
International Journal of Computer Applications (0975 – 8887)

Volume 69– No.12, May 2013

38

A Binary Harmony Search Algorithm for Solving the
Maximum Clique Problem

Sepideh Afkhami

Shahrood University of
Technology,

Shahrood, Iran

Omid R. Ma’rouzi
Shahrood University of

Technology,
Shahrood, Iran

Ali Soleimani
Shahrood University of

Technology,
Shahrood, Iran

ABSTRACT
The maximum clique problem (MCP) has long been

concentrating the interest of many researchers in the field of

combinatorial optimization. The goal inthe MCP is to find the

largest complete subgraph (clique) in a given graph. Early

methods developed to solve the MCP, suffer from exponential

time complexity that limits their application to relatively small

graph sizes. In order to overcome this limitation, a binary

representation ofthe MCP is consideredand solved using a

novel binary implementation of Harmony Search (HS)

algorithm. The standard HS mimics music improvisation

process to solve optimization problems. However, it is not

suitable for binary representations. This is due to the pitch

adjusting operator not being able to perform the local search

in the binary space. Therefore the improvisation process in the

proposed Binary Harmony Search (BHS) is modified to fit

binary formulation of the MCP. The algorithm is tested on

DIMACS benchmark graphs with up to 1024 nodes and

500000 edges, consisting of randomly generated graphs with

known maximum cliques and of graphs derived from various

practical applications. Results provide empirical evidence of

the effectiveness the BHS for solving maximum clique

problem, in a timely manner.

General Terms

Maximum clique problem, Harmony search algorithm, Graph

theory, Evolutionary computing.

1. INTRODUCTION
The maximum clique problem (MCP) is a classical

combinatorial optimization problem that has important

applications in different domains such as coding theory,

clustering, fault diagnosis, mobile networks and computer

vision[1]. Recently, applications in bioinformatics have

become important [2].Many important problems in computer

science and mathematics, such as constraint satisfaction,

subgraph isomorphism, or vertex covering problems are easily

reducible to the MCP[3].

The MCP is formally described as follows. Let G=(V;E) be an

undirected graph on n vertices, where V={1,2,3,…,n} is the

vertex set (the terms vertex and node are used synonymously)

and E ⊂ V×V is the edge set. A clique in G is a subgraph of G

in which there is an edge between any two vertices. The size

of a clique is the number of vertices in the clique. The MCP is

to find the largest clique in a given graph G [4].

The adjacency matrix of a graph is a matrix denoted

by and defined as: if there is an edge between

vertices and in the graph, and otherwise.

The MCP is highly intractable and is one of the earliest

problems proven to be NP-complete[5]. It is also shown that

there is no polynomial-time algorithm for approximating the

maximum clique within a factor of for any unless

 [6], where is the number of the nodes of the graph.

These facts indicate that the MCP is very difficult to solve. An

excellent overview of the algorithms, complexity and

applications of the MCP can be found in[7].

Several exact algorithms such as branch and bound

methods[8],[9] have been proposed to solve the MCP. Due to

their exponential complexity, their applicability is limited to

small and sparse graphs. Therefore, a lot of heuristic and

metaheuristic approaches are suggested in the literature to find

near optimal solutions to large and dense graphs.

In[10], Marchiori proposed an effective genetic based meta-

heuristic algorithm incorporating a simple local search

heuristic. She demonstrated that they outperformed the

previously reported meta-heuristics based on evolutionary

algorithms for DIMACS benchmark graphs[11]. Battiti and

Protasi[12] proposed an effective meta-heuristic algorithm

that employs a sophisticated search strategy based on the idea

of tabu search. Other recent (meta) heuristics used for solving

this problem include ant colony optimization [3] and annealed

replication heuristic[13].

In this paper a novel approach for solving MCP based on the

recently developed algorithm by Geem[14], named harmony

search (HS) meta-heuristic algorithm, is provided. HS is

conceptualized using the musical process of searching for a

perfect state of harmony. The harmony in music is analogous

to the optimization solution vector, and the musician's

improvisations are analogous to local and global search

schemes in optimization techniques. It has been successfully

applied to various discrete optimization problems such as

traveling salesperson problem [14], tour routing [15], water

network design [16], vehicle routing [17], and others. Original

harmony search is proposed for both continuous and discrete

variables but does not support binary variables, as discussed

in section 3. To address this issue a binary version of harmony

search is proposed in this paper to solve the MCP where the

number of graph nodes and edges are larger than memory and

processor constraints.

 The rest of the paper is organized as follow: in Section 2

harmony search algorithm is briefly introduced. In section 3

the proposed BHS algorithmis discussed, followed by

experimental result and a comparative study in section 4.

Finally, the work is concluded in the last section.

2. HARMONY SEARCH ALGORITHM
In order to explain the HS algorithm in detail, it is required to

idealize the process of improvisation done by an expert

musician. When a musician is improvising, he can choose

among three options: (1) to execute any pitch from memory;

(2) to execute a pitch adjacent to any other in his memory; (3)

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.12, May 2013

39

to execute a random pitch from the range of all possible

pitches. Similarly, when each decision variable picks a value,

there are three options: (1) to pick any value from the

memory; (2) to pick a value adjacent to any value in the

memory; (3) to pick a random value from the domain of all

possible values. Geem[14] formalized these three options to

create a new metaheuristic in 2001, and the three

corresponding components were: memory use or

consideration, pitch adjustment and randomness. These three

options are employed in the HS algorithm by means of

threemain parameters: Harmony Memory (HM), Harmony

Memory Consideration Rate (HMCR), and Pitch Adjustment

Rate(PAR). In the following details on the HS algorithm steps

are explained.

The HS algorithm was initially conceived for solving

optimization problems where a single objective is considered.

Therefore, to apply the canonical HS to a problem, it must be

formulated as minimize or maximize:

subject to:

where

 or

 (4)

After problem formulation, the parameters of the algorithms

must be configured with values. Besides the two parameters

already mentioned, HMCR and PAR, other parameters like

harmony memory size (HMS), maximum number of

improvisations (MI)and pitch rate variability or (fret width,

FW) must be set.

HMCR plays an important role in algorithm convergencesince

it ensures that most fitted solutions are considered as the

elements of new solutions. With a relatively small value for

this parameter, convergence may be slow due to the lack of

enough exploitation. On the other hand, if the value of this

parameter is extremely large, alternative solutions are not well

explored in the feasible search space, increasing the chance of

limiting the algorithm in local optima. In order to use the

memory effectively, an HMCR value selected in the range of

[0.70; 0.95] is mostly recommended.

A low value for PAR together with a narrow value for FW can

make the convergence of the HS algorithm slow, given the

limitation in exploration to a single portion of the search

space. However, a very high value for PAR together with a

wide value for FW may cause solutions to disperse around a

few potential optima as in random search. For these reasons,

usually, PAR in the range of [0.1; 0.5] is selected and FW,

generally, is bounded between 1% and 10% of all the range of

variable values. The HS algorithm initially improvises several

solutions randomly and stores them in the HM. After HM

initialization, new harmonies are improvised iteratively using

random selection, HM consideration and pitch adjustment. HS

determines
 value of a new solution

 as follows:

 (5)

where , and w.p. stands for

“with probability”. Each bit of the new harmony,
 ,could

bea random number in the specified range with probability (1-

HMCR) or randomly selected from previous solutions in HM

with probability HMCR. PAR is the rate where HS tweaks the

value which was originally picked from memory. Thus, HS

keeps the original value obtained from memory with

probability (1-PAR).

If the new solution is better than the current worst

solution in HM in terms of the objective function value, the

new solution is included in HM and the worst is discarded.

3. BINARY HARMONY SEARCH
This section describes in detail the main components of the

proposed BHS for the MCP.

3.1 Representation and Fitness
Let be an undirected graph on vertices,

where, is the node set and E ⊂ is the

edge set. A set of nodes ⊂ is encoded as a string

 where if and only if is

included in and otherwise. The fitness of is

defined as the number of nodes included in this subgraph if

represents a clique. Since every new solution generated by

improvisation phase will be repaired to be a clique, there is no

need to define fitness values for infeasible solutions.

3.2 Harmony Memory Initialization
With a randomly generated Harmony Memory, a very rare

number of harmonies might represent a clique. This issue in

addition to the large feasible state space of the MCP would

significantly decrease the probability of convergence,

especially in large graphs. Therefore a heuristic random

algorithm is used to produce initial harmonies.

The random algorithm generates each harmony in the initial

harmony memory as follows. First, a vertex is selected at

random and initially put in a subset named .Then, a vertex

is selected from 's adjacency list, , randomly. Set B is

updated after removal of such that vertices that aren’t

adjacent to new selected vertexare excluded. Therefore the

remaining vertices in are adjacent to all selected vertices

listed in . This step is repeated until no node is remained in

 . Finally, one is assigned to the positions corresponding to

the vertices in . The result is actually a clique contained in

the input graph. The pseudo code for harmony memory

initialization is shown in Fig. 1.

Lemma 1: The initialization of a new harmony runs in
time.

Proof: The first and second lines of the pseudo code depicted

in Fig. 1, consist of constant number of operations. The third

line contains n-1 number of evaluations in order to check

whether a node is adjacent to vi or not. Since vi has at most n-1

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.12, May 2013

40

neighbours, the loop in the fourth line runs at most n-1 times.

In this loop, lines 4.1 and 4.2 are run only one time in each

iteration, while 4.3itself is a loop with at most n-1 number of

iterations. Considering the number of total operations based

on the input size n, it is evident that the initialization

algorithm runs in O(n2). □

1. vertex set

2. Randomly select from ,

3. nodes that are adjacent

4. While

4.1 Randomly select a node from

4.2

4.3 nodes in that are adjacent to

Fig 1: The pseudo code for harmony memory initialization

3.3 Initialization and Update of the

Probability Vector
One of the key issues in the design of meta-heuristic

optimization algorithms is how to generate new solutions. The

proximate optimality principle, an underlying assumption in

most (if not all) heuristics, assumes that good solutions have

similar structure [18]. This assumption is reasonable for most

real-world problems. Based on this assumption, an ideal

algorithm should be able to produce a solution which is close

to the best solutions found so far.

To address proximate optimality principle, a probability

vector is used in the BHS which needs to be initialized before

iterations start and updated after changing the HM. Suppose

that the current HM has binary

strings

 . At the beginning

of harmony improvisation stage the probability vector

 is initialized as:

By means of equation 6, would be the percentage of the

binary strings with the value of the th element being one in

HM. In other words, would be the percentage of solutions

in HM including the th node of the graph. During the

harmony improvisation phase, if an old harmony is

superseded by the new improvised harmony the probability

vector must be recalculated. Probability vector is one of the

parameters used in harmony improvisation phase.

3.4 New Harmony Improvisation
Since any solution vector is decoded as a binary string,

changing a bit (pitch) converts it from 0 to 1 and vice versa,

which acts exactly the same as selecting a random bit. Hence,

Pitch Adjustment phase in the basic HS is a redundant step

and is excluded from the proposed BHS algorithm.

In the proposed BHS algorithm, each component or

variable,
 , of a new

harmony,

 ,is selected

independently as follows:

 (7)

 is randomly sampled from the probability vector

 with probability HMCR, or is randomly

selected from the set of possible values, {0,1}, with

probability 1-HMCR. Probability vector is generated based

on harmony memory using (6). In the sampling procedure

based on HM,
 is set to one with probability and is set

to zero with probability of (1- . The larger HMCR is, the

more elements of x are sampled from probability vector P.

The selection procedure is summarized as a flow chart in Fig.

2. In this approach, the search space around current solutions

is exploited while convergence to global optima is

maintained.

Fig 2: Decision flow chart for selecting each
component of a new harmony

 induced subgraph, vertex set

Enlarge:

1. Add few nodes randomly chosen from

Extraction:

2.

3. While(

3.1 Select a random node from

3.2 Choose a random number

3.3 If delete from and

3.4 else delete all nodes that are not adjacent to

 from and

Extension:

4.

5. While (

 5.1 Select a random node from

5.2 Add to if it is connected to all nodes in

5.3 Delete from S

Fig 3: The pseudo code for the heuristic repair
algorithm

3.5 Heuristic Repair
After improvising a new harmony, the subset of selected

nodes, however, may not be a clique. Therefore, a strong local

optimization step is used after the improvisation step which

further improves convergence. A number of heuristic methods

proposed in literature to speed up the evolutionary algorithms

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.12, May 2013

41

are used for MCP [10], [19], [12]. To produce a clique,

Marchiori’s heuristic [19] is used.

The repair algorithm has three steps, enlarge, extraction and

extension. At first, some nodes are randomly added to the

subgraph during the enlarge step. Then, in the extraction step,

for all nodes in the selected subgraph either delete the node

with probability or delete all nodes in the subgraph that are

not adjacent to it with probability . Generally speaking

 should be very small. Otherwise the result graph would be

very small due to removal of a lot of nodes.

Finally, in extension step, nodes are randomly selected one by

one from the rest of nodes that are not in the subgraph. If they

are adjacent to all nodes in the subgraph they are included in

it. The pseudo code for the heuristic repair algorithm is

depicted in Fig. 3. The worst case complexity of heuristic

repair is , where is the number of nodes in the graph

[19].

4. EXPERIMENTAL RESULTS
In this section, BHS is studied experimentally and compared

with the best results gained by exact algorithms on the

DIMACS benchmark graphs, which are available in

http://www.info.univ-angers.fr/pub/porumbel/graphs/. These

graphs provide a valuable source for testing the performance

of algorithms for the MC problem, because they arise from

various different areas of applications.

BHS has been implemented with MATLAB. All the

experiments were performed on Intel Core i5 CPU (2400

MHz) with 4 GB RAM memory. The algorithm was run for

ten times on each graph.

The parameters in BHS are HMS and HMCR. HMS is the

number of harmonies kept in memory and HMCR is the

probability of choosing a variable from HM while

improvising a new solution.

To assess the effect of these two parameters on the

performance of BHS, BHS is tested on the DIMACS

benchmark problem C125.9 (random graph with 125 nodes

and a density of 0.9) for HMS=150,180,…,700 with

HMCR=0.95 and HMCR=0.7,0.72,…,0.99 with HMS=400.

Fig. 4 displays different Number of Function Evaluation

(NFE) by harmony memory. Less required NFE to achieve a

solution is more desirable. As shown in this figure, for HMS

smaller than the graph size, a very large number of NFEs are

required. Increasing HMS improves the algorithms

performance steadily, up to a point where not only further

increase does not show any improvement, but rather adds to

the required operations to finish the algorithm run. This

indicates that from that point on, memory does not contribute

any significant information. Based on this experiment, HMS

is set to n which is the number of nodes in the graph.

Fig4: The average NFE for finding the maximum
Clique on C125.9 with different HMSs. Each data
represents the average NFE in ten runs.
In Fig. 5, NFE based on various HMCR values are displayed.

It is observable that with a small HMCR value, the algorithm

would converge slower, or might not even reach a solution at

all. This is due to lack of effective utilization of previous

solutions stored in memory. Excessive use of the past

information, could significantly decrease algorithm speed, as

shown in this figure. Therefore, HMCR parameter is set to

0.95 during the experiments.

Since the proposed algorithmdoes not have a pitch adjustment

phase as in the basic harmony search,there is no need to tune

pitch adjustment rate (PAR). Following the suggestion in

[19],the parameter in the heuristic repair should be very

small and is set to 0.005 during the experiments.

Fig 5: The average NFE for finding the maximum
Clique on C125.9 with different HMCR values.
Each data represents the average NFE in ten

runs.

Table 1 shows the results of running the Binary Harmony

Search on the 18 popular graphs from different applications.

These graphs are the following:

 C and DSJC : random graph of size and density

 [19][6][10];

 MANN: Steiner triple graphs which are generated for

the set covering problem [20];

 brock _2 and brock _4: Brockington graph of size

which are generated in such a way that the expected

maximum clique is much smaller than the real one [20];

 gen _p0.9_ :Sanchis graph of size ;

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

1
5

0

1
8

0

1
9

0

2
0

0

2
1

0

2
2

0

2
3

0

2
5

0

3
0

0

3
5

0

4
0

0

4
5

0

5
0

0

5
5

0

6
0

0

7
0

0

N
FE

HMS

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0
.7

0

.7
2

0

.7
5

0

.7
7

0

.8

0
.8

2

0
.8

5

0
.8

7

0
.9

0

.9
1

0

.9
2

0

.9
3

0

.9
4

0

.9
5

0

.9
6

0

.9
7

0

.9
8

0

.9
9

N
FE

HMCR

http://www.info.univ-angers.fr/pub/porumbel/graphs/

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.12, May 2013

42

 Hamming: Hamming graphs from coding

theoryproblems [21];

 Keller: Keller graphs are based on Keller’s conjecture

on tilings using hypercubes[22];

 P_hat _z: P-hat graphs of size with large variance in

the node degree distribution and larger cliques than the
usual random graphs [19].

In Table 1, number of nodes and density of each graph is

shown in the second and third columns. The density of a

graph with n nodes is equal to the number of its edges divided

by the number of edges in a complete graph with n nodes. In

the next columns, the results of the BHS are depicted

including the average and the best maximum clique size

found. The average running time of the algorithm for

obtaining the average result is also shown. In the last column

the best results of the clique size found so far on each graph is

shown.

BHS finds the maximum cliquefor about 50% of graphs in a

reasonable time. For other 50% of graphs, although BHS does

not find the maximum clique, it finds very large cliques in a

very short time. Since exact algorithms like branch and bound

[9] and [23] have exponential time complexity they are not

well applicable for graphs with more than 100 nodes.

Therefore, algorithms like BHS are more applicable even

though they have some errors in finding the clique with the
maximum size.

5. CONCLUSION AND FUTURE WORK
In this paper a novel meta-heuristic algorithm was presented

to address computational limitations of classic methods of

solving maximum clique problem (MCP) in large graphs. In

order to increase efficiency a binary representation of the

problem was used. The proposed method is based on the

standard Harmony Search algorithm with the pitch adjustment

operator modified for local binary search.To improve

convergence time a heuristic to generate the initial set of

feasible solutions (i.e. cliques) was employed. Moreover, after

improvising each new possible solution to the problem, a

repair algorithm is run to convert the solution at hand to the

closest matching clique. Experiments on various graphs

demonstrate the effectiveness of the proposed algorithm in

reaching a solution in a timely manner with limited memory

consumption.

TABLE 1: Results of running BHS on 18 DIMACS benchmark graphs. Nodes: Number of nodes in the graph,

Density: the number of edges divided by the number of edges in a complete graph with the same number of

nodes, Ave: The average size of the clique found by BHS, Best: The size of the largest clique found, Time: The

runtime (in seconds) of the algorithm, Best DIMACS: The size of the largest clique found by all algorithms.

Graph Nodes Density Binary Harmony Search Best DIMACS

Clique Size

Ave Best
Time (sec) Clique Size

C125.9 125 0.898 34 34 1.01 34

C500.9 125 0.900 45.5 46 0.47 57

gen200_p0.9_44 200 0.900 39.4 40 11.89 44

gen200_p0.9_55 200 0.900 55 55 13.8 55

MANN_a27 378 0.990 105.9 106 0.87 126

Brock200_2 200 0.496 11.23 12 0.04 12

Brock 200_4 200 0.657 14.1 15 0.06 17

Brock400_2 400 0.749 20.3 21 0.14 29

Brock400_4 400 0.748 21 21 0.31 33

Hamming8-4 256 0.639 15.9 16 0.05 16

Hamming10-4 1024 0.828 31.5 32 0.54 40

Keller4 171 0.649 11 11 0.02 11

Keller5 776 0.751 23 24 0.7 27

P_hat300_1 300 0.243 8 8 0.05 8

P_hat300_2 300 0.488 25 25 8.00 25

P_hat300_3 300 0.744 36 36 21.72 36

P_hat700_1 700 0.249 9 9 0.22 11

P_hat700_2 700 0.497 42 42 31.90 44

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.12, May 2013

43

Future studies on this approach consist of further

improvements of initialization and repair heuristics to ensure

improved convergence while exploring problem search space

more effectively. The proposed method could also be tested

on other binary problems such as choosing optimum input

subset for SVM[24].

6. REFERENCES

[1] B. Huang, “Finding maximum clique with a genetic

algorithm,” Penn. State Harrisburg Master's Thesis in

Computer Science, 2002.

[2] P. Pevzner and S. Sze, “Combinatorial approaches to

finding subtle signals in DNA sequences,” Proceedings

of the Eighth International Conference on Intelligent

Systems for Molecular Biology, pp. 269–278, 2000.

[3] C. Solnon and S. Fenet, “A study of ACO capabilities for

solving the maximum clique problem,” Journal of

Heuristics, pp. 1–31, 2006.

[4] R. Carraghan and P. Pardalos, “An exact algorithm for

the maximum clique problem,” Operations Research

Letters, vol. 9, no. November, pp. 375–382, 1990.

[5] E. Marchiori, “A Simple Heuristic Based Genetic

Algorithm for the Maximum Clique Problem,” Proc.

ACM Symp. Appl. Comput, pp. 366-373,1998.

[6] Q. Zhang, J. Sun, and E. Tsang, “An Evolutionary

Algorithm With Guided Mutation for the Maximum

Clique Problem,” IEEE Transactions on Evolutionary

Computation, vol. 9, no. 2, pp. 192–200, Apr. 2005.

[7] I. Bomze, M. Budinich, and P. M. Pardalos, “The

maximum clique problem,” In Handbook of

Combinatorial Optimization, vol. 4, pp. 1–74, 1999.

[8] P. Östergård, “A fast algorithm for the maximum clique

problem,” Discrete Applied Mathematics, vol. 120, pp.

197–207, 2002.

[9] P. Pardalos and G. Rodgers, “A branch and bound

algorithm for the maximum clique problem,” Computers

& operations research,vol. 19, pp. 363-375, 1992.

[10] E. Marchiori, “Genetic, iterated and multistart local

search for the maximum clique problem,” Applications of

Evolutionary Computing, pp. 112–121, 2002.

[11] D. S. Johnson and M. A. Trick, “Cliques, Coloring and

Satisfiability: Second DIMACS Implementation

Challenge,” AMS, DIMACS Series in Discrete

Mathematics and Theoretical Computer Science, vol. 26,

1996.

[12] R. Battiti and M. Protasi, “Reactive local search for the

maximum clique problem,” Algorithmica, vol. 1198, no.

510, 2001.

[13] I. Bomze, M. Budinich, M. Pelillo, and C. Rossi,

“Annealed replication: a new heuristic for the maximum

clique problem,” Discrete Applied Mathematics, vol.

121, pp. 27–49, 2002.

[14] Z. W. Geem, J. Kim, and G. Loganathan, “A new

heuristic optimization algorithm: harmony search,”

Simulation 76, pp. 60-68, 2001.

[15] Z. W. Geem, C. Tseng, and Y. Park, “Harmony search

for generalized orienteering problem: best touring in

China,” Advances in natural computation, pp. 741–750,

2005.

[16] Z. W. Geem, “Optimal cost design of water distribution

networks using harmony search,”Engineering

Optimization, pp. 1–49, 2010.

[17] Z. W. Geem, K. S. Lee, and Y. Park, “Application of

Harmony Search to Vehicle Routing,” American Journal

of Applied Sciences, vol. 2, no. 12, pp. 1552–1557, Dec.

2005.

[18] F. Glover and M. Laguna, “Tabu

search,”Kluwer Academic Publishers,

Norwell, MA1998.

[19] E. Marchiori, “A simple heuristic based genetic

algorithm for the maximum clique problem,”

Proceedings of the 1998 ACM symposium on Applied

Computing - SAC ’98, pp. 366–373, 1998.

[20] D. Johnson and M. Trick, “Cliques, Coloring, and

Satisfiability: Second Dimacs Implementation Challenge.

1996,” USA: American Mathematical Society.

[21] N. Sloane, “Unsolved problems in graph theory arising

from the study of codes,” Graph Theory Notes of New

York, vol. 18, pp. 11–20, 1989.

[22] J. Lagarias and P. Shor, “Keller’s cube-tiling conjecture

is false in high dimensions,” Manuscript, Bell

Laboratories, vol. 27, no. 2, pp. 279–283, 1992.

[23] D. R. Wood, “An algorithm for nding a maximum clique

in a graph,” vol. 21, no. August 1995, pp. 211–217,

1997.

[24] C. Zhang and H. Hu, “Using PSO algorithm to evolve an

optimum input subset for a SVM in time series

forecasting,” IEEE International Conference on Systems,

Man, and Cybernetics, 2005.

