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ABSTRACT 

In this paper, we study the effect of demand on specialization 

of skilled agents by modifying the earlier hybrid model which 

is based on the well-known Genetic Threshold Model (GTM) 

and Social Inhibition Model (SIM). We improve the agent 

specialization or division of labor (DOL) and also the quality 

of work (QOW) by introducing a new concept of varying the 

demand on a smooth curve and compare our results with the 

previous models.   
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1. INTRODUCTION 
In artificial society, agents are able to reason about the 

environment to maximize the performance to achieve their 

individual goals. There are many ways by which agents can 

improve their task performance and increase the productivity. 

Some of the approaches are: (i) Agents can learn from their 

past experience and improve, (ii) Agents can interact within 

the same group or across the other groups to discuss about the 

demand and supply of a particular task, and (iii) Agents can 

choose to pick tasks on the basis of skill inheritance from the 

family. 

Specialization is allocating a disproportionate amount of a 

resource to one task compared to other available tasks. In a 

population of heterogeneous individuals, it is often the case 

that these individuals possess different aptitudes for available 

tasks. Individuals increase their productivity by enhancing 

their specialization in communities of mutual interest, 

whereby other individuals are also trying to maximize their 

productivity in relation to competitors [1]. 

Division of labor or specialization is one of the primary 

attributes of sociality. Caste and specialization have been the 

focus of the study of the organization of insect societies for 

more than fifty years. Indeed, the description and analysis of 

task allocation between colony members are fundamental to 

understand the organization of a complex biological system 

whose functioning depends upon the behavioral integration of 

a potentially large number of individuals or agents. The 

advantage of specialization by individuals within groups is 

also considered to be of overwhelming importance in many of 

the major transitions in the evolution of life [2].  

The evolutionary transition from solitary organisms to highly 

integrated societies composed of individual organisms (e.g. 

ant colonies, termite colonies and certain bees and wasps) is 

also associated with efficiencies that accrue from a division of 

labor and task specialization. Social insect colonies have been 

compared to factories within fortresses [3] and there are many 

different tasks that agents (workers) must perform, from 

building the nest and guarding the colony to tending the 

queen, rearing many different stages of brood, and feeding 

and grooming one another. Division of labor, where different 

units within a system perform different tasks, is a recurrent 

property of association of multiple entities and a hallmark of 

social living. This fundamental property has been described 

across a diversity of social taxa, from simple to complex 

groups. However, empirical evidence suggests that division of 

labor in social groups increases with increasing group size [4-

5]. Larger groups size is phylogenetically correlated with 

more complex and derived sociality, as seen recurrently 

within the social insects [3], suggesting that the pattern may 

reflect selection acting to increase individual specialization. 

There is also a trend towards increased division of labor 

during social ontogeny, as social groups grow from few 

individuals to many, as shown in [6-7]. A model providing 

insight into possible mechanisms contributing to division of 

labor was given in [8] and it was shown that an increase in 

division of labor could parallel an increase in group size 

directly via the distribution of thresholds within groups and 

indirectly via by-products of increased group size (i.e. task 

number and demand). 

There are several different ways to cause the emergence of 

specialization within a complex system. The agents may 

choose their specialization or it may be assigned as is the case 

in caste system. Several factors including genetic, social and 

economic considerations affect the choice of specialization 

[9], but no approach can fully explain specialization in a 

complex system [10]. These different approaches work with 

the limitation of their own assumptions and contexts thus 

making it difficult to compare results across these different 

approaches [11]. 

Several genetic models have been proposed for the study of 

specialization. The most widely used are the response 

thresholds model. The thresholds model presents a certain 

level of stimulus for each task at which an individual will 

choose to specialize in that task [12]. In the threshold model, 

agents by default perform no tasks. It means if there is no 

stimulus for any of the possible tasks, then individual will do 

nothing [9]. Agents will also perform no tasks if none of the 

stimuli for all available tasks fail to cross its response 

threshold [9]. The threshold varies between agents. In some 

approaches, performing a task causes the thresholds level for 

that task to decrease, while not performing the task will lead 

to the thresholds level increasing [12].   

Social inhibition models also play an important role in the 

emergence of agent’s specialization. According to this 

approach agents choose their specialization, they notify other 

agents that they have done so, reducing the desire of others to 

choose this specialization.  
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Division of labor (DOL) and quality of work (QOW) are the 

two main components which are discussed as a function of 

discretely, randomly and continuously varying demands in 

this paper. The DOL statistic measures the degree to which 

different individuals within the group specialize on different 

tasks and the degree to which each individual is specialist [8].  

Quality of work (QOW) measure the average amount of skill 

used in performing a task. The higher values of DOL and 

QOW are indicative of increase in specialization among the 

agents and that the task was performed by a more skilled 

agent. 

Cockburn and Kobti [13] created a weight allocated social 

inhibition approach whereby more skilled agents inhibit the 

desire of less skilled agents to perform a task. This approach 

drives agents toward tasks where they have comparative 

advantages. This leads to an increase in specialization within 

the population. Though their approach was inspired by social 

insects, this approach is entirely applicable to agents in other 

domains. Combining the Genetic Threshold Model (GTM), 

and the Social Inhibition Model (SIM), they proposed a model 

aiming to increase the effect of agent skill on task choice 

when agents possess different aptitudes for tasks. Their model 

increased the level of quality of work (QOW), but with the 

side effect of reduced levels of specialization. In their model, 

agents choose randomly among tasks with surpassed threshold 

or be inactive if no such task exists. They supposed that each 

time a task i  is performed by an individual, the stimulus 

intensity iS is decreased by an amount 3  . For each time 

step, the level of stimulus iS associated with task i is 

increased by /i N T  , where N is the group size 

(number of individuals) and T  is the task number. The 

reduced demand consequent with increased group size should 

positively affect DOL as shown by [8]. So they had 

incorporated demand   in the expression for i as given by 

equation (5). But they fixed the demand for all tasks thus the 

rate of stimulus regeneration is identical for all tasks and does 

not vary with time. 

The decreased level of specialization in [13] and the identical 

rate of stimulus regeneration in [8] motivated us for the 

present work. In this paper, the model [13] is modified 

assuming the same characteristics of agents; varying skill 

levels for each task and the ability to divide resources among 

tasks. Further, the effect of demand   on division of labor 

(DOL) and quality of work (QOW) is incorporated; a feature 

missing in [13] but taken into consideration by [8] while 

analyzing the emergence of increased DOL as a function of 

group size by taking   = 0.7, 0.9, 1.0 and 1.1. Demand 

represents the total colony effort required to complete all tasks 

relative to the available total effort from workers. The paper 

analyzes the effect of demand on DOL as well as QOW by (i) 

taking discrete values of   same as in [8], (ii) chooses it 

randomly in (0.1, 1.1) and (iii) let   varies continuously 

through a smooth curve whose profile is given in Figure 2. In 

the next section, a brief description of the model [13] for 

continuity and readability of the paper is given. 

2. HYBRID MODEL 
As this model is a modification of the one proposed in [13], 

the agents will have all the properties of their model like agent 

attributes, its inhibition, its interaction and its attribute 

updates. Let T denote a set of tasks i.e. each element i T , 

is a task to be performed by an agent. Each agent has a level 

of skill ( )aSk i associated with each task i . The skill level 

may be dynamic or static and is quantifiable and monotonic, 

i.e. ( ) ( )a bSk i Sk i means that agent a , is more skilled 

than agent b  for task i . The strength of inhibition of an 

agent towards other agents depends upon the skill level of the 

agent. For each agent Ag , we have an ALLOC set [13], 

where ie ALLOC  there is a task i  in AgT with 

weight ie allocated to the task i , where AgT is the set of 

tasks available to the agent Ag . Similarly AgR , is the 

resource available to Ag to do the tasks in AgT . 

Task weights in ALLOC  are relative, hence for a given 

task i , the amount of RAg to be allocated to the task i  is:  

 ( )
( )

i
Ag

e
S R

S ALLOC
   

where ( )S ALLOC  is the sum of all elements in 

ALLOC  and ( )AgS R refers to the total amount of 

resource available. A task having a weight of 0 will result in 

the task being allocated none of AgR . It will be assumed, 

without loss of generality, the resource R refers to the time 

for the rest of the paper. They also normalize the weights 

in ALLOC  such that ( )S ALLOC  is always equal to 1.

 Each agent has the following three attributes for all 

tasks i T : (i) Allocation set ALLOC , (ii) A skill set 

{ }iSKILL s and (iii) A set { }iPODS p . 

For a task i T , the elements, ie ALLOC , 

is SKILL  represent, respectively, the fraction of time the 

agent will spend and the skill of the agent to perform the task 

i . For ip PODS , ip  is a 3-tuple (A, SA, I), where A 

represents the activator store for the agent, SA is the level of 

self-activation, and I is the inhibition store for the agent. The 

agent will increase or decrease the weight of the associated 

task depending upon whether A + SA is positive or negative 

respectively. The idea behind self-activation is the inclination 

of an agent to perform more of the task at which they are best. 

This value should be large enough that it will allow an 

isolated agent to specialize over a long period of time, but it 

should also be small enough that it doesn’t overwhelm the 

social pressure created by stronger competitors. When two 

agents 1Ag  and 2Ag  interact, for a task i T , we obtain 

the values of their PODS for that task i . The interaction will 

decrease the value of A in their respective PODS by the other 

agent’s I, whereas each agent will increase it’s A value by its 

I. Agents will update their allocation based on each task pod. 

Given an allocation ie  and pod ( , , )a s x  for a task i , ie  

will be updated as: i ie e a s    i.e. the amount of self-

activator s  and activator a  is added to the current weight. 

After all task weights are updated for an agent, the values are 

again normalized, resulting in the sum of all weights being 1. 

Cockburn and Kobti[13], used two equally weighted drivers 

for changing agent’s thresholds: (i) A genetic pull towards 

performing the task at which the agent is most skilled and (ii) 

competition from the other agents.  

They used the following formula for the genetic pull:  
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 1 sin( ( ) )
2

aMT Sk i
 

   
 

 (1) 

where MT refers to the maximum threshold all agents can 

possess for a task. This creates a genetic stable point for 

agents, based on skill levels. Also they used the following 

formula for the amount of inhibition agent a  will give to 

another interacting agent: 

 ( )aSk i IR MT   (2) 

assuming that inhibition was determined by agent’s skill 

levels only. The influence rate IR  is a parameter that 

determines the strength of an agent’s influence. This 

parameter can be universal or variable for each agent. It is 

also possible that influence rate can be different for each task. 

If IR  is taken to be dependent on the age of an agent, we can 

recreate the effect of polytheism. The authors [13] took 

0.5IR  in formula (2) to study the effect of inhibition on 

their model. Though they improved the quality of work 

(QOW) but the levels of division of labor (DOL) was 

lowered. 
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Figure 1a: Graph of Sin and Bessel function of 3rd kind 

The reason for lower levels of division of labor in the model 

[13] is rather lower values of the genetic pull governed by 

equation (1). So, in our model, we have selected Bessel 

function because they behave like damped sin and cosine 

curves and stabilize over a longer period of time as evident 

from Figure 1a. This is because in the beginning of the 

simulation, agents have high potential to perform the task but 

as time passes energy levels will be lowered. 

We constructed the following formula for genetic pull: 

  31 2.5 (4.2 ( ))aMT J Sk i   (3) 

The third order Bessel function 3J was empirically selected 

instead of 1 2,J J  as it improved values of division of labor 

while maintaining an upper edge over the quality of work 

compared to model in [13]. We attribute this to the lower 

amplitude and flatter nature of the curve associated with 3J .  

 
Figure 1b: Genetic pull vs. skill level 

The Figure 1b represents the graphs of the genetic pull 

governed by equations (1) (dashed line) and (3) (smooth line), 

taking the value of MT = 1. From Figure 1b, it is seen that the 

genetic pull controlled by equation (3) has higher values than 

the one given by equation (1). As a consequence of this, we 

expect a better level of specialization which is indeed 

achieved. 

2.1 Stimulus Intensity 
Each time a task i  is performed by an individual, the 

stimulus intensity iS , is decreased by an amount  = 3, 

(same as in [8]). For each time step, the level of the 

stimulus iS , associated to task j  is increased by: 

 i
N

T
    (4) 

where N is the group size (number of individuals), T  the 

task number and   the demand. Demand represents the total 

colony effort required to complete all tasks relative to the 

available total effort from workers. In [8], the authors fixed 

the demand for all tasks thus; the rate of stimulus regeneration 

is identical for all tasks and does not vary over time.  

We believe this is not very realistic, so the rate of stimulus 

regeneration is allowed to vary over time. This is achieved by 

considering the demand   varying continuously over a 

smooth curve as shown in Figure 2. The curve is generated by 

using the following formula: 

 3
25

0.5 1.2 ( 2)
1000

t
J   (5) 

where t  is the simulation time step. Each simulation lasted 

1000 time steps. The change in demand, in general, is 

oscillatory in nature and stabilizes over a longer period of 

time. This motivated us to choose the formula (5) for varying 

the demand with time satisfying both the requirements.  

 
Figure 2: Demand vs. Time 

This continuous choice of demand has the advantage that in 

each time step, the stimulus changes thus depicting the real 

world more accurately. Demand is chosen randomly in (0.1, 

1.1), for each task. In this case each task has a different 

stimulus which was omitted for simplicity in [8].  

Further to compare our results with that of [8], we choose the 

same discrete values of   as in [8].  

3. EXPERIMENTS AND RESULTS 

3.1 Design of experiments 
The main focus of this section is to design experiments to 

observe the influence of (i) demand 0.7,0.9,1.0,1.1  , 

(ii) demand chosen randomly in (0.1,1.1)  and (iii) demand 

varying continuously over the smooth oscillatory curve of 

figure (2); on DOL and QOW.  

A metric to measure level of specialization within a 

population was developed in [14]. The same metric to 

measure DOL is used. The measure quantifies the degree to 

which agents in a population are specialized. Each agent 

records their task allocation amounts. These amounts are then 

stored in an n m  matrix, where n  is the number of agents 

and m  is the number of tasks. Then this matrix is normalized 
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such that the sum of all cells is 1. The mutual information and 

Shannon entropy index [15] are then calculated for the 

distribution of individuals across tasks. Finally, dividing the 

mutual information score by the Shannon entropy score will 

provide a value between 0 and 1 [12]. A score of 0 indicates a 

population with no specialization and a score of 1 indicates a 

fully specialized population [14]. 

The metric developed in [13] to measure quality of work 

(QOW) is used. It is a measure of the average amount of skill 

used in performing a task. The quality of work is a value 

between 0 and 1. A higher value indicates that the task was 

performed by a more skilled agent. All the agents are assigned 

an average skill level of 0.5.  

Agents will perform one of tasks that cross its thresholds or be 

inactive if no such task exits. Each individual was given a 

uniformly random initial threshold value for each task 

between 0 and 3, which served as the maximum threshold. 

Each agent was also given a random skill level between 0 and 

1 for each task. 

Simulations were run for 100 times for each combination of 

the parameters. The models were compared across several 

combinations of tasks and agent counts. Similar to the original 

paper, the simulations with run with 2, 4, 10 and 20 tasks and 

10, 50, 100, 500 and 1000 agents. For each combination, the 

resulting level of division of labor (DOL) and quality of work 

(QOW) were measured. The average values were then 

considered for a particular combination. The results are 

illustrated in the Figures 3-10. Each graph illustrates the 

values of DOL and QOW for the genetic pulls governed, 

respectively, by sin curve and by the proposed Bessel curve. 

The Y- axis of each graph presents the value between 0 and 1. 

The X- axis represents each level of agent count that we used.  

3.2 Comparison with existing model 
In this section, the level of specialization between this model 

and the one proposed in [13] are compared. The effect of the 

new formula (3) for genetic pull is reflected in the Figures 3-

6, where 3J  (diamond) and sin  (square) represent DOL 

from this model and from the one proposed in [13]. Better 

values of DOL are achieved as compared to [13].There is a 

general increase in the level of specialization as the agent 

count increases and also as the number of tasks increase.  

 
Figure 3: DOL with 2 tasks 

 
Figure 4: DOL with 4 tasks 

 
Figure 5: DOL with 10 tasks 

 
Figure 6: DOL with 20 tasks 

In this model DOL always increases with increase in task 

count except when the number of tasks and agents were equal. 

The QOW is similar in the models proposed by us and in [13], 

and hence was omitted from the results. 

3.3 Discrete demand 

 

Figure 7: DOL with 0.7   

 

Figure 8: DOL with 0.9   

 

Figure 9: DOL with 1.0   
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Figure 10: DOL with 1.1   

For 0.7  , DOL increases with group size for all tasks 

and for groups size 50 or more it increases with number of 

tasks. As demand increases to 1, DOL decreases with group 

size for 2 and 4 tasks. For 1  , DOL drops as expected. 

3.4 Random demand 

 
Figure 11: DOL with random demand 

 
Figure 12: QOW with random demand 

The level of specialization increases with tasks for random 

demand. For 10 and 20 tasks, the DOL increases with agent 

count. For 2 tasks, DOL increases with agent count till 50 

agents and then starts decreasing with agent count. For 4 

tasks, DOL oscillates between 0.45 and 0.6. The QOW 

follows similar pattern. 

3.5 Continuously varying demand 
The level of specialization increases monotonically with 

group size, except for 4 tasks, where there is a dip in 

specialization level for 10 agents. For all tasks the DOL 

stabilizes around 500 agents while QOW stabilizes around 50 

agents. For population less than 50 agents, the QOW 

decreases with increase in task number.  

 
Figure 13: DOL with continuous demand 

 
Figure 14: QOW with continuous demand 

4. DISCUSSION 
In the proposed model, specialization is influenced by number 

of agents, task number, and demand. There is interplay 

between these three parameters. The effect of task number and 

group size on DOL varies as demand moves above or below 

one. When demand is greater than one, from Eq.(4), it is seen 

that the stimulus intensity of each task rises quickly above the 

threshold of any agent so that all agents become equally likely 

to perform any task at each time step, regardless of thresholds. 

Hence, there is no proper division of labor (Figure 10). For 

demand equal to one, division of labor actually decreased with 

increasing group size for 2 and 4 tasks but it increased with 

group size for 10 and 20 tasks as illustrated by Figure 9. 

When demand level is below 1, agents have fewer 

specializations that will have enough stimuli to surpass their 

thresholds. The results indicate that even when there is low 

demand, enough agents are still faced with multiple choices, 

resulting in a specialization from social influence. The role of 

a high task number for DOL is less if task number is 4 or 

more. 

From the Figures 3 to 6 significant increases in division of 

labor in the new model compared to [13] is observed. The 

specialization increases monotonically with group size for 2 

and 4 tasks whereas for 10 and 20 tasks, the DOL increases 

initially with group size and almost stabilizes for groups of 

size 100 or more. 

The Figures 7 to 14, showing all the three cases of demand, 

imply that continuous demand is the better choice followed by 

random demand and then discrete demand at the bottom. 

QOW also follows the similar pattern in all the three cases. 

5. CONCLUSION AND FUTURE WORK 
We have proposed a new hybrid model by introducing a new 

formula for genetic pull. This helps to increase the DOL as 

compared with the model proposed in [13]. The QOW is 

either slightly better or at par with QOW achieved in [13].  

The novelty of our approach is that we analyze the DOL and 

QOW by introducing the concept of continuous and random 

demand in our model. The demand changes depending on 

several factors like colony size, climatic changes across social 

systems as well as other biological systems. Assuming the 

food is the resource in an ant colony, its availability is higher 

during summer thus reducing the demand and consequently 

during winter demand is higher owing to scarcity of food. 

Hence demand is oscillatory in nature. Over a longer period, 

the colony also tries to preserve some food for leaner periods, 

hence the demand eventually stabilizes. Keeping these 

requirements in mind, we constructed formula (5) for the 

demand, which is both oscillatory and eventually stabilizes 

around a point.  

The increase in the DOL with group size, as shown by Figures 

3 to 6, is in conformity with [6] and [7] who concluded that an 

increase in division of labor could parallel an increase in 

group size directly via the distribution of thresholds within 

groups and indirectly via by-products of increased group size 

(i.e. task number and demand). 
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There is a marked difference in DOL and QOW for random 

demand compared to continuous demand. In the random case, 

both DOL and QOW are heavily task dependent. These are 

better for higher number of tasks as compared to fewer tasks. 

In the future work we will focus on a combination of our 

continuous and random approaches such that demand for each 

task varies continuously on a randomly chosen smooth curve.  
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