURES DURING

CHECKPOINTING

Since MHs are prone to failure, an MH may fail during

checkpointing process. Sudden or abrupt disconnection of

an MH is also termed as a fault [1]. Suppose, Pi is waiting

for a message from Pj and Pj has failed, then Pi times out

and detects the failure of Pj. If the failed process is not

required to checkpoint in the current initiation or the failed

process has already taken its tentative checkpoint, the

checkpointing process can be completed uninterruptedly. If

the failed process is not the initiator, one way to deal with

the failure is to discard the whole checkpointing process

similar to the approach in [4], [5]. The failed process will

not be able to respond to the initiator’s requests and

initiator will detect the failure by timeout and will abort

the current checkpointing process. If the initiator fails after

sending commit or abort message, it has nothing to do for

the current initiation. Suppose, the initiator fails before

sending commit or abort message. Some process, waiting

for the checkpoint/commit request, will timeout and will

detect the failure of the initiator. It will send abort request

to all processes discarding the current checkpointing

process.

The above approach seems to be inefficient, because, the

whole checkpointing process is discarded even when only

one participating process fails. In our scheme, if any

process fails to take its ad hoc checkpoint in the first

phase, all concerned processes abort their ad hoc

checkpoints only; and the loss of checkpointing effort is

quite low as compared to other protocols [2, 4, 3, 6], in

which every concerned process is forced to abort its

tentative checkpoint. In our scheme, if any process fails to

convert its ad hoc checkpoint into tentative one, then we

propose to follow the technique proposed by Kim & Park

[7] in which a process commits its tentative checkpoints if

none of the processes, on which it transitively depends,

fails; and the consistent recovery line is advanced for those

processes that committed their checkpoints. The initiator

and other processes, which transitively depend on the

failed process, have to abort their tentative checkpoints.

Thus, in case of a node failure during second phase of

checkpointing, total abort of the checkpointing is avoided.

4. PERFORMANCE EVALUATION

We use following notations to compare our algorithm with

other algorithms:

Nmss: number of MSSs.

Nmh: number of MHs.

Cpp: cost of sending a message from one process to

another

 Cst: cost of sending a message between any two MSSs.

Cwl: cost of sending a message from an MH to its local

MSS (or vice versa).

Cbst: cost of broadcasting a message over static

network.

Csearch: cost incurred to locate an MH and forward a

message to its current local MSS, from a source MSS.

Tst: average message delay in static network.

Twl: average message delay in the wireless network.

Tch: average delay to save a checkpoint on the stable

storage. It also includes the time to transfer the checkpoint

from an MH to its local MSS.

N: total number of processes

Nmin: number of minimum processes required to take

checkpoints.

Nmut: number of useless mutable checkpoints [2].

Nind: number of useless mutable checkpoints in the

proposed protocol.

Tsearch: average delay incurred to locate an MH and

forward a message to its current local MSS.

Nucr: average number of useless checkpoint requests in

[2].

Ndep: average number of processes on which a process

depends.

The Synchronization message overhead:

In the first phase, a process taking an ad hoc checkpoint

needs two system messages: request and reply. However,

we have used some techniques to reduce the duplicate

checkpoint requests. Thus the system overhead is

approximately 2*Nmin*Cpp in the first phase. Similarly,

system overhead in the second phase is: 2*Nmin*Cpp. In the

first phase we broadcast the adhoc checkpoint request. In

the second phase, the tentative requested is broadcasted on

the static network; and the system overhead is Cbst. In the

third phase, we broadcast the commit request. The total

message overhead comes out to be: 4*Nmin*Cpp+ 3Cbst

 Number of processes taking checkpoints: It requires only

minimum number of processes to take their checkpoints.

In minimum-process coordinated checkpointing, some

useless checkpoints are taken which are discarded on

commit [2, 8, 14]; or some blocking of processes takes

place during checkpointing [4, 6, 9]. In the proposed

scheme, no useless checkpoints are taken and no blocking

of processes takes place. We log anti-messages of very few

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.14, May 2013

26

messages at the receiver’s end only during the

checkpointing period. The effort of logging few anti-

messages may be negligibly small as compared to taking

some useless checkpoints or blocking some processes

during checkpointing especially in mobile distributed

systems.

The blocking time of the Koo-Toueg [4] protocol is

highest, followed by Cao-Singhal [6] algorithm. The other

schemes are non-blocking [2, 3, 13], like the proposed one.

In Elnozahy et al [3] algorithm, all processes are required

to take their checkpoints in an initiation. In the protocols

[6], [4], and the proposed one, only minimum numbers of

processes record their checkpoints.

Table 1 A Comparison of System Performance

 Cao-

Singhal

[6]

Koo-

Toeg

Algorith

m [4]

Elnozah

y

et al [3]

Propos

ed

Algorit

hm

Avg.

blocking

Time

2Tst Nmin*Tch 0 0

Average

No. of

checkpoints

Nmin Nmin N Nmin

Average

Message

Overhead

3Cbst+

2Cwireless+

2Nmss*Cst

+3Nmh*

Cwl

3*Nmin*

Cpp* Ndep

2*Cbst +

N *Cpp

4*Nmin*

Cpp +

3Cbst

The message overhead in the proposed protocol is greater

than [2, 3, 4, 6] due to the fact that the proposed scheme is

a three phase algorithm. Our algorithm is a three phase

algorithm; therefore it suffers from extra message

overhead of Cbst +2Nmin*Cwl. By doing so, we are able to

reduce the loss of checkpointing effort in case of abort of

the checkpointing procedure in the first phase. In other

algorithms [2, 3, 4, 6, 13], in case of abort in the first

phase, all concerned processes are forced to abort their

tentative checkpoint whereas in the proposed scheme, all

relevant processes abort their ad hoc checkpoints only. The

effort of taking an ad hoc checkpoint is negligible as

compared to tentative one in the mobile distributed system

[2]. Frequent abort of checkpointing algorithms, due to

exhausted battery power, abrupt disconnections etc., may

significantly increase the checkpointing overhead in two-

phase algorithms. We try to minimize the same by

designing the three phase algorithm at the cost of slight

increase in message overhead.

The algorithms proposed in [2, 3, 4, 6, 8, 9] assume that

the processes are non-deterministic, whereas, we assume in

the proposed algorithm that the processes are deterministic

in nature as in [13].

5. CONCLUSIONS

In this chapter, we have proposed a minimum-process non-

intrusive checkpointing protocol for deterministic mobile

distributed systems, where no useless checkpoints are

taken and no blocking of processes takes place. In

minimum-process checkpointing protocols, some useless

checkpoints are taken or blocking of processes takes place;

we eliminate both by logging anti-messages of selective

messages at the receiver end only during the checkpointing

period. The overheads of logging a few anti-messages may

be negligible as compared to taking some useless

checkpoints or blocking the processes during

checkpointing especially in mobile distributed system. We

also try to reduce the loss of checkpointing effort when

any process fails to take its checkpoint in coordination

with others in the first phase. In case of a failure during

checkpointing in the first phase, all concerned processes

need to abort their ad hoc checkpoints only. The cost of

taking an ad hoc checkpoint is negligibly small as

compared to the tentative one especially in case of mobile

distributed systems. In case, some process fails to convert

its ad hoc checkpoint into tentative one, then we follow the

selective commit mechanism, in which a process commits

its checkpoint if none of the process, it causally depends

upon, fails to take its tentative checkpoint. We disallow

concurrent executions in spite of concurrent initiations of

the proposed protocol.

6. REFERENCES
[1] Acharya A., “Structuring Distributed Algorithms and

Services for networks with Mobile Hosts”, Ph.D.

Thesis, Rutgers University, 1995.

 [2] Cao G. and Singhal M., “Mutable Checkpoints: A

New Checkpointing Approach for Mobile Computing

systems,” IEEE Transaction On Parallel and

Distributed Systems, vol. 12, no. 2, pp. 157-172,

February 2001.

 [3] Elnozahy E.N., Johnson D.B. and Zwaenepoel W.,

“The Performance of Consistent Checkpointing,”

Proceedings of the 11th Symposium on

ReliableDistributed Systems, pp. 39-47, October

1992.

 [4] Koo R. and Toueg S., “Checkpointing and Roll-Back

Recovery for Distributed Systems,” IEEE Trans. on

Software Engineering, vol. 13, no. 1, pp. 23-31,

January 1987.

 [5] Prakash R. and Singhal M., “Low-Cost

Checkpointing and Failure Recovery in Mobile

Computing Systems,” IEEE Transaction On Parallel

and Distributed Systems, vol. 7, no. 10, pp. 1035-

1048, October 1996.

 [6]. G. Cao and M. Singhal. “On impossibility of Min-

Process and Non-Blocking Checkpointing and An

Efficient Checkpointing algorithm for mobile

computing Systems”. OSU Technical Report #OSU-

CISRC-9/97-TR44, 1997.

 [7] J.L. Kim, T. Park, “ An efficient Protocol for

checkpointing Recovery in Distributed Systems,”

IEEE Trans. Parallel and Distributed Systems,

pp.955-960,Aug.1993.

 [8] P. Kumar, L. Kumar and R.K. Chauhan, “A Non-

Intrusive minimum process synchronous

checkpointing protocol for mobile distributed

systems”, in proceeding of IEEE ICPWC-2005,2005.

 [9] Parveen Kumar, “A Low-Cost Hybrid Coordinated

Checkpointing Protocol for mobile distributed

systems”, Mobile Information Systems. pp 13-32,

Vol. 4, No. 1, 2007.

 [10] David R. Jefferson, “Virtual Time”, ACM

Transactions on Programming Languages and

Systems, Vol. 7, NO.3, pp 404-425, July 1985.

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.14, May 2013

27

[11] Johnson, D.B., Zwaenepoel, W., “ Sender-based

message logging”, In Proceedingss of 17th

international Symposium on Fault-Tolerant

Computing, pp 14-19, 1987.

[12] Johnson, D.B., Zwaenepoel, W., “Recovery in

Distributed Systems using optimistic message logging

and checkpointing. pp 171-181, 1988.

[13] Pushpendra Singh, Gilbert Cabillic, “A Checkpointing

Algorithm for Mobile Computing Environment”,

LNCS, No. 2775, pp 65-74, 2003.

 [14] L. Kumar, M. Misra, R.C. Joshi, “Low overhead

optimal checkpointing for mobile distributed

systems” Proceedings. 19th IEEE International

Conference on Data Engineering, pp 686 – 88, 2003.

[15] Parveen Kumar, Lalit Kumar, R K Chauhan, “A Non-

intrusive Hybrid Synchronous Checkpointing

Protocol for Mobile Systems”, IETE Journal of

Research, Vol. 52 No. 2&3, 2006.

[16] Sunil Kumar, R K Chauhan, Parveen Kumar, “A

Minimum-process Coordinated Checkpointing

Protocol for Mobile Computing Systems”,

International Journal of Foundations of Computer

science,Vol 19, No. 4, pp 1015-1038 (2008).

