
International Journal of Computer Applications (0975 – 8887)

Volume 69– No.14, May 2013

12

 An Improved Round Robin Approach using Dynamic
Time Quantum for Improving Average Waiting Time

Sandeep Negi
Assistant Professor

Department of Computer Science & Engineering
Delhi Institute of Technology & Management

ABSTRACT

Round Robin scheduling algorithm is the most often used

scheduling algorithm in timesharing systems as it is fair to all

processes and is starvation free. But along with these

advantages it suffers from some drawbacks such as more

number of context switches, long waiting and long turnaround

time. The main objective of this paper is to improve existing

round robin algorithm by extending the time quantum in real

time for candidate processes in such a manner that its fairness

property is not lost. The proposed algorithm in this paper

finds the remaining time of a process in its last turn and then

based on some threshold value, decides whether its time

quantum should be extended or not. A mathematical model

has been developed to prove that the proposed algorithm

works better than the conventional round robin algorithm. The

result of experimental study also shows that the proposed

improved version of round robin algorithm performs better

than the conventional round robin algorithm in terms various

performance metrics such as number of context switches,

average waiting and turnaround time.

General Terms

Scheduling, Round Robin Scheduling.

Keywords

Turnaround time, Waiting time, Response Time, Context

Switching.

1. INTRODUCTION
Processor is among one of the most important computer

resources and to use this resource in a most efficient way

operating system should be multiprogrammed. In a

multiprogramming environment there are several processes

waiting in ready queue to be executed. A scheduling

algorithm determines which process among these needs to be

given control of CPU. A careful selection of a particular

scheduling algorithm needs to be done as quality of service

provided to users and performance of computer system

depends on it. There are several scheduling algorithms

through which various processes can be allocated CPU

depending on their need. Some of these algorithms are

described below:

First Come First Serve (FCFS)

Processes present in ready queue are allocated CPU in the

same order in which they come. [11], [12]

Shortest Job First (SJF)

A process which has the shortest expected execution time is

given the processor first. [11], [12]

Round Robin (RR)

All processes are executed in FCFS order for only a specific

time quantum assigned by the system in a cyclic order. This

cycle continues until every process executes completely. [11],

[12].

Priority Scheduling

A process with the highest priority is executed first. [11], [12]

2. RELATED WORKS
There is a host of work and researches going on for increasing

the efficiency of round robin algorithm. Rami J. Matarneh [1]

proposed a method that calculates median of burst time of all

processes in ready queue. Now if this median is less than 25

than time quantum would be 25 otherwise time quantum is set

to the calculated value. Ahad [2] proposed to modify the time

quantum of a process based on some threshold value which is

calculated by taking average of left out time of all processes

in its last turn. Hiranwal et al. [3] introduced a concept of

smart time slice which is calculated by taking the average of

burst time of all processes in the ready queue if number of

processes are even otherwise time slice is set to mid process

burst time. Dawood [4] proposed an algorithm that first sorts

all processes in ready queue and then calculate the time

quantum by multiplying sum of maximum and minimum burst

by 80. Noon et al. [5] proposed to calculate the time quantum

by taking average of the burst time of all the processes in

ready queue. Banerjee et al.[6] proposed an algorithm which

first sorts all the processes according to the burst time and

then finds the time quantum by taking average of burst time of

all process from mid to last. Nayak et al. [7] calculated the

optimal time quantum by taking the average of highest burst

and median of burst. Yaashuwanth et al [8] introduced a term

intelligent time slice which is calculated using the formula

(range of burst * total number of processes)/ (priority range *

Total number of priority). Matthias et al. [9] proposed a

solution for Linux SCHED_RR, to assign equal share of CPU

to different users instead of process. Racu et al. [10] presents

an approach to compute best case and worst case response

time of round robin scheduling.

3. PROPOSED APPROACH
In conventional round robin algorithm the system assigns a

time quantum that does not change at all. In this paper some

minor changes to conventional round robin algorithm has

been proposed so that the time quantum of those processes is

increased to some extent whose remaining time in its last turn

is less than or equal to an assigned threshold value. In our

approach this threshold value is assumed to be one fourth of

the time quantum. If the remaining time of a process in its

last turn is found out to be less than this threshold value then

the process is not preempted in its second last turn unless it

completely finishes its entire remaining execution time.

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.14, May 2013

13

3.1 Terminologies Used in Proposed

Algorithm
 Pi : i

th Process where i= 1,2,3……N

 N : Total number of process in ready queue.

 TQ : Time Quantum

 BT[Pi]: Burst time of ith process

 AT[Pi]: Arrival time of ith process.

 Turn[Pi] : Round Robin turn number of ith process

 LT[Pi]: Last or second last Round Robin turn for ith

process. LT[Pi] = floor (BTi / TQ) where floor(x)

is largest integer value less than or equal to x.

 K: Threshold Value. (TQ*0.25)

3.2 Proposed Improvement in Round

Robin Algorithm
1. Input: Ready Queue consisting of various

Processes.

2. Initialize Turn[Pi]=1

3. while(Ready_Queue != Null)

4. {

5. Select the process at front of ready queue

6. if (BT[Pi]< TQ)

7. {

8. PiBT[Pi] // execute Pi

9. Remove the process Pi from ready queue

10. }

11. else

12. {

13. if (Turn[Pi] < LT[Pi])

14. {

15. Pi TQ

16. BT[Pi]= BT[Pi]-TQ

17. Turn[Pi] ++

18. Remove process Pi from front end of ready queue

and add it to the rear end of the queue.

19. }

20. else

21. {
22. if(BT[Pi] = = TQ)
23. {
24. Pi BT[Pi]
25. Remove the process Pi from ready queue.
26. }
27. else if (BT[Pi] <=TQ+ K)
28. {
29. Pi BT[Pi]
30. Remove the process Pi from ready queue
31. }
32. else
33. {
34. Pi TQ
35. BT[Pi] = BT[Pi]- TQ
36. }
37. }
38. }
39. }

4. MATHEMATICAL MODEL
In this section a mathematical model has been developed to

prove that the proposed algorithm will always result in a

better or at the most equal performance when compared to

conventional round robin algorithm. Parameters used in this

model are listed below.

 N : Total number of processes in ready queue

 TATi : Turnaround time for ith process.

 WTi: Waiting time for ith process.

 BTi : Burst time for ith process.

 TQ: Time quantum.

 SB(i,j) : Sum of the service time received by all the

processes that came before process Pi and got time

quantum for execution until Pi finished it burst time

completely.

 SA(i ,j): Sum of the service time received by all the

processes that came after process Pi and got time

quantum for execution until Pi finished it burst time

completely.

 NTi: Number of turns required for execution by ith

process.

 CS: Total number of context switches

 AVG(TAT): Average turnaround time for all the

processes.

 AVG(WT): Average waiting time for all the

processes.

Turnaround time of round robin algorithm can be given by

following equations:

TATi = BTi +
 (i, j) +

 (i ,j) (1)

where

SB(i,j) = NTi * TQ if NTi < NTj

 BTj if NTi ≥ NTj

 SA(i, j) = (NTi -1) * TQ if NTi ≤ NTj

 BTj if NTi > NTj

 NTi =

 (2)

AVG(TAT) =

WTi = TATi – BTi (3)

AVG(WT) =

 For finding turnaround time for a process Pi using proposed

approach equation 2 can be modified as follows

 NTi =

 if BTi % TQ > 0.25* TQ

 Otherwise (4)

In order to prove that the proposed approach works better than

the conventional round robin algorithm its worst case and best

case turnaround time scenarios needs to be analyzed. For the

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.14, May 2013

14

worst case, equation (2) and equation (4) would be equivalent.

Hence the worst case of proposed approach is equal to

best/worst case of conventional round robin algorithm. Now

for the best case equation (3) changes as follows

 NTi =

 if BT>TQ

 1 otherwise

To prove that the turnaround time for the best case of

proposed approach is better than conventional approach, it

needs to be shown that

 <

 . Let X= [

 . Now X

should be a real number. If X is a real number, then the -

 = 1.By definition of ceiling function, is the unique

integer satisfying X <= < X + 1. By definition of floor

function, is the unique integer satisfying X - 1 < <=

X. Since X is not an integer, then X- (X - 1) <= –

and – <= (X+1) - X <= - and - <=

1.Thus, - = 1, which implies

 <

 . Hence

turnaround time of proposed approach is better than

conventional approach. Since turnaround time is better, so

from equation (3) waiting time of proposed approach will also

be better than conventional round robin algorithm.

Now the equation for total number of context switches in

round robin scheduling is given by

 CS=

 - 1 (5)

In the worst case of proposed algorithm all processes will

require same number of turns as in conventional round robin

algorithm. So the total number of context switches will be

equal to equation (5). In the best case every process in ready

queue will require one turn less than actual total number of

turns. Hence total number of context switches will be given

by

 CS=

 - 1 - N (6)

Comparing equations (5) and (6) it is seen that the best case of

proposed algorithm will yield N number of less context

switches than conventional approach.

5. EXPERIMENTAL ANALYSIS
For evaluating the performance it is assumed that the

environment where all the experiments are performed is a

single processor and the burst time for all processes is known

prior to submitting of process to the scheduler. Moreover all

the processes have equal priority. For doing this, the proposed

algorithm is implemented in C programming language.

Various numbers of experiments are also carried out of which

output of three cases are shown in this paper.

5.1 Case I
Consider five processes in ready queue with arrival time, burst

time and the time quantum as shown in table 1.

 Table 1: Processes specification for Case I

Time Quantum (TQ) =10 ms

Process Name Arrival Time Burst Time

P1 0 12

P2 0 11

P3 0 22

P4 0 31

P5 0 21

According to conventional Round Robin Algorithm

Fig1: Gantt chart for Round Robin in Table1

Average Waiting Time = 57.2

Average Turnaround Time =76.2

Number of Context Switches =14

According to Proposed Algorithm

 Fig 2: Program output according to proposed approach

for Table 1

5.2 Case II

We assume that there are 5 processes in ready queue with

arrival time, burst time and the time quantum as shown in

table 2.

Table 2: Processes specification for Case II

Time Quantum (TQ) =20 ms

Process Name Arrival Time Burst Time

P1 0 42

P2 0 32

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.14, May 2013

15

P3 0 82

P4 0 45

P5 0 22

According to Conventional Round Robin Algorithm

Fig 3: Gantt chart for Round Robin in Table 2

Average Waiting Time = 140.6

Average Turnaround Time =181.4

Number of Context Switches =15

According to Proposed Algorithm

Fig 4: Program output according to proposed approach

for Table 2

5.3 Case III

We assume that there are 6 processes in ready queue with

arrival and burst time and time quantum as shown in table 2.

 Table 3: Processes specification for Case III

Time Quantum (TQ) =10 ms

Process Name Arrival Time Burst Time

P1 0 11

P2 0 10

P3 0 22

P4 0 31

P5 0 25

P6 0 13

 According to Conventional Round Robin Algorithm

Fig 5: Gantt chart for Round Robin in Table 3

Average Waiting Time = 65.33

Average Turnaround Time = 76.66

Number of Context Switches = 15

According to Proposed Algorithm

Fig 6: Program output according to proposed approach

for Table 3

6. COMPARISON OF RESULTS

Performance of three problems stated in section 5 has been

compared by considering average waiting time, average

turnaround time, and number of context switches. Table 4, 5

and 6 show the result obtained whereas figure7, 8 and 9 show

the comparisons.

Table: 4 Computational results for Case I

Performance

Attribute

Convention

al Round

Robin

Algorithm

Proposed

Algorithm

Remark

Average

Waiting Time

57.2 37.20 20 units of

time saved

Average

Turnaround

Time

76.2 56.60 19.9 unit of

time saved

Context

Switch

14 8 6 number of

context

switches

reduced

Fig 7: Performance Comparison for Case I

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.14, May 2013

16

Table: 5 Computational results for Case II

Performance

Attribute

Simple RR

Algorithm

Proposed

Algorithm

Remark

Average

Waiting Time

140.6 108.60 32 units of

time saved

Average

Turnaround

Time

181.2 153.20 28 units of

time saved

Context

Switch

15 10 5 number of

context

switches

reduced

Fig 8: Performance Comparison for Case II

Table: 6 Computational results for Case III

Performanc

e Attribute

Simple RR

Algorithm

Proposed

Algorithm

Remark

Average

Waiting

Time

65.3 51.33 13.97 units

of time saved

Average

Turnaround

Time

76.66 70.00 6.66 units of

time saved

Context

Switch

15 11 4 number of

context

switches

reduced

 Fig 9: Performance Comparison for Case II

7. CONCLUSIONS

Time quantum plays a very important role in round robin

scheduling. In this paper an improved version of round robin

scheduling algorithm is proposed. This approach extends the

time quantum for those processes that require only a fractional

more amount of time than the allocated fixed time quantum.

From the mathematical model it was proved that the worst

case of the proposed algorithm is equivalent to best/worst case

of conventional round robin algorithm. Experimental results

also show a significant improvement in results of proposed

algorithm over conventional round robin scheduling algorithm

without much affecting the response time.

6. REFERENCES
[1] Rami J Matarneh. , “Self adjustment time quantum in

round robin algorithm depending on burst time of the

now running process”, American Journal

[2] Mohd Abdul Ahad,” Modifying round robin algorithm

for process scheduling using dynamic quantum

precision”, International Journal of Computer

applications(0975-8887) on Issues and Challenges in

Networking, Intelligence and Computing Technologies-

ICNICT 2012.

[3] Saroj Hiranwal and Dr. K.C. Roy, “ Adaptive round

robin scheduling using shortest burst approach based on

smart time slice”, International Journal of Data

Engineering, volume 2, Issue.3, 2011.

[4] Ali Jbaeer Dawood, “ Improving efficiency of round

robin scheduling using ascending quantum and

minimum-maximum burst time”, Journal of University

of anbar for pure science : Vol. 6: No 2, 2012.

[5] Abbas Noon , Ali Kalakech and Saifedine Kadry, “ A

new round robin based scheduling algorithm for

operating systems: dynamic quantum using the mean

average” IJCSI International Journal of Computer

Science Issues, Vol. 8, Issue 3, No. 1, May 2011.

[6] Pallab Banerjee, Probal Banerjee and Shweta Sonali

Dhal, “Comparative performance analysis of mid

average round robin scheduling (MARR) using dynamic

time quantum with round robin scheduling algorithm

having static time quatum”, International Journal of

Electronics and Computer Science Engineering, ISSN-

2277-1956 2012.

[7] Debashree Nayak , Sanjeev Kumar Malla and Debashree

Debadarshini, “Improved round robin scheduling using

dynamic time quantum”, International Journal of

Computer Applications (0975-8887) Volume 38- No 5,

January 2012.

[8] Yaashuwanth C. & R. Ramesh, “ Intelligent time slice

for round robin in real time operating system, IJRRAS 2

(2), February 2010.

[9] Braunhofer Matthias, Strumflohner Juri, “ Fair round

robin scheduling”, September 17,2009.

[10] Razvan Racu, Li Li, Rafik Henia, Arne Harmann ,Rolf

Ernst,” Improved Response time analysis of task

scheduled under preemptive round robin, CODES+ISSS

’07,Proc of 5th IEEE/ACM International conference on

Harware/ Software codegign and system sunthesis.

[11] Silberschatz, Galvin and Gagne, Operating System

Concepts, 8th edition, Wiley, 2009

[12] J Archer Harris” Operating System”, Schaum Outline.

