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ABSTRACT 
The maximum clique problem (MCP) has long been 

concentrating the interest of many researchers in the field of 

combinatorial optimization. The goal inthe MCP is to find the 

largest complete subgraph (clique) in a given graph. Early 

methods developed to solve the MCP, suffer from exponential 

time complexity that limits their application to relatively small 

graph sizes. In order to overcome this limitation, a binary 

representation ofthe MCP is consideredand solved using a 

novel binary implementation of Harmony Search (HS) 

algorithm. The standard HS mimics music improvisation 

process to solve optimization problems. However, it is not 

suitable for binary representations. This is due to the pitch 

adjusting operator not being able to perform the local search 

in the binary space. Therefore the improvisation process in the 

proposed Binary Harmony Search (BHS) is modified to fit 

binary formulation of the MCP. The algorithm is tested on 

DIMACS benchmark graphs with up to 1024 nodes and 

500000 edges, consisting of randomly generated graphs with 

known maximum cliques and of graphs derived from various 

practical applications. Results provide empirical evidence of 

the effectiveness the BHS for solving maximum clique 

problem, in a timely manner. 

General Terms 

Maximum clique problem, Harmony search algorithm, Graph 

theory, Evolutionary computing. 

 

1. INTRODUCTION 
The maximum clique problem (MCP) is a classical 

combinatorial optimization problem that has important 

applications in different domains such as coding theory, 

clustering, fault diagnosis, mobile networks and computer 

vision[1].  Recently, applications in bioinformatics have 

become important [2].Many important problems in computer 

science and mathematics, such as constraint satisfaction, 

subgraph isomorphism, or vertex covering problems are easily 

reducible to the MCP[3]. 

The MCP is formally described as follows. Let G=(V;E) be an 

undirected graph on n vertices, where V={1,2,3,…,n} is the 

vertex set (the terms vertex and node are used synonymously) 

and E ⊂ V×V is the edge set. A clique in G is a subgraph of G 

in which there is an edge between any two vertices. The size 

of a clique is the number of vertices in the clique. The MCP is 

to find the largest clique in a given graph G [4]. 

The adjacency matrix of a graph   is a     matrix denoted 

by    and defined as:       if there is an edge between 

vertices   and   in the graph, and       otherwise. 

The MCP is highly intractable and is one of the earliest 

problems proven to be NP-complete[5]. It is also shown that 

there is no polynomial-time algorithm for approximating the 

maximum clique within a factor of      for any     unless 

    [6], where   is the number of the nodes of the graph. 

These facts indicate that the MCP is very difficult to solve. An 

excellent overview of the algorithms, complexity and 

applications of the MCP can be found in[7]. 

Several exact algorithms such as branch and bound 

methods[8],[9] have been proposed to solve the MCP. Due to 

their exponential complexity, their applicability is limited to 

small and sparse graphs. Therefore, a lot of heuristic and 

metaheuristic approaches are suggested in the literature to find 

near optimal solutions to large and dense graphs.  

In[10], Marchiori proposed an effective genetic based meta-

heuristic algorithm incorporating a simple local search 

heuristic. She demonstrated that they outperformed the 

previously reported meta-heuristics based on evolutionary 

algorithms for DIMACS benchmark graphs[11]. Battiti and 

Protasi[12] proposed an effective meta-heuristic algorithm 

that employs a sophisticated search strategy based on the idea 

of tabu search. Other recent (meta) heuristics used for solving 

this problem include ant colony optimization [3] and annealed 

replication heuristic[13]. 

In this paper a novel approach for solving MCP based on the 

recently developed algorithm by Geem[14], named harmony 

search (HS) meta-heuristic algorithm, is provided. HS is 

conceptualized using the musical process of searching for a 

perfect state of harmony. The harmony in music is analogous 

to the optimization solution vector, and the musician's 

improvisations are analogous to local and global search 

schemes in optimization techniques. It has been successfully 

applied to various discrete optimization problems such as 

traveling salesperson problem [14], tour routing [15], water 

network design [16], vehicle routing [17], and others. Original 

harmony search is proposed for both continuous and discrete 

variables but does not support binary variables, as discussed 

in section 3. To address this issue a binary version of harmony 

search is proposed in this paper to solve the MCP where the 

number of graph nodes and edges are larger than memory and 

processor constraints. 

 The rest of the paper is organized as follow: in Section 2 

harmony search algorithm is briefly introduced. In section 3 

the proposed BHS algorithmis discussed, followed by 

experimental result and a comparative study in section 4. 

Finally, the work is concluded in the last section. 

2. HARMONY SEARCH ALGORITHM 
In order to explain the HS algorithm in detail, it is required to 

idealize the process of improvisation done by an expert 

musician. When a musician is improvising, he can choose 

among three options: (1) to execute any pitch from memory; 

(2) to execute a pitch adjacent to any other in his memory; (3) 
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to execute a random pitch from the range of all possible 

pitches. Similarly, when each decision variable picks a value, 

there are three options: (1) to pick any value from the 

memory; (2) to pick a value adjacent to any value in the 

memory; (3) to pick a random value from the domain of all 

possible values. Geem[14]  formalized these three options to 

create a new metaheuristic in 2001, and the three 

corresponding components were: memory use or 

consideration, pitch adjustment and randomness. These three 

options are employed in the HS algorithm by means of 

threemain parameters: Harmony Memory (HM), Harmony 

Memory Consideration Rate (HMCR), and Pitch Adjustment 

Rate(PAR). In the following details on the HS algorithm steps 

are explained. 

The HS algorithm was initially conceived for solving 

optimization problems where a single objective is considered. 

Therefore, to apply the canonical HS to a problem, it must be 

formulated as minimize or maximize: 

                                                                       

subject to: 

                                                                    

                                                  

where 

                           or  
         

 (4) 

After problem formulation, the parameters of the algorithms 

must be configured with values. Besides the two parameters 

already mentioned, HMCR and PAR, other parameters like 

harmony memory size (HMS), maximum number of 

improvisations (MI)and pitch rate variability or (fret width, 

FW) must be set. 

HMCR plays an important role in algorithm convergencesince 

it ensures that most fitted solutions are considered as the 

elements of new solutions. With a relatively small value for 

this parameter, convergence may be slow due to the lack of 

enough exploitation. On the other hand, if the value of this 

parameter is extremely large, alternative solutions are not well 

explored in the feasible search space, increasing the chance of 

limiting the algorithm in local optima. In order to use the 

memory effectively, an HMCR value selected in the range of 

[0.70; 0.95] is mostly recommended.  

A low value for PAR together with a narrow value for FW can 

make the convergence of the HS algorithm slow, given the 

limitation in exploration to a single portion of the search 

space. However, a very high value for PAR together with a 

wide value for FW may cause solutions to disperse around a 

few potential optima as in random search. For these reasons, 

usually, PAR in the range of [0.1; 0.5] is selected and FW, 

generally, is bounded between 1% and 10% of all the range of 

variable values. The HS algorithm initially improvises several 

solutions randomly and stores them in the HM. After HM 

initialization, new harmonies are improvised iteratively using 

random selection, HM consideration and pitch adjustment. HS 

determines   
   value of a new solution      

   
      

        
     as follows: 

  
   

 
 
 
 
 

 
 
 
 

 
 

 
                         

                                                          

      
    

  
 

         
        

                    

 
                                                                   
                                                               

                                                                             

 

  

     (5)    

where         ,               and w.p. stands for 

“with probability”. Each bit of the new harmony,   
   ,could 

bea random number in the specified range with probability (1-

HMCR) or randomly selected from previous solutions in HM 

with probability HMCR. PAR is the rate where HS tweaks the 

value which was originally picked from memory. Thus, HS 

keeps the original value obtained from memory with 

probability (1-PAR).  

If the new solution      is better than the current worst 

solution in HM in terms of the objective function value, the 

new solution is included in HM and the worst is discarded. 

3. BINARY HARMONY SEARCH 
This section describes in detail the main components of the 

proposed BHS for the MCP. 

3.1 Representation and Fitness 
Let         be an undirected graph on   vertices, 

where,              is the node set and E ⊂    is the 

edge set. A set of nodes  ⊂   is encoded as a string 

                      where      if and only if    is 

included in   and      otherwise. The fitness of   is 

defined as the number of nodes included in this subgraph if   

represents a clique. Since every new solution generated by 

improvisation phase will be repaired to be a clique, there is no 

need to define fitness values for infeasible solutions. 

3.2 Harmony Memory Initialization 
With a randomly generated Harmony Memory, a very rare 

number of harmonies might represent a clique. This issue in 

addition to the large feasible state space of the MCP would 

significantly decrease the probability of convergence, 

especially in large graphs. Therefore a heuristic random 

algorithm is used to produce initial harmonies. 

The random algorithm generates each harmony in the initial 

harmony memory as follows. First, a vertex   is selected at 

random and initially put in a subset named  .Then, a vertex    

is selected from  's adjacency list,  , randomly. Set B is 

updated after removal of   such that vertices that aren’t 

adjacent to new selected vertexare excluded. Therefore the 

remaining vertices in   are adjacent to all selected vertices 

listed in  . This step is repeated until no node is remained in 

 . Finally, one is assigned to the positions corresponding to 

the vertices in  . The result is actually a clique contained in 

the input graph. The pseudo code for harmony memory 

initialization is shown in Fig. 1. 

Lemma 1: The initialization of a new harmony runs in       
time. 

Proof: The first and second lines of the pseudo code depicted 

in Fig. 1, consist of constant number of operations. The third 

line contains n-1 number of evaluations in order to check 

whether a node is adjacent to vi or not. Since vi has at most n-1 
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neighbours, the loop in the fourth line runs at most n-1 times. 

In this loop, lines 4.1 and 4.2 are run only one time in each 

iteration, while 4.3itself is a loop with at most n-1 number of 

iterations. Considering the number of total operations based 

on the input size n, it is evident that the initialization 

algorithm runs in O(n2). □ 

1.           vertex set 

2. Randomly select    from  ,        

3.    nodes that are adjacent    

4. While      

4.1   Randomly select a node   from   

4.2          

4.3      nodes in   that are adjacent to    

Fig 1:  The pseudo code for harmony memory initialization 

3.3 Initialization and Update of the 

Probability Vector 
One of the key issues in the design of meta-heuristic 

optimization algorithms is how to generate new solutions. The 

proximate optimality principle, an underlying assumption in 

most (if not all) heuristics, assumes that good solutions have 

similar structure [18]. This assumption is reasonable for most 

real-world problems. Based on this assumption, an ideal 

algorithm should be able to produce a solution which is close 

to the best solutions found so far. 

To address proximate optimality principle, a probability 

vector is used in the BHS which needs to be initialized before 

iterations start and updated after changing the HM. Suppose 

that the current HM has   binary 

strings      
 
   

 
     

 
           . At the beginning 

of harmony improvisation stage the probability vector 

              is initialized as:  

                                    
   

  
   

 
                                           

By means of equation 6,    would be the percentage of the 

binary strings with the value of the  th element being one in 

HM. In other words,    would be the percentage of solutions 

in HM including the  th node of the graph. During the 

harmony improvisation phase, if an old harmony is 

superseded by the new improvised harmony the probability 

vector must be recalculated. Probability vector is one of the 

parameters used in harmony improvisation phase. 

3.4 New Harmony Improvisation 
Since any solution vector is decoded as a binary string, 

changing a bit (pitch) converts it from 0 to 1 and vice versa, 

which acts exactly the same as selecting a random bit.  Hence, 

Pitch Adjustment phase in the basic HS is a redundant step 

and is excluded from the proposed BHS algorithm. 

In the proposed BHS algorithm, each component or 

variable,  
   , of a new 

harmony,         
      

        
    ,is selected 

independently as follows: 

  
     

                                                              

                                                      

                                        

     (7) 

  
   is randomly sampled from the probability vector 

               with probability HMCR, or is randomly 

selected from the set of possible values, {0,1}, with 

probability 1-HMCR. Probability vector   is generated based 

on harmony memory using (6). In the sampling procedure 

based on HM,  
    is set to one with probability    and is set 

to zero with probability of (1-   . The larger HMCR is, the 

more elements of x are sampled from probability vector P. 

The selection procedure is summarized as a flow chart in Fig. 

2. In this approach, the search space around current solutions 

is exploited while convergence to global optima is 

maintained. 

 

Fig 2: Decision flow chart for selecting each 
component       of a new harmony 

   induced subgraph,    vertex set 

Enlarge: 

1. Add few nodes randomly chosen from     

Extraction: 

2.     

3. While(     

3.1  Select a random node   from   

3.2  Choose a random number   

3.3  If     delete   from   and   

3.4  else delete all nodes that are not adjacent to  

  from   and   

Extension: 

4.       

5. While (     

     5.1  Select a random node   from   

5.2  Add   to   if it is connected to all nodes in   

5.3  Delete   from S 

Fig 3: The pseudo code for the heuristic repair 
algorithm 

3.5 Heuristic Repair 
After improvising a new harmony, the subset of selected 

nodes, however, may not be a clique. Therefore, a strong local 

optimization step is used after the improvisation step which 

further improves convergence. A number of heuristic methods 

proposed in literature to speed up the evolutionary algorithms 
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are used for MCP [10], [19], [12]. To produce a clique, 

Marchiori’s heuristic [19] is used. 

The repair algorithm has three steps, enlarge, extraction and 

extension. At first, some nodes are randomly added to the 

subgraph during the enlarge step. Then, in the extraction step, 

for all nodes in the selected subgraph either delete the node 

with probability   or delete all nodes in the subgraph that are 

not adjacent to it with probability    . Generally speaking 

  should be very small. Otherwise the result graph would be 

very small due to removal of a lot of nodes. 

Finally, in extension step, nodes are randomly selected one by 

one from the rest of nodes that are not in the subgraph. If they 

are adjacent to all nodes in the subgraph they are included in 

it. The pseudo code for the heuristic repair algorithm is 

depicted in Fig. 3. The worst case complexity of heuristic 

repair is      , where   is the number of nodes in the graph 

[19]. 

4. EXPERIMENTAL RESULTS 
In this section, BHS is studied experimentally and compared 

with the best results gained by exact algorithms on the 

DIMACS benchmark graphs, which are available in 

http://www.info.univ-angers.fr/pub/porumbel/graphs/. These 

graphs provide a valuable source for testing the performance 

of algorithms for the MC problem, because they arise from 

various different areas of applications. 

BHS has been implemented with MATLAB. All the 

experiments were performed on Intel Core i5 CPU (2400 

MHz) with 4 GB RAM memory. The algorithm was run for 

ten times on each graph.  

The parameters in BHS are HMS and HMCR. HMS is the 

number of harmonies kept in memory and HMCR is the 

probability of choosing a variable from HM while 

improvising a new solution. 

To assess the effect of these two parameters on the 

performance of BHS, BHS is tested on the DIMACS 

benchmark problem C125.9 (random graph with 125 nodes 

and a density of 0.9) for HMS=150,180,…,700 with 

HMCR=0.95 and HMCR=0.7,0.72,…,0.99 with HMS=400.  

Fig. 4 displays different Number of Function Evaluation 

(NFE) by harmony memory. Less required NFE to achieve a 

solution is more desirable. As shown in this figure, for HMS 

smaller than the graph size, a very large number of NFEs are 

required. Increasing HMS improves the algorithms 

performance steadily, up to a point where not only further 

increase does not show any improvement, but rather adds to 

the required operations to finish the algorithm run. This 

indicates that from that point on, memory does not contribute 

any significant information. Based on this experiment, HMS 

is set to n which is the number of nodes in the graph. 

 

Fig4: The average NFE for finding the maximum 
Clique on C125.9 with different HMSs. Each data 
represents the average NFE in ten runs. 
In Fig. 5, NFE based on various HMCR values are displayed. 

It is observable that with a small HMCR value, the algorithm 

would converge slower, or might not even reach a solution at 

all. This is due to lack of effective utilization of previous 

solutions stored in memory. Excessive use of the past 

information, could significantly decrease algorithm speed, as 

shown in this figure. Therefore, HMCR parameter is set to 

0.95 during the experiments.  

Since the proposed algorithmdoes not have a pitch adjustment 

phase as in the basic harmony search,there is no need to tune 

pitch adjustment rate (PAR). Following the suggestion in 

[19],the parameter   in the heuristic repair should be very 

small and is set to 0.005 during the experiments. 

 

Fig 5: The average NFE for finding the maximum 
Clique on C125.9 with different HMCR values. 
Each data represents the average NFE in ten 

runs. 

Table 1 shows the results of running the Binary Harmony 

Search on the 18 popular graphs from different applications. 

These graphs are the following: 

 C    and DSJC   : random graph of size   and density 

   [19][6][10]; 

 MANN: Steiner triple graphs which are generated for 

the set covering problem [20]; 

 brock _2 and brock _4: Brockington graph of size   

which are generated in such a way that the expected 

maximum clique is much smaller than the real one [20]; 

 gen _p0.9_ :Sanchis graph of size  ; 
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 Hamming: Hamming graphs from coding 

theoryproblems [21]; 

 Keller: Keller graphs are based on Keller’s conjecture 

on tilings using hypercubes[22]; 

 P_hat _z: P-hat graphs of size   with large variance in 

the node degree distribution and larger cliques than the 
usual random graphs [19]. 

In Table 1, number of nodes and density of each graph is 

shown in the second and third columns. The density of a 

graph with n nodes is equal to the number of its edges divided 

by the number of edges in a complete graph with n nodes. In 

the next columns, the results of the BHS are depicted 

including the average and the best maximum clique size 

found. The average running time of the algorithm for 

obtaining the average result is also shown. In the last column 

the best results of the clique size found so far on each graph is 

shown. 

BHS finds the maximum cliquefor about 50% of graphs in a 

reasonable time. For other 50% of graphs, although BHS does

not find the maximum clique, it finds very large cliques in a 

very short time. Since exact algorithms like branch and bound 

[9] and [23] have exponential time complexity they are not 

well applicable for graphs with more than 100 nodes. 

Therefore, algorithms like BHS are more applicable even 

though they have some errors in finding the clique with the 
maximum size. 

5. CONCLUSION AND FUTURE WORK 
In this paper a novel meta-heuristic algorithm was presented 

to address computational limitations of classic methods of 

solving maximum clique problem (MCP) in large graphs. In 

order to increase efficiency a binary representation of the 

problem was used. The proposed method is based on the 

standard Harmony Search algorithm with the pitch adjustment 

operator modified for local binary search.To improve 

convergence time a heuristic to generate the initial set of 

feasible solutions (i.e. cliques) was employed. Moreover, after 

improvising each new possible solution to the problem, a 

repair algorithm is run to convert the solution at hand to the 

closest matching clique. Experiments on various graphs 

demonstrate the effectiveness of the proposed algorithm in 

reaching a solution in a timely manner with limited memory 

consumption.  

TABLE 1: Results of running BHS on 18 DIMACS benchmark graphs. Nodes: Number of nodes in the graph, 

Density:  the number of edges divided by the number of edges in a complete graph with the same number of 

nodes, Ave: The average size of the clique found by BHS, Best: The size of the largest clique found, Time: The 

runtime (in seconds) of the algorithm, Best DIMACS: The size of the largest clique found by all algorithms. 

Graph Nodes Density Binary Harmony Search Best DIMACS 

   
Clique Size 

Ave      Best 
Time (sec) Clique Size 

C125.9 125 0.898 34 34 1.01 34 

C500.9 125 0.900 45.5 46 0.47 57 

gen200_p0.9_44 200 0.900 39.4 40 11.89 44 

gen200_p0.9_55 200 0.900 55 55 13.8 55 

MANN_a27 378 0.990 105.9 106 0.87 126 

Brock200_2 200 0.496 11.23 12 0.04 12 

Brock 200_4 200 0.657 14.1 15 0.06 17 

Brock400_2 400 0.749 20.3 21 0.14 29 

Brock400_4 400 0.748 21 21 0.31 33 

Hamming8-4 256 0.639 15.9 16 0.05 16 

Hamming10-4 1024 0.828 31.5 32 0.54 40 

Keller4 171 0.649 11 11 0.02 11 

Keller5 776 0.751 23 24 0.7 27 

P_hat300_1 300 0.243 8 8 0.05 8 

P_hat300_2 300 0.488 25 25 8.00 25 

P_hat300_3 300 0.744 36 36 21.72 36 

P_hat700_1 700 0.249 9 9 0.22 11 

P_hat700_2 700 0.497 42 42 31.90 44 
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Future studies on this approach consist of further 

improvements of initialization and repair heuristics to ensure 

improved convergence while exploring problem search space 

more effectively. The proposed method could also be tested 

on other binary problems such as choosing optimum input 

subset for SVM[24]. 

6. REFERENCES 

[1] B. Huang, “Finding maximum clique with a genetic 

algorithm,” Penn. State Harrisburg Master's Thesis in 

Computer Science, 2002. 

[2] P. Pevzner and S. Sze, “Combinatorial approaches to 

finding subtle signals in DNA sequences,” Proceedings 

of the Eighth International Conference on Intelligent 

Systems for Molecular Biology, pp. 269–278, 2000. 

[3] C. Solnon and S. Fenet, “A study of ACO capabilities for 

solving the maximum clique problem,” Journal of 

Heuristics, pp. 1–31, 2006. 

[4] R. Carraghan and P. Pardalos, “An exact algorithm for 

the maximum clique problem,” Operations Research 

Letters, vol. 9, no. November, pp. 375–382, 1990. 

[5] E. Marchiori, “A Simple Heuristic Based Genetic 

Algorithm for the Maximum Clique Problem,” Proc. 

ACM Symp. Appl. Comput, pp. 366-373,1998. 

[6] Q. Zhang, J. Sun, and E. Tsang, “An Evolutionary 

Algorithm With Guided Mutation for the Maximum 

Clique Problem,” IEEE Transactions on Evolutionary 

Computation, vol. 9, no. 2, pp. 192–200, Apr. 2005. 

[7] I. Bomze, M. Budinich, and P. M. Pardalos, “The 

maximum clique problem,” In Handbook of 

Combinatorial Optimization, vol. 4, pp. 1–74, 1999. 

[8] P. Östergård, “A fast algorithm for the maximum clique 

problem,” Discrete Applied Mathematics, vol. 120, pp. 

197–207, 2002. 

[9] P. Pardalos and G. Rodgers, “A branch and bound 

algorithm for the maximum clique problem,” Computers 

& operations research,vol. 19, pp. 363-375, 1992. 

[10] E. Marchiori, “Genetic, iterated and multistart local 

search for the maximum clique problem,” Applications of 

Evolutionary Computing, pp. 112–121, 2002. 

[11] D. S. Johnson and M. A. Trick, “Cliques, Coloring and 

Satisfiability: Second DIMACS Implementation 

Challenge,” AMS, DIMACS Series in Discrete 

Mathematics and Theoretical Computer Science, vol. 26, 

1996. 

 

 

 

 

 

 

 

 

[12] R. Battiti and M. Protasi, “Reactive local search for the 

maximum clique problem,” Algorithmica, vol. 1198, no. 

510, 2001. 

[13] I. Bomze, M. Budinich, M. Pelillo, and C. Rossi, 

“Annealed replication: a new heuristic for the maximum 

clique problem,” Discrete Applied Mathematics, vol. 

121, pp. 27–49, 2002. 

[14] Z. W. Geem, J. Kim, and G. Loganathan, “A new 

heuristic optimization algorithm: harmony search,” 

Simulation 76, pp. 60-68, 2001. 

[15] Z. W. Geem, C. Tseng, and Y. Park, “Harmony search 

for generalized orienteering problem: best touring in 

China,” Advances in natural computation, pp. 741–750, 

2005. 

[16] Z. W. Geem, “Optimal cost design of water distribution 

networks using harmony search,”Engineering 

Optimization, pp. 1–49, 2010. 

[17] Z. W. Geem, K. S. Lee, and Y. Park, “Application of 

Harmony Search to Vehicle Routing,” American Journal 

of Applied Sciences, vol. 2, no. 12, pp. 1552–1557, Dec. 

2005. 

[18] F. Glover and M. Laguna, “Tabu 

search,”Kluwer Academic Publishers, 

Norwell, MA1998. 

[19] E. Marchiori, “A simple heuristic based genetic 

algorithm for the maximum clique problem,” 

Proceedings of the 1998 ACM symposium on Applied 

Computing - SAC  ’98, pp. 366–373, 1998. 

[20] D. Johnson and M. Trick, “Cliques, Coloring, and 

Satisfiability: Second Dimacs Implementation Challenge. 

1996,” USA: American Mathematical Society. 

[21] N. Sloane, “Unsolved problems in graph theory arising 

from the study of codes,” Graph Theory Notes of New 

York, vol. 18, pp. 11–20, 1989. 

[22] J. Lagarias and P. Shor, “Keller’s cube-tiling conjecture 

is false in high dimensions,” Manuscript, Bell 

Laboratories, vol. 27, no. 2, pp. 279–283, 1992. 

[23] D. R. Wood, “An algorithm for nding a maximum clique 

in a graph,” vol. 21, no. August 1995, pp. 211–217, 

1997. 

[24] C. Zhang and H. Hu, “Using PSO algorithm to evolve an 

optimum input subset for a SVM in time series 

forecasting,” IEEE International Conference on Systems, 

Man, and Cybernetics, 2005.  

 


