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ABSTRACT 
The aim of this paper is to establish the generalization of 

common fixed point theorem proved by A.Djoudi by using 

weakly compatible mappings. 
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1. INTRODUCTION 
 

G. Jungck [1] introduced more generalized commuting 

mappings called compatible mappings, which are more 

general than commuting and weakly commuting maps. 

 

Further ,G.Jungck, P.P.Murthy and Y.J.Cho [3] gave the 

generalization of compatible mappings called compatible 

mappings of type (A) which  is equivalent to the concept of 

compatible maps under some conditions. 

 

H.K.Pathak and M.S.Khan [4] introduced the concept of 

compatible mappings of type (B) as a generalization of 

compatible mappings of type (A).  

  

 Later Jungck and Rhoades[4] defined weaker class of maps 

known as weakly compatible maps. 

 

The present paper is to prove a common fixed point theorem 

for weakly compatible mappings. This theorem generalizes 

the result of Djoudi. 

 

Definition 1.1:  

Let S and T be mappings from a metric space (X,d) in to 

itself. The mappings S and T are said to be compatible if  

n
lim d(STxn,TSxn) =0, whenever <xn> is a sequence in X  

such that  
n

lim Sxn = 
n

lim Txn =z  for some  zX.  

 

Definition 1.2: 
 Let S and T be mappings from a metric space (X,d) in to 

itself.  The mappings S and T are said to be compatible 

mapping of type (B), if  

n
lim d(STxn,TTxn)

2

1
[

n
lim d(STxn,Sz)+ 

n
lim d(Sz,SSxn)]           

and  

n
lim d(TSxn,SSxn)

2

1
[

n
lim d(TSxn,Tz)+

n
lim d(Tz,TTxn)]  

whenever <xn>is a sequence in X such that 
n

lim Sxn= 

n
lim Txn = z   for some  zX.  

 
Definition 1.3: 
Two self maps S and T of a metric space (X,d)  are said to be  

weakly compatible if they commute at their coincidence point.  

i.e  if  Sx=Tx for some xX then STx=TSx. 

 

2. A Common fixed point theorem  

 
Let R+ be the set of non negative real numbers and let  : R5

+  

 R+  be a function satisfying the following conditions: 

 

   is upper semi continuous in each coordinate variable and  

non decreasing. 

(t) = max{ (0,t,0,0,t),  (t,0,0,t,t),  (t,t,t,2t,0), (0,0,t,t,0) } 

< t for any t > 0. 

 

The following is the theorem proved by A.Djoudi [6]. 

 

2.1 Theorem: 
 Let I, J, S and T be mappings from a complete metric space 

(X,d)  into itself satisfying the conditions 

(2.1.1) S(X) J(X)  and T(X) I(X) 

(2.1.2)d(Sx,Ty)max{(d(Ix,Jy),d(Ix,Sx),d(Jy,Ty), 

d(Ix,Ty),d(Jy,Sx))  for all x,yX. 

(2.3) one of S,I,T and J is continuous 

(2.4) the pairs (S,I) and (T,J) are compatible mappings of 

type(B) 

        Then S,I,T and J have a unique common fixed point z.  

Furthermore z is the unique common fixed point of both 

mappings. 

 

Then by condition (2.1), S(X)  J(X), for an arbitrary x0 X 

there exist a point x1X such that  Sx0 = Jx1.  Also since T(X) 

 I(X), for this point x1  we can choose a point x2 in X such 

that Tx1 = Ix2 . Continuing in this way, one can construct a 

sequence <yn> in X such that   y2n  = Sx2n = Jx2n+1   and    y2n+1 

= Tx2n+1  = Ix2n+2   for n = 0,1,2,..........   -------(2.5) 

 

 

Lemma 2.3. [6] Let I, J, S and T be mappings from a metric 

space (X,d) into itself satisfying (2.1) and (2.2).  Then the 

sequence yndefined by (2.3) is a cauchy sequence in X. 
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The conclusion of Djoudi’s theorem is established using the 

weaker condition weakly compatible in place of compatible 

mappings of type (B).  

 

3. Main Theorem:  

Let I, J, S and T be mappings from a complete metric space 

(X,d) into itself satisfying (2.1),(2.2) and that the pairs (S, I) 

and (J, T) are weakly compatible . Then I, J, S and T have a 

common fixed point ‘z’. Furthermore ‘z’ is the unique fixed 

point of both mappings. 

Proof: Let yn  be the sequence in X defined in (2.5), then 

by Lemma 2.3 of [8], yn is a Cauchy sequence in X and so it 

converges to some element ‘z’ in X. Consequently, 

subsequences  

(Jx2n+1), (Sx2n), (Ix2n) and (Tx2n+1) of yn are also converge to 

z as n. --------------(3.1) 

 

Since T(X) I(X) there exist a point uX such that z=Iu. 

Now to prove Su=z. 

By (2.2), 

d(Su ,Tx2n+1)  max{{d(Iu, Jx2n+1), d(Iu, Su), d(Jx2n+1,     

                                        Tx2n+1),  d(Iu,Tx2n+1),  d(Jx2n+1, Su)}. 

Using (3.1) we obtain  

d(Su, z)  max{  {0, d(z, Su), 0, 0, d(z, Su)} 

this gives d(Su, z)   {d(Su, z)} < d(Su, z), a contradiction, if 

Suz by the definition of .  Thus Su =z.  Hence Su =Iu=z. 

 

Since the pair (S,I) is weakly compatible, we get SIu=ISu  or 

Sz=Iz. 

Also since S(X) J(X), there exists a point vX such that z 

=Jv.  We prove z=Tv. 

Again by (2.2), we have  

d(Sx2n,Tv)  max{ {d(Ix2n, Jv), d(Ix2n, Sx2n), d(Jv, Tv), 

d(Ix2n, Tv), d(Jv, Sx2n)} 

Using (3.1), z =Jv and Su =Iu=z, we obtain 

d(z, Tv)  max { {d(z,Jv), 0, d(Jv,Tv), d(z,Tv), d(Jv,z)}} 

               =max{ {0, 0, d(z,Tv),0,0 }} 

d(z, Tv)   {d(z, Tv)} < d(z,Tv), a contradiction if zTu. 

This implies that z = Tv.   Hence Tv=Jv=z. 

Also Since the pair (J,T)is  weakly compatible, we get TJv = 

JTv  or Tz=Jz. 

Now we prove Sz=z. 

By (2.2), 

d(Sz ,Tx2n+1)  max{ {d(Iz,Jx2n+1), d(Iz,Sz), d(Jx2n+1,Tx2n+1), 

d(Iz,Tx2n+1),  

                                                                                                        

d(Jx2n+1, Sz)} 

Letting n, using (3.1) and Sz=Iz, we obtain  

d(Sz, z)  max{ {d(Sz,z),0,0,d(Sz,z), d(z,Sz)}. 

This gives d(Sz,z)  {d(Sz, z)} < d(Sz, z), a contradiction, if 

Szz  by the definition of .  Thus Sz =z. Hence Sz =Iz=z, 

showing that z is a common fixed point of S and I. 

Now we prove Tz=z. 

By (2.2), 

d(Sx2n ,Tz)  max{ {d(Ix2n,Jz), d(Ix2n,Sx2n), d(Jz,Tz), 

d(Ix2n,Tz), d(Jz, Sx2n)}} 

Letting n, using (3.1) and Jz=Tz,  we obtain  

d(z, Tz)  max{ { d(z,Tz),0,0,d(z,Tz), d(Tz,z)}. 

This gives d(z,Tz)  {d(z,Tz)} < d(z,Tz), a contradiction, if 

Tzz  by the definition of . Thus Tz =z.  Hence Tz =Jz=z, 

showing that z is a common fixed point of T and J. 

Since Sz=Iz=Tz =Jz=z, showing that z is a common fixed 

point S,I,T and J. 

Uniqueness: 

Now if  z1 is another fixed point for J,I, T and S, then  

d(z1, z) = d(Sz1,Tz) 

     {d(Iz1,Jz), d(Iz1, Sz1), d(Jz, Tz) d(Iz1,Tz) , d(Jz, Sz1)} 

   {d(z1,z) 0,0 d(z1,z), d(z1,z)} < d(z, z1) 

Hence z1= z . Showing that z is the unique common fixed 

point of S,I,T and J. 

Now an example is given to justify the above result. 

 

4. Example:   

 Let   X=[-1,1]   with d(x,y)= x y  

1 1
1

20 6

1 1
1

6 6

if x

Sx Tx

if x


  

  
  


 

1 1
1

5 6

1 1
1

3 6

if x

Ix Jx

x if x


  

  
   


 

Then S(X) =T(X)=
1 1

,
20 6

 
 
 

 while  I(X)=J(X) = 

1 1 2
,

5 6 3

   
 

 

 so that  S(X) J(X) and  T(X) I(X) 

proving the condition (1.5). If xn=
6 6

1 1
n

 
 
 

 for n≥1 such 
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that 
n

lim Sxn=
n

lim Ixn=
1

6
 .  It can be easily verified that 

n
lim SIxn=

1

20
, 

n
lim SSxn=

1

20
and 

n
lim IIxn=

1

20
, 

 

Now
n

lim d(SIxn,IIxn)=
3

20
≥

2

1
[

n
lim d(STxn,Sz)+ 

n
lim d(Sz,SSxn)] =

7

120
 failing to satisfy the compatibility 

of type(B) condition. It is interesting to note that the pairs 

(S,I) and (T,J) are  weakly compatible as they commute at 

coincident point 
1

6
. More over 

1

6
 is the unique common 

fixed point of P,Q,S and T. 
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