A Comment on Djoudi's Fixed Point Theorem

V.Srinivas
Department Of Mathematics,
Sreenidhi Institute Of Science & Technology,
Ghatkesar, R.R.Dist. – 501 301,
Andhra Pradesh, India.

Umamaheshwar Rao.R Department Of Mathematics Sreenidhi Institute Of Science & Technology Ghatkesar, R.R.Dist. – 501 301, Andhra Pradesh, India.

ABSTRACT

The aim of this paper is to establish the generalization of common fixed point theorem proved by A.Djoudi by using weakly compatible mappings.

Key words:

Compatible mappings, Compatible mappings of type (A), Compatible mappings of type(B), weakly Compatible mappings, Common fixed points.

2000 Mathematics Subject Classification: 47H10, 54H25

1. INTRODUCTION

G. Jungck [1] introduced more generalized commuting mappings called compatible mappings, which are more general than commuting and weakly commuting maps.

Further ,G.Jungck, P.P.Murthy and Y.J.Cho [3] gave the generalization of compatible mappings called compatible mappings of type (A) which is equivalent to the concept of compatible maps under some conditions.

H.K.Pathak and M.S.Khan [4] introduced the concept of compatible mappings of type (B) as a generalization of compatible mappings of type (A).

Later Jungck and Rhoades[4] defined weaker class of maps known as weakly compatible maps.

The present paper is to prove a common fixed point theorem for weakly compatible mappings. This theorem generalizes the result of Djoudi.

Definition 1.1:

Let S and T be mappings from a metric space (X,d) in to itself. The mappings S and T are said to be compatible if

 $\lim_{n\to\infty} d(STx_n, TSx_n) = 0, \text{ whenever } \langle x_n \rangle \text{ is a sequence in } X$

such that $\lim_{n\to\infty} Sx_n = \lim_{n\to\infty} Tx_n = z$ for some $z\in X$.

Definition 1.2:

Let S and T be mappings from a metric space (X,d) in to itself. The mappings S and T are said to be compatible mapping of type (B), if

$$\lim_{\substack{n\to\infty\\ \text{and}}} d(STx_n,TTx_n) \leq \frac{1}{2} \ [\lim_{\substack{n\to\infty\\ \text{n}\to\infty}} d(STx_n,Sz) + \lim_{\substack{n\to\infty\\ \text{n}\to\infty}} d(Sz,SSx_n)]$$

$$\underset{n \to \infty}{lim} \ d(TSx_n,SSx_n) \leq \frac{1}{2} \ [\ \underset{n \to \infty}{lim} \ d(TSx_n,Tz) + \underset{n \to \infty}{lim} \ d(Tz,TTx_n)]$$

whenever $\langle x_n \rangle$ is a sequence in X such that $\lim_{n \to \infty} Sx_n =$

 $\lim_{n\to\infty} Tx_n = z \quad \text{for some } z \in X.$

Definition 1.3:

Two self maps S and T of a metric space (X,d) are said to be weakly compatible if they commute at their coincidence point. i.e if Sx=Tx for some $x \in X$ then STx=TSx.

2. A Common fixed point theorem

Let R_+ be the set of non negative real numbers and let $\varphi : R_+^5$ $\rightarrow R_+$ be a function satisfying the following conditions:

 ϕ is upper semi continuous in each coordinate variable and non decreasing.

 $\begin{array}{l} \varphi(t) = max\{\phi\ (0,t,0,0,t),\ \phi\ (t,0,0,t,t),\ \phi\ (t,t,t,2t,0),\ \phi(0,0,t,t,0)\ \} \\ < t\ for\ any\ t>0. \end{array}$

The following is the theorem proved by A.Djoudi [6].

2.1 Theorem:

Let I, J, S and T be mappings from a complete metric space (X,d) into itself satisfying the conditions

(2.1.1) S(X) \subset J(X) and T(X) \subset I(X)

 $(2.1.2)d(Sx,Ty) \le max\{\phi(d(Ix,Jy),d(Ix,Sx),d(Jy,Ty),$

d(Ix,Ty),d(Jy,Sx)) for all $x,y \in X$.

(2.3) one of S,I,T and J is continuous

(2.4) the pairs (S,I) and (T,J) are compatible mappings of type(B)

Then S,I,T and J have a unique common fixed point z. Furthermore z is the unique common fixed point of both mappings.

Then by condition (2.1), $S(X) \subset J(X)$, for an arbitrary $x_0 \in X$ there exist a point $x_1 \in X$ such that $Sx_0 = Jx_1$. Also since $T(X) \subset I(X)$, for this point x_1 we can choose a point x_2 in X such that $Tx_1 = Ix_2$. Continuing in this way, one can construct a sequence $\langle y_n \rangle$ in X such that $y_{2n} = Sx_{2n} = Jx_{2n+1}$ and $y_{2n+1} = Tx_{2n+1} = Ix_{2n+2}$ for $n = 0, 1, 2, \dots$ ------(2.5)

Lemma 2.3. [6] Let I, J, S and T be mappings from a metric space (X,d) into itself satisfying (2.1) and (2.2). Then the sequence $\{y_n\}$ defined by (2.3) is a cauchy sequence in X.

The conclusion of Djoudi's theorem is established using the weaker condition weakly compatible in place of compatible mappings of type (B).

3. Main Theorem:

Let I, J, S and T be mappings from a complete metric space (X,d) into itself satisfying (2.1),(2.2) and that the pairs (S, I) and (J, T) are weakly compatible. Then I, J, S and T have a common fixed point 'z'. Furthermore 'z' is the unique fixed point of both mappings.

Proof: Let $\{y_n\}$ be the sequence in X defined in (2.5), then by Lemma 2.3 of [8], $\{y_n\}$ is a Cauchy sequence in X and so it converges to some element 'z' in X. Consequently, subsequences

 $(Jx_{2n+1}),$ $(Sx_{2n}),$ (Ix_{2n}) and (Tx_{2n+1}) of $\{y_n\}$ are also converge to z as n $\to \infty.$ -----(3.1)

Since $T(X) \subset I(X)$ there exist a point $u \in X$ such that z=Iu. Now to prove Su=z.

By (2.2),

$$\begin{split} d(Su\ , &Tx_{2n+1}) \leq max\{\phi\{d(Iu,\ Jx_{2n+1}),\ d(Iu,\ Su),\ d(Jx_{2n+1},\\ &Tx_{2n+1}),\ d(Iu,Tx_{2n+1}),\ d(Jx_{2n+1},\ Su)\}. \end{split}$$

Using (3.1) we obtain

 $d(Su, z) \le max\{ \ \phi \ \{0, \ d(z, Su), \ 0, \ 0, \ d(z, Su) \}$

this gives $d(Su, z) \le \phi \{d(Su, z)\} < d(Su, z)$, a contradiction, if $Su \ne z$ by the definition of ϕ . Thus Su = z. Hence Su = Iu = z.

Since the pair (S,I) is weakly compatible, we get SIu=ISu or Sz=Iz.

Also since $S(X) \subset J(X)$, there exists a point $v \in X$ such that z = Jv. We prove z = Tv.

Again by (2.2), we have

 $d(Sx_{2n}, Tv) \le max\{\phi \{d(Ix_{2n}, Jv), d(Ix_{2n}, Sx_{2n}), d(Jv, Tv),$

 $d(Ix_{2n},\,Tv),\,d(Jv,\,Sx_{2n})\}$

Using (3.1), z = Jv and Su = Iu = z, we obtain

$$\begin{split} d(z,\,Tv) &\leq max \; \{ \phi \; \{ d(z,Jv),\,0,\,d(Jv,Tv),\,d(z,Tv),\,d(Jv,z) \} \} \\ &= &max \{ \phi \; \{ 0,\,0,\,d(z,Tv),0,0 \; \} \} \end{split}$$

 $d(z, Tv) \le \phi \{d(z, Tv)\} < d(z, Tv)$, a contradiction if $z \ne Tu$.

This implies that z = Tv. Hence Tv=Jv=z.

Also Since the pair (J,T) is weakly compatible, we get TJv = JTv or Tz=Jz.

Now we prove Sz=z.

By (2.2),

$$\begin{split} &d(Sz\,,Tx_{2n+1})\leq max\{\ \phi\{d(Iz,\!Jx_{2n+1}),\,d(Iz,\!Sz),\,d(Jx_{2n+1},\!Tx_{2n+1}),\\ &d(Iz,\!Tx_{2n+1}), \end{split}$$

 $d(Jx_{2n+1}, Sz)$

Letting $n \rightarrow \infty$, using (3.1) and Sz=Iz, we obtain $d(Sz, z) \le max\{ \phi\{d(Sz, z), 0, 0, d(Sz, z), d(z, Sz)\}.$

This gives $d(Sz,z) \le \phi\{d(Sz,z)\} < d(Sz,z)$, a contradiction, if $Sz\ne z$ by the definition of ϕ . Thus Sz=z. Hence Sz=Iz=z, showing that z is a common fixed point of S and I.

Now we prove Tz=z.

By (2.2),

$$\begin{split} &d(Sx_{2n}\,,Tz) \leq max\{\; \phi\{d(Ix_{2n}\!,\!Jz),\; d(Ix_{2n}\!,\!Sx_{2n}),\; d(Jz,\!Tz),\\ &d(Ix_{2n}\!,\!Tz),\; d(Jz,\,Sx_{2n})\}\} \end{split}$$

Letting $n \rightarrow \infty$, using (3.1) and Jz=Tz, we obtain

 $d(z, Tz) \le max\{ \phi \{ d(z,Tz), 0, 0, d(z,Tz), d(Tz,z) \}.$

This gives $d(z,Tz) \le \phi\{d(z,Tz)\} < d(z,Tz)$, a contradiction, if $Tz\ne z$ by the definition of ϕ . Thus Tz=z. Hence Tz=Jz=z, showing that z is a common fixed point of T and J. Since Sz=Iz=Tz=Jz=z, showing that z is a common fixed

Since Sz=Iz=Tz =Jz=z, showing that z is a common fixed point S,I,T and J.

Uniqueness:

Now if z^1 is another fixed point for J,I, T and S, then $d(z^1, z) = d(Sz^1, Tz)$

$$\begin{split} & \leq \phi \; \{ d(Iz^{1},\!Jz), \, d(Iz^{1},\,Sz^{1}), \, d(Jz,\,Tz) \; d(Iz^{1},\!Tz) \; , \, d(Jz,\,Sz^{1}) \} \\ & \leq \phi \; \{ d(z^{1},\!z) \; 0,\!0 \; d(z^{1},\!z), \, d(z^{1},\!z) \} < d(z,\,z^{1}) \end{split}$$

Hence $z^1 = z$. Showing that z is the unique common fixed point of S,I,T and J.

Now an example is given to justify the above result.

4. Example:

Let X=[-1,1] with d(x,y)=|x-y|

$$Sx = Tx = \begin{cases} \frac{1}{20} & \text{if } -1 < x < \frac{1}{6} \\ \frac{1}{6} & \text{if } \frac{1}{6} \le x < 1 \end{cases}$$

$$Ix = Jx = \begin{cases} \frac{1}{5} & \text{if } -1 < x < \frac{1}{6} \\ \frac{1}{3} - x & \text{if } \frac{1}{6} \le x < 1 \end{cases}$$

Then
$$S(X) = T(X) = \left\{ \frac{1}{20}, \frac{1}{6} \right\}$$
 while $I(X) = J(X) =$

$$\left\{\frac{1}{5} \cup \left[\frac{1}{6}, \frac{-2}{3}\right]\right\} \text{ so that } S(X) \subset J(X) \text{ and } T(X) \subset I(X)$$

proving the condition (1.5). If $x_n = \left(\frac{1}{6} + \frac{1}{6^n}\right)$ for $n \ge 1$ such

that
$$\lim_{n\to\infty} Sx_n = \lim_{n\to\infty} Ix_n = \frac{1}{6}$$
. It can be easily verified that $\lim_{n\to\infty} SIx_n = \frac{1}{20}$, $\lim_{n\to\infty} SSx_n = \frac{1}{20}$ and $\lim_{n\to\infty} IIx_n = \frac{1}{20}$,

$$Now \lim_{n \to \infty} d(SIx_n, IIx_n) = \frac{3}{20} \ge \frac{1}{2} \left[\lim_{n \to \infty} d(STx_n, Sz) + \frac{1}{2} \right] = \frac{1}{2} \left[\lim_{n \to \infty} d(STx_n, Sz) + \frac{1}{2} \right] = \frac{1}{2} \left[\lim_{n \to \infty} d(STx_n, Sz) + \frac{1}{2} \right] = \frac{1}{2} \left[\lim_{n \to \infty} d(STx_n, Sz) + \frac{1}{2} \right] = \frac{1}{2} \left[\lim_{n \to \infty} d(STx_n, Sz) + \frac{1}{2} \right] = \frac{1}{2} \left[\lim_{n \to \infty} d(STx_n, Sz) + \frac{1}{2} \right] = \frac{1}{2} \left[\lim_{n \to \infty} d(STx_n, Sz) + \frac{1}{2} \right] = \frac{1}{2} \left[\lim_{n \to \infty} d(STx_n, Sz) + \frac{1}{2} \right] = \frac{1}{2} \left[\lim_{n \to \infty} d(STx_n, Sz) + \frac{1}{2} \right] = \frac{1}{2} \left[\lim_{n \to \infty} d(STx_n, Sz) + \frac{1}{2} \right] = \frac{1}{2} \left[\lim_{n \to \infty} d(STx_n, Sz) + \frac{1}{2} \right] = \frac{1}{2} \left[\lim_{n \to \infty} d(STx_n, Sz) + \frac{1}{2} \right] = \frac{1}{2} \left[\lim_{n \to \infty} d(STx_n, Sz) + \frac{1}{2} \right] = \frac{1}{2} \left[\lim_{n \to \infty} d(STx_n, Sz) + \frac{1}{2} \right] = \frac{1}{2} \left[\lim_{n \to \infty} d(STx_n, Sz) + \frac{1}{2} \right] = \frac{1}{2} \left[\lim_{n \to \infty} d(STx_n, Sz) + \frac{1}{2} \right] = \frac{1}{2} \left[\lim_{n \to \infty} d(STx_n, Sz) + \frac{1}{2} \right] = \frac{1}{2} \left[\lim_{n \to \infty} d(STx_n, Sz) + \frac{1}{2} \right] = \frac{1}{2} \left[\lim_{n \to \infty} d(STx_n, Sz) + \frac{1}{2} \right] = \frac{1}{2} \left[\lim_{n \to \infty} d(STx_n, Sz) + \frac{1}{2} \right] = \frac{1}{2} \left[\lim_{n \to \infty} d(STx_n, Sz) + \frac{1}{2} \right] = \frac{1}{2} \left[\lim_{n \to \infty} d(STx_n, Sz) + \frac{1}{2} \right] = \frac{1}{2} \left[\lim_{n \to \infty} d(STx_n, Sz) + \frac{1}{2} \right] = \frac{1}{2} \left[\lim_{n \to \infty} d(STx_n, Sz) + \frac{1}{2} \right] = \frac{1}{2} \left[\lim_{n \to \infty} d(STx_n, Sz) + \frac{1}{2} \right] = \frac{1}{2} \left[\lim_{n \to \infty} d(STx_n, Sz) + \frac{1}{2} \right] = \frac{1}{2} \left[\lim_{n \to \infty} d(STx_n, Sz) + \frac{1}{2} \right] = \frac{1}{2} \left[\lim_{n \to \infty} d(STx_n, Sz) + \frac{1}{2} \right] = \frac{1}{2} \left[\lim_{n \to \infty} d(STx_n, Sz) + \frac{1}{2} \right] = \frac{1}{2} \left[\lim_{n \to \infty} d(STx_n, Sz) + \frac{1}{2} \right] = \frac{1}{2} \left[\lim_{n \to \infty} d(STx_n, Sz) + \frac{1}{2} \right] = \frac{1}{2} \left[\lim_{n \to \infty} d(STx_n, Sz) + \frac{1}{2} \right] = \frac{1}{2} \left[\lim_{n \to \infty} d(STx_n, Sz) + \frac{1}{2} \right] = \frac{1}{2} \left[\lim_{n \to \infty} d(STx_n, Sz) + \frac{1}{2} \right] = \frac{1}{2} \left[\lim_{n \to \infty} d(STx_n, Sz) + \frac{1}{2} \right] = \frac{1}{2} \left[\lim_{n \to \infty} d(STx_n, Sz) + \frac{1}{2} \right] = \frac{1}{2} \left[\lim_{n \to \infty} d(STx_n, Sz) + \frac{1}{2} \right] = \frac{1}{2} \left[\lim_{n \to \infty} d(STx_n, Sz) + \frac{1}{2} \right] = \frac{1}{2} \left[\lim_{n \to \infty} d(STx_n, Sz) + \frac{1}{2} \right] = \frac{1}{2} \left[\lim_{n \to \infty} d(STx_n, Sz) + \frac{1}{2} \right] = \frac{1}{2} \left[\lim_{n \to \infty} d(STx_n, Sz) + \frac{1}{$$

 $\lim_{n \to \infty} \ \mathrm{d}(\mathrm{Sz}, \mathrm{SSx}_n)] = \frac{7}{120} \ \ \mathrm{failing} \ \ \mathrm{to} \ \ \mathrm{satisfy} \ \ \mathrm{the} \ \ \mathrm{compatibility}$ of type(B) condition. It is interesting to note that the pairs (S,I) and (T,J) are weakly compatible as they commute at coincident point $\frac{1}{6}$. More over $\frac{1}{6}$ is the unique common fixed point of P,Q,S and T.

6. References

- [1] G.Jungck, 1986, Compatible mappings and common fixed points, Internat.J.Math & Math. Sci. 9, 771-779.
- [2] G.Jungck, 1988, Compatible mappings and common fixed points (2), Internat. J.Math. & Math. Sci. 11,285-288.

- [3] G.Jungck, P.P.Murthy and Y.J.Cho, 1993 Compatible mappings of type(A) and common fixed points, Math. Japonica 38,2, 381-390.
- [4] H.K.Pathak and M.S.Khan, 1995, Compatible mappings of type(B) and common fixed points of Gregus type, Czechoslovak Math.J.45, 120, 685-698.
- [5] Jungck.G. and Rhoades.B.E., 1998, Fixed point for set valued functions without continuity, Indian J. Pure. Appl. Math., 29 (3), 227-238.
- [6] A.Djoudi, 2003 A common fixed point theorem for compatible mappings of type (B) in complete metric spaces, Demonstr. Math. Vol.XXXVI, No.2, 463-470.
- [7] Umamaheshwar Rao.R and V.Srinivas, 2007, A generalization of Djoudi"s common fixed point theorem International J. of Math. Sci.& Engg. Appls, Vol.1, (No.2), 229-238.
- [8] V.Srinivas and R.Umamaheshwar Rao, A fixed point theorem for four self maps under weakly compatible maps, Proceeding of World Congress on Engineering, Vol.II,WCE (2008), London,U.K. Main theorem is a generalization of Djuodi's theorem by virtue of the weaker conditions such as; weakly compatibility of the pairs (S,I) and (T,J) in place of compatibility of type (B).