
International Journal of Computer Applications (0975 – 8887)

Volume 69– No.12, May 2013

5

Survey-based Comparison of Chord Overlay Networks

Alaa Arabiyat,
University of Jordan,

Amman, Jordan

Sulieman Bani-Ahmad
Al-Balqa Applied University

Salt, Jordan

Mohammad F. Ababneh
Al-Balqa Applied University

Salt, Jordan

ABSTRACT

Chord is a structured peer-to-peer (P2P) overlay network in

which participating peers share resources as equals. To find a

specific data item within the network, Chord system provide a

lookup mechanism that matches a given key to a network

node responsible for the value associated with that key.

Chord is recently proposed to become one of the new

approaches for building large-scale Internet applications. This

paper aims to survey the Chord network, study its main

characteristics, and compare its original performance with the

performance of the enhancements being deployed over the

original Chord.

General Terms

Distributed systems.

Keywords

Chord, Peer-to-peer, structured, lookup mechanism,

Distributed hash table.

1. INTRODUCTION
This paper attempts to discuss the Chord structured p2p

overlay network and compares the original Chord with other

enhanced Chord networks in one characteristic or more.

An overlay network can be defined as a logical network on

top of one or more networks. A popular example of such

networks is the Internet. The main function of an overlay

network is to provide means by which a large number of

computing resources are connected together and accessed.

And, as can be seen nowadays, various high-level distributed

services can be built on top of an overlay network. The

performance and efficiency of these high-level distributed

services strongly depend on the characteristics of the

underlying overlay network [1].

Peer-to-peer networks are overlay networks because their

computing nodes operate on top of the Internet as in Figure 1.

In structured P2P networks routing of messages is done using

distributed hash tables (DHT) that is used to route messages to

a node having a specific logical IP address, whose IP address

is not known in advance [1].

In the simplest case, DHTs can be used to keep and save

(key,value) pairs much like centralized hash tables. Lookup

and join operations can be done in a small number of routing

hops. The overlay network is self organizing, and each node

keep only a small routing table with size constant or

logarithmic in the number of existing nodes in the network [2,

3].

 A hash-table interface is a good approach for a distributed

lookup algorithm because it states few rules on the

construction of keys or for data items and nodes. The main

requirements are that data be identified using unique numeric

IDs and those nodes are also identified using numeric IDs

from the same space. This structure is different from that

implemented in Napster and Gnutella (unstructured p2p

overlay networks), which look for keywords, and assume that

data is basically stored on the publisher’s node. However,

such systems could still make use of a distributed hash table—

for example, Napster’s centralized database recording the

mapping between nodes and songs could be replaced by a

distributed hash table [3].

A DHT supports just one function: lookup(key) results the ID

(e.g., IP address) of the node that store currently the given

key. A simple distributed storage application might use this

interface as follows. Someone who wants to publish a file

under a particular unique name would convert the name to a

numeric key using an ordinary hash function such as SHA-1,

then call lookup(key). The publisher would send the file to be

stored at the resulting node. Someone wishing to read that file

would obtain its name, convert it to a key, call lookup(key),

and ask the resulting node for a copy of the file [3].A

complete storage system would have to take care of

replication, caching, authentication, and other issues; these are

outside the immediate scope of the lookup problem.

Chord is considered one of the best candidates to design of

peer-to-peer systems and applications because of its ability to

address these difficult problems [4]:

Load balance: Chord uses a hash function that allocates keys

to the nodes evenly; this results in natural load balance of

data items on network nodes [4].

Decentralization: Chord is fully distributed; no node has

higher capabilities or privileges than any other. This makes

Chord appropriate for peer-to-peer applications [4].

Scalability: each node keep only a small routing table with

size constant or logarithmic in the number of existing nodes in

the network, so even very large systems can be implemented

using Chord. [4].

Availability: Chord automatically renews its routing tables as

a consequence to newly joined nodes as well as node failures,

so the node keeping a key can always be found. [4].

Flexible naming: the Chord key-space is open. This gives

applications the flexibility to map their own names to Chord

keys according to some hashing functions. Neither limitations

nor constraints are stated by the Chord system [4].

Figure 1. General P2P network [12].

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.12, May 2013

6

2. The Base Chord Protocol

The Chord protocol state mechanisms on how to look up keys,

how new nodes join the system, and how to recover from

nodes failure or departure.

2.1 Consistent Hashing

Chord [4] uses consistent hashing function to map keys to its

nodes. The consistent hash functions assign network nodes

(peers) and data keys an m-bit identifier using SHA-1 as the

base hash function. A peer’s identifier is chosen by hashing

the peer’s IP address, while a key identifier is produced by

hashing the data key. The length of the identifier m must be

large enough to make the probability of keys hashing to the

same identifier very small, they are usually selected to be 128

bit or 160 bit. Identifiers are ordered on an identifier circle

modulo 2m as a logical ring. Key k is assigned to the first peer

whose identifier is equal to or follows k in the identifier space.

This peer is called the successor peer of key k, denoted by

successor(k). To maintain consistent hashing mapping when a

peer n joins the network, certain keys whose IDs are equal or

less than the ID of the joined node that were previously

assigned to n’s successor now need to be reassigned to n.

When peer n leaves the Chord ring, all of its assigned keys are

reassigned to n’s successor and its become responsible for

theses keys[4, 5].

2.2 Scalable Key Location

Each peer in the Chord ring needs to know how to locate its

successor peer on the identifier circle. Lookup queries map

data item key and NodeID. For a given identifier, it could be

passed around the ring via the successor pointers until they

find the peer with the desired identifier. It in turn returns its

logical address and the requester could then contact it directly

to get the desired data item. An example is illustrated in

Figure 2, here peer 8 apply a lookup for key 54. Peer 8 run the

find successor operation for this key, which returns the

successor of that key, i.e. peer 56. The query passes every

peer on the ring between peer 8 and peer 56. The response is

returned along the reverse of the path. As m is the number of

bits in the key/NodeID space, each peer n keep a routing table

with up to m entries, called the finger table. The ith entry in

this table at peer n contains the identity of the first peer s that

succeeds n by at least 2i –1 on the identifier circle, i.e., s =

successor(n + 2i –1), where 1≤ i ≤m. Peer s is the ith finger of

peer n. A finger table entry includes both the Chord identifier

and the IP address of the relevant peer. Figure 2 shows the

finger table of peer 8, and the first finger entry for this peer

points to peer 14, as the latter is the first peer that succeeds

(8+20) mod 26 = 9. Similarly, the last finger of peer 8 points

to peer 42, i.e., the first peer that succeeds (8 + 25) mod 26 =

40. In this way, peers store information about only a small

number of other peers, and know more about peers closely

following it on the identifier circle than other peers. Fingers

drastically shorten the lookup path to O(logn) hops. Nodes

periodically run a fix fingers () procedure to refresh the finger

table entries. [4, 5].

2.3 Node Joins

When a peer joins the Chord system, the successor s and

predecessors around the joined peer need to be updated. It is

important that the successor pointers are up to date at any time

because the correctness and efficiency of lookups is not

accomplished otherwise. The Chord protocol uses a

stabilization protocol [4] running periodically in the

background to update the successor pointers and the pointers

entries in the finger table. The correctness of the Chord

protocol relies on the fact that each peer is aware of its

successors [4, 5].

2.4 Node Failure

When peers fail, it is possible that a peer does not know its

new successor, and that it has no chance to learn about it. To

avoid this situation, peers maintain a successor list of size r,

which contains the peer’s first r successors. When the

successor peer does not respond, the peer simply contacts the

next peer on its successor list. Also, this procedure make it

easy for key replication, instead of storing key k at only

successor(k), it is replicated on the r successors of k. This

way, even if successor(k) fails, the other successors are still

available for answering lookups for k. using a list of

successors and applying replications of data items among

them increases the robustness against very high degrees of

node dynamics [4, 5].

Figure 2. Chord ring [5].

3. Related Work

The following subsections are studies aim to improve the

original Chord network by applying advanced techniques and

algorithms to enhance one aspect or criteria of the original

Chord. Also discussed in this section, several real deployment

of chord into real networks implementations because of its

magnificent characteristics.

3.1 Improvement on Chord to Achieve

Better Routing Efficiency

Chord has often been known by its lack to routing locality.

Even if the object is near the source of a query, it is often the

case that one or more hops through the overlay will be needed

for the object to be found.

A routing efficiency enhancement protocol is proposed in [6],

called PChord, to solve this problem. PChord aims to achieve

better routing efficiency than Chord by making use of

proximity of the underlying network topology. Because the

node that has sufficient routing information could reach data

with a simple direct hop through IP and no need for extra

overlay hops

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.12, May 2013

7

Routing efficiency could be measured by Relative Delay

Penalty (RDP) of the query. RDP is defined as the ratio of the

distance a query travels through the overlay network to an

object and the minimal distance to that object. Original Chord

shows poor performance and routing efficiency under RDP

because it does not consider network proximity at all [6].

Since data and services are replicated and could be transferred

from one node to another, we need to find the nearest replica

for the source query. The authors of [6] introduced the object

pointer indirection layer of Tapestry into Chord overlay (i.e.

the objects stored in the overlay are pointers to the location of

the actual data) and trying to find ways to make object

location in such an overlay efficient. To solve the routing

problem under, a routing scheme combining proximity routing

with basic routing algorithm of the original Chord is

presented, which aims to achieve low RDP on Chord overlay.

This routing efficiency enhancement overlay is called PChord

[6].

The main contribution to Chord is to include a new proximity

list into Chord’s routing table. Proximity is weighed by RTT

(Round Trip Time) which can be easily measured as the time

it takes for a simple specified message to travel from one

PChord node, across the network to another PChord node, and

back [6].

An entry in the proximity list contains the IP and identifier of

the proximate node. When a new PChord node joins the

overlay, it have an empty proximity list. This PChord node

will find some other PChord nodes near to it with RTT lower

than certain predefined value through routing communication.

It will add such kind of nodes to its proximity list.

Meanwhile, these two PChord nodes will copy all different

entries of the proximity list from each other. The length of

proximity list will increase until the PChord node finds all

PChord nodes in the same network partition which it belongs

to.

The key adjustment of routing algorithm in PChord is the

choosing of next hop. Next hop is not only selected by the

entries in the finger table, but also selected by the entries in

the proximity table [6].

Figure 3. Routing examples of Chord an PChord [6].

Routing examples of Chord and PChord are illustrated in

Figure 3, which node h is trying to locate node g. For standard

Chord overlay, the hops of routing process is the dotted

arrowhead line in Figure 3, which are h,a,b,f,g of 4 hops. For

PChord, as node h holds a proximity list it will choose c as its

next hop for this routing process, for c is closest preceding

hop to the target g in key space from all h’s local routing

information. This hop of h is chosen from the entry of the

proximity list. Then c will choose the next hop from its

proximity list and finger list the same as h does. Node g is in

the c’s finger list, which will be chosen as next hop of c. This

routing process on PChord is composed of only 2 hops [6].

Figure 4 illustrates the average RDP of PChord and Chord, it

shows that it is lower for PChord than Chord when the

distance between query source and target document is not

long. When the distance is far away it shows similar

performance since the real distance is physically far away not

logically. It proves that PChord increase the routing

efficiency by decreasing the hop numbers and limiting the

routing path crossing the same network zone only once [6].

Figure 4. Routing RDP according to the distance

from querying node to target document [6].

3.2 Improvement on Chord to Achieve

Better Routing Security

Chord use DHT to allocate data items using lookup requests.

With DHTs, each peer participates in bypassing the lookup

requests to the correct destination and this routing must be

conducted correctly to find the peer responsible for the

requested file. Unlike IP routing, any peer can become a

malicious router and easily corrupt the entire routing.

Attackers may modify, drop or misroute lookup requests. The

attackers can also deny the availability of certain data or

provide manipulated data to other nodes. The attackers can

even forward improper overlay route updates.

The solution to deal with these security concerns is proposed

as an extension to Chord named Sechord in [7].

The main idea is that the source can determine whether the

next hop is valid or invalid (i.e potential malicious node) by

estimating how far the next hop is from its finger pointer. If

the next hop is too far away from the finger pointer, the

source can sense that malicious node might be encountered

[7].

The modifications on original Chord is by forcing initially no

trust between two nodes and each node make use of its locally

available information to evaluate next hops during the lookup

routing process for their validity [7].

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.12, May 2013

8

Defense mechanism target three types of security threat [7]:

 A malicious node does not respond to lookup

requests from other nodes.

 An attacker forwards a lookup request to some

random node, not the correct next hop preventing

the lookup request from reaching its final

destination.

 A group of attackers collaborate to forward lookup

requests to malicious node.

The attackers maintain two finger tables, the legitimate finger

table that the attackers use for routing among themselves, the

other one is the finger table that consists of the malicious node

for each node at the legitimate finger table [7].

One important property in SeChord is that |p−f| ≤ |p−q| and

|q−f| ≤ |p−q| where p and q are two consecutive peers, f is a

finger pointer falls somewhere between p and q [7].

Modifications on chord are to store the identifiers of the

successor and predecessor of each node in the finger table to

compute the average numerical distance between two node

identifiers [7].

Figure 5. Lookup success ratio in the presence of nodes

that randomly misroute lookup requests [7].

In Figure 5, the result shows that the lookup success percent

of Sechord is higher than that of Chord when random routing

threat is present. The lookup success percent of Chord

decreases rapidly as more malicious nodes are present and

perform misrouting. When 25% nodes are affected by

attackers, the success ratio is reduced to 28%; with half of the

nodes in chord network compromised, the success ratio

becomes no higher than 10%. On the other hand, the success

ratio of Sechord stays no lower than 90% for all percentages

of compromised nodes [7].

3.3 Improvement on Chord to Achieve

Better fault tolerance

Peer-to-peer systems are subjects to failures due to the

following reasons [8]:

Global: Peer-to-peer systems should be implemented to

function on a global region.

IP: Peer-to-peer systems typically organize into overlay

networks on top of IP.

Self-organizing: These systems should be truly distributed

systems.

Scale: A peer-to-peer system should be highly scalable.

Unreliable Nodes: Nodes in a peer-to-peer system should be

considered highly unreliable due to the present of malicious

nodes.

The solution is to make one particular peer-to-peer system,

Chord, resilient to random node failures is done by repairing

incorrect routing state by periodically refreshing all routing

connections in each node. This prevents faults by removing

connections to dead nodes, damaged links, and outdated links

[8].

 There are two mechanisms added to Chord to make it fault

tolerant. First, redundancy allows Chord to handle many

individual node failures without the entire system crash.

Second, an aggressive repair algorithm fixes any links that

may be broken or outdated [8].

Original Chord stated that so long as each node knew its

successor, a lookup would return the correct node. There is a

weakness in this scenario, if just one node fails, this condition

no longer applicable.

The solution is to maintain links to r successors, not just one.

If the successor of a node fails, the node can try its backups

[8].

Theorem [8]: If each node has r successors, and each node

fails independently with probability p, then the reliability of

Chord is least 1- N p r .

Given that Chord can handle painful failures of nodes; we

must repair the broken links before the system be vulnerable

to future failures. Because when nodes have broken links,

they are vulnerable to additional failures. Even if a broken

link has not been detected yet, it should still be repaired.

Otherwise, potential faults might arise leading to future

problems. Broken fingers degrade the lookup performance.

The sooner they are fixed, the faster lookups will be. Trying

to allocate broken links during a lookup cause latency to that

lookup. But it is better to discover and repair the broken links

outside critical path [8].

The repair mechanism runs in a background thread

periodically, once every 60 seconds. Every successor link and

every finger entry is updated. Unfortunately, the repair

mechanism adds overhead to Chord. But repairing broken

fingers reduces lookup latency since no time for lookup

failure is wasted and this balances some of the overhead [8].

In figure 6, the probability of failure is varied to specify how

many failed nodes Chord can handle. The experiment

examines using 5, 15, and 25 successors. The breaking points

are the important points of this graph. For 5 successors,

reliability drops after just 5% of the nodes fail. For 15

successors, it takes a 40% failure before the system crashes.

For 25 successors, the breaking point occurs near the 2/3

failure rate. This is predictable results since the recommended

number of successors for a 10, 000 node system is 2 log

10,000 ≈ 26 [8].

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.12, May 2013

9

Figure 6. Largest remaining Chord circle after a

large number of simultaneous node failures [8].

3.4 Improvement on Chord to Achieve

Better Lookup Accuracy and

Performance in Mobile P2P Network

Chord was designed initially for wired networks. When used

in wireless network environment, many new issues are

introduced. For example, the nodes in an unstable wireless

network usually leave or rejoin the P2P network easily and

frequently. In this case, the routing information in every node

must be updated, and since this update takes a mount of time,

this may lead to lookup failures when the nodes retrieve this

not updated routing information [9].

The solution is to keep Finger Table fresh and self-update.

This proposed modified Chord protocol is called Mobile

Robust-Chord (MR-Chord). MR-Chord improves the Chord

networks lookup success rate, improves the overlay

consistency, and minimizes the lookup delay time in wireless

mobile [9].

MR-Chord protocol consists of the following steps:

modification in finger fable, real-time fix scheme, and by-

detect fix scheme.

The modified finger table adds three columns to save the

lookup outcomes as shown in table 1 [9].

Definition of Succ field:

– If the lookup success via the finger[i] Succ[i]=Succ[i]+1

Definition of Fail field:

– If the lookup fail via the finger[i] Fail[i]=Fail[i]+1

Definition of WeakNode field:

Fail – Succ ≥ 2 WeakNode=True

Otherwise WeakNode= False

Tabel 1

The Modified Finger Table

Finger Successor Succ Fail WeakNode

N42+1 N43 3 3 False

N42+2 N47 4 0 False

N42+4 N47 5 1 False

N42+8 N51 2 1 False

N42+16 N0 1 2 False

N42+32 N8 2 6 True

The Real-Time fix scheme can fix the false finger entry in the

finger table when a lookup fail happens. A node n starts a key

lookup in the original Chord lookup mechanism the finger

node p is broken. The information of the broken finger node p

is in node n’s finger table. Replace this bad finger entry by

copying the previous finger entry to it. The node n tell its

successor and predecessor about the information needed to fix

their finger tables because the two node’s finger tables usually

have the same finger entry. On performing the next same

lookup, we can use the fixed finger entry before the finger

table traditional update, as shown in figure 7 below [9].

Figure 7. An example for Real-Time fix scheme [9].

The By-Detect fix scheme uses statistics of lookups to detect

the finger nodes. If ” Fail-Succ” > 2 then ”Weaknode= True”

and we call it weak node. When the finger node is set as a

weak node, the weak finger starts to check if the finger nodes

in the finger table are alive or not and fix the error finger with

those bad nodes. This will predict bad fingers before even any

lookup fail [9].

An example, when node 8 gets a lookup failure, it records the

failure and checks whether”Fail”-”Succ” > 2. If this is true,

node 8 asks node 42 to start the check procedure until”Succ-

Fail” >2. In the check procedure, node 42 checks its finger

nodes in its finger table [9].

Lookup Success Rate in MR-Chord is higher as shown in

figure 8. MR-Chord keeps the accuracy of finger tables. If a

lookup request is forwarded via all correct and alive

successors, it can make a success lookup [9].

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.12, May 2013

10

Figure 8. The Lookup Success Rate with fixed network [9].

Lookup Delay Time in MR-Chord is lower as shown in figure

9. The reason behind this is the fact that MRChord protocol is

capable of fixing the bad entry in the finger table. It allows the

lookups to get fewer bad successors and to find the resource

quickly [9].

Figure 9. The Lookup Delay Time with fixed network [9].

3.5 Building Power Grid Applications

using Chord

The power grid transfer and distributes electricity from the

power factories to the consumers. Improving performance of

power grid (optimize power quality, cost, energy loss, etc.)

needs accurate management and distributed control. The

dynamic environment in grid applications requires updating

the configuration of the information infrastructure beneath the

power grid periodically and at run time not only static

configuration. Also a geographically distributed nature of

power grid applications adds new needs to self updating

network [10].

A great solution is to use Chord network since it is a purely

decentralized peer-to-peer network that show major

advantages for power grid applications from reliability,

scalability, availability, dynamicity and quick search, an

example is shown in figure 10.

Figure 10. Example of P2P network that applied to

power grid [10].

Today, there is an important trend to use small Distributed

Generation (DG) in low or medium voltage [10].

Control of power elements in power grid has three control

levels [10]:

 Primary control is used to balance both active and

reactive power, by measuring frequency locally.

 Secondary control is basically used for maintaining

rated voltage levels or rated frequency and

scheduled power transfers

 Tertiary control utilizes generators output for

economic reasons.

The last two control levels both require some form of

collaboration and communication with other generator

controllers. When adding DGs to the power grid for these

levels of control, centralized control systems are not suitable

because they are expensive since you will need dedicated

communication lines and a large number of load balancing

servers. So we are looking for less expensive infrastructure for

these control paradigms [10]. Chord network meets these

requirements and can solve them.

Power grid components (e.g. generators, dispatching loads)

are connected to an autonomous control entity (agent). An

important aspect of agents, besides autonomy, is that they

communicate with a society of (similar) agents, from which

they may explore external information of their interest. These

societies can be built easily by setting up a peer to- peer

network [10].

The main advantages of Chord network for power girds are

efficient lookup search, decentralization, self organization,

and no partitioning.

Efficient lookup search: Using a Chord network, all agents’

communication can be done efficiently and quickly. (log N)

steps is needed (N is the number of agents) [10].

Decentralization: Power grid agents act as peers in Chord

network. Peer has capabilities or privileges than any other

[10].

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.12, May 2013

11

Self-organization: as a result of decentralization, there is no

central agent to control and coordinates the other agents with

each other. Leaving and joining of agents does not

dramatically reduce the system performance. [10].

No partitioning: By Chord network, active and alive agents

always can communicate with each other without partitioning.

The dependability aspects of Chord network for power grid

applications is considered with reference to reliability,

scalability, and availability [10].

Reliability: Chord topology is purely decentralized and there

is no single point of failure so there is no fear of having the

system totally crashed because of single point failure [10].

Scalability: As Chord network has efficient lookup routing

searches, increasing the number of lookups doesnt produce a

huge overhead on the network communications [10].

Availability: Chord automatically updates its internal tables as

a response to joined and failed nodes in the network [10].

3.6 Improvement on Chord to achieve

better load balancing

Most of the work on Web services discovery depends on

using centralized registries. Although they are effective they

suffer from the traditional problems of centralized systems,

which are primary performance bottlenecks and single points

of failure [11].

The solution is to extend the Web services discovery scope

using P2P technology. Chord is a good candidate because it

has good scalability, robustness, load balancing and self-

organization [11].

The research of Web service discovery can be divided into

two steps: service discovery model and service discovery

algorithm [11].

A kind of services discovery model named WSDBC (Web

Service Discovery based on BalanceChord) is proposed in

order to expand the Web services discovery region and

increase discovery efficiency [11].

In order to achieve load balancing between different nodes in

WSDBC model, node join-in algorithm and self-balancing

algorithm are proposed.

In BalanceChord the node ID is created by the code of NAICS

instead of hashing information of the node itself and object

Key, see figure 11 [11].

NAICS (North American Industry Classification System) is

used to classify the service.

Service can be defined as an ordered 3-tuple [11]: <

SN,CN,C > where

 SN represents the service name

 CN represents the category name

 C represents category code

Figure 11 An Example of BalanceChord [11].

The load of node is the summation of invoking times of all

services in the node. It can be defined as follows:

Where node L represents the load of node, m represents the

numbers of service category in the node, n represents the

numbers of service in a category. p ij represents the times

which the service is invoked. At the beginning, L node=0. As

time passing by, the load of nodes will be different [11].

In order to improve the load balancing of nodes in the

WSDBC model, two kinds of strategy are proposed: New

node joins beside the node which is overloaded in order to

share the load (node join-in algorithm). The load of nodes can

be automatic self balancing (self-balancing algorithm) [11].

New Node Join-in Algorithm [11]:

Step 1. New node applies to join in;

Step 2. Searching for the node with greatest load;

Step 3. New joined node sets its ID;

Step 4. Service information transfer to new joined node.

Self-balancing Algorithm [11]:

Step 1. Comparing load between the node and its successor;

Step 2. If the node is overloaded, go to Step 3; else go to Step

1;

Step 3. Node sets its new ID;

Step 4. Service information transfer to its successor.

Figure 12 shows the load information of Chord; Figure 13

shows the load information of BalanceChord. From the

figures we can see that the load information of nodes in Chord

is very unbalanced. The load information of some nodes

exceeds 100 and some near to 0. Compared to Chord,

BalanceChord has better load balancing [11].

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.12, May 2013

12

Figure 12 The Load Information of Chord [11].

Figure 13 The Load Information of BalanceChord [11].

4. REFERENCES
[1]. Luc Onana Alima, Ali Ghodsi, and Seif Haridi. . “A

framework for structured peer-to-peer overlay networks,”

In LNCS volume of the post-proceedings of the Global

Computing 2004 workshop. Springer-Verlag, 2004.

[2]. Miguel Castro, Peter Druschel, Anne-Marie Kermarrec,

and Antony Rowstron. “One ring to rule them all:

Service discovery and binding in structured peer-to-peer

overlay networks,” In Proceedings of the SIGOPS

European Workshop, Saint-Emilion, France, September

2002.

[3]. H. Balakrishnan, F. Kaashoek, D. Karger, R. Morris, I.

Stoica, "Looking Up Data in P2P Systems,"

Communications of the ACM, V. 46, N. 2, (February

2003).

[4]. Stoica, R. Morris et al., “Chord: A Scalable Peer-to-Peer

Lookup Protocol for Internet Applications,” IEEE/ACM

Trans. Net., vol. 11, no. 1, 2003, pp. 17–32.

[5]. Eng Keong Lua, Jon Crowcroft., “ A Survey And

Comparison Of Peer-To-Peer Overlay Network

Schemes,” IEEE Communications Surveys &

Tutorials,Second Quarter 2005

[6]. Feng Hong, Minglu Li, Min-you Wu, Jiadi Yu,

"PChord: Improvement on Chord to Achieve Better

Routing Efficiency by Exploiting Proximity", IEICE

Transactions on Information and Systems, E89-D(2),

pages 546-554, 2006.

[7]. Keith Needels, Minseok Kwon., “Secure Routing in

PeertoPeer Distributed Hash Tables,” ACM

9781605581668/09/03, 2009

[8]. Daniel Adkins., “Making Chord Robust,” University of

California, Berkeley, 2012

[9]. Jian-Ming Chang, Yi-Hsuan Lin, Isaac Woungang, Han-

Chieh Chao, “MR-Chord: A Scheme for Enhancing

Chord Lookup Accuracy and Performance in Mobile P2P

Networks”, (Accepted Jan. 9, 2012) to appear in Proc. of

the IEEE Intl. Conference on Communications (ICC

2012), Ottawa, Canada, June 10-15, 2012.

[10]. Beitollahi, H., Deconinck, G, “Analyzing the Chord

Peer-to-Peer Network for Power Grid Applications”, In:

Fourth IEEE Young Researchers Symposium, 2008.

[11]. Li CHEN, Zilin SONG, Shiming ZHENG, Wenjie SUN,

Zhanfeng WANG1, “ A Model of Web Service

Discovery Based on BalanceChord”, Journal of

Computational Information Systems 7: 7 (2011) 2241-

2247, 2011

[12]. Structured P2P Overlays ppt presentation of Dr.-Ing.

Kalman Graffi, www.p2pframework.com

[13]. Z. L. Kis and R. Szabó, "Interconnected Chord-Rings,"

Network Protocols and Algorithms (NPA), vol. 2, iss. 2,

pp. 132–146, 2010.

[14]. ZENG Xiao-yun,” Hybrid P2P Model Based on Chord

Protocol”, Tsinghua Tongfang Knowledge Network

Technology Co., td.(Beijing)(TTKN, 2010

