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ABSTRACT 

Context-based adaptive variable-length coding (CAVLC) is an 

important feature of the latest video coding standard 

H.264/AVC. The coding technique using conventional  CAVLC 

based on area efficient design, the second is on low power 

design architecture will lead to low throughput. In this paper, an 

efficient CAVLC design is proposed. The main concept is the 

FPGA based pipelining scheme for parallel processing of two 

4x4 blocks. When one block is processed by the scanning engine 

to collect the required symbols, its previous block is handled by 

the coding engine to translate symbols into bit stream. Our block 

based pipelined architecture doubles the throughput of CAVLC 

at high bit rates. The proposed architecture can make a real time 

processing of 1920X1080 @ 30fps. With the synthesis constraint 

of a 200MHz clock using altera cyclone-II FPGA. 

Keywords—Context-based adaptive variable-length coding 

(CAVLC), H.264/AVC, Zig-Zag Scanning, block pipeline. 

1. INTRODUCTION 

In order to achieve the higher compression ratio, Context-Based 

Adaptive Variable Length Coding (CAVLC) is adopted as one of 

entropy encoder in MPEG-4 AVC/H.264 [1], [2]. Compared with 

the traditional entropy encoder, CAVLC can achieve better 

coding efficiency, but the algorithm complexity is higher. On the 

other hand, because of the data dependency in CAVLC, it results 

a complex CAVLC encoding in hardware implementation. At the 

same time, throughput is the other concern in CAVLC, especially 

for higher resolution video such as HDTV. The encoder overall 

diagram is shown in figure 1. 

While dealing with higher resolution of video information, 

encoding (or decoding) with an efficient CAVLC encoder is 

important. In this paper, an efficient and low power CAVLC 

encoder is proposed for video coding applications of MPEG-4 

AVC/H.264. Two main concepts are proposed to increase the 

throughput. One is the combination of scan phase and coding 

phase; the other is the block-based pipelining by the associated 

input buffer.  

As shown in figure 1 the encoder contains different blocks 

starting from video input to bit stream generation. In H.264 

video encoder the output block is entropy coding, entropy 

coding is widely used in lossless compression. H.264/AVC 

adopted two approaches for entropy coding employed  

One is CAVLC and CABAC. CAVLC is supported in all H.264 

profiles, unlike CABAC which is not supported in Baseline and 

extended profiles. There are various profiles present like base 

line, main, extended base line supports intra and inter coding 

using I-Slices and P-Slices and entropy coding with CAVLC. 

The CAVLC designs can be classified into four types first is 

emphasizing on area efficient design, high performance, low 

power design, FPGA based design.   

   

 

2. H.264 CAVLC ALGORITHM 

OVERVIEW 

Figure 2 shows the coding order of a macro block including 

Luma and chroma.CAVLC algorithm is used to encode 

transformed and quantized residual luminance and chrominance 

blocks in a macroblock in the order shown in Figure 2. Block -1 

is formed by the DC coefficients of 4x4 luminance blocks only 

for the macroblocks that are coded in 16x16 Intra Mode. Blocks 

16 and 17 are formed by the DC coefficients of 4x4 

chrominance blocks for all the macro blocks. All the 

transformed and quantized 4x4 and 2x2 blocks for a macro block 

are given as inputs to CAVLC algorithm in the order shown in 

Figure 2. CAVLC algorithm processes each 4x4 block in zig-zag 

scan order and each 2x2 block in raster scan order. It encodes 

each block in the following five steps [2, 3, 4]. 

 

                Luma                         Chroma Cb Cr 

Figure 2 Coding Order of Blocks in a Macro block 

Figure 1 H.264 Encoder Diagram 
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A. Step 1: Coeff_Token-: 

                                        It generates coeff_token, the variable 

length code that encodes both the number of non-zero 

coefficients (TotalCoeff) and the number of trailing ±1 values 

(TrailingOnes) in a block. Since the highest non-zero 

coefficients after the zig-zag scan are often sequences of ±1, 

CAVLC algorithm encodes the number of high-frequency ±1 

coefficients (TrailingOnes) in coeff_token. Since the number of 

non-zero coefficients in neighbouring blocks is correlated, 

CAVLC algorithm generates coeff_token for a block context 

adaptively. It uses one of the four different VLC tables for 

generating the coeff_token for a block based on the number of 

nonzero coefficients in the neighboring blocks as follows. Figure 

3 shows the calculation of nC parameter based on the number of 

non-zero coefficients in the left-hand and upper previously 

coded blocks, nA and nB respectively.  

 

nC = round ((nA + nB) /2).If both block is available.  

nC = nB;    If upper block is available.                           

nC = nA;     if  left block is available. 

nC = 0        if  neither is available. 

 

As a special case, for 2x2 dc chroma blocks, nC is always set to 

-1. It, then, selects the VLC table that will be used for generating 

the coeff_token based on the value of nC as shown in Table I. 

 

 

 

Figure 3 The relationship between block A, block B and 

block C 

                                    TABLE I  VLC TABLE SELECTION 

nC VLC Table for coeff_token 

0,1 Table 1 

2,3 Table 2 

4,5,6,7 Table 3 

8 or above Table 4 

B. Step 2:TrailingOne Sign:- 

                                              It encodes the sign of each 

TrailingOne with a single bit in reverse order starting with the 

highest-frequency TrailingOne. 

C. Step 3:Level :- 

It encodes the level (sign and magnitude) of each remaining non-

zero coefficient in the block in reverse order starting with the 

highest frequency coefficient and working back towards the DC 

coefficient. The code word for a level consists of a prefix and a 

suffix. Since the magnitude of non-zero coefficients tends to be 

larger near the DC coefficient and smaller towards the higher 

frequencies, CAVLC algorithm adapts the suffix length for the 

level parameter depending on recently-coded level magnitudes. 

It sets the suffix length for the first level, except in some special 

cases, to 0. It then increments the current suffix length, if the 

magnitude of the current level is larger than a predefined 

threshold for this suffix length. CAVLC algorithm generates the 

code length and the codeword for the current level based on its 

suffix length. When the suffix length for a level is 0, its 

codeword does not include a suffix. Otherwise, the codeword for 

the level includes a suffix. The codeword for a level always 

includes a prefix, but the prefix for a level is generated using 

different equations in the two cases; when the suffix length for 

the level is 0 versus when the suffix length for the level is 

greater than 0 [4]. 

 

 

Figure 4 CAVLC Encoding Flow 

 

D. Step 4: Total Zeros :- 

        It encodes the total number of zeros before the last non-

zero coefficient (Total_Zeros) using a VLC table.Figure 4 shows 

the encoding flow of a CAVLC algorithm. 

E. Step 5:Run Before :- 

                                    It encodes the number of zeros 

preceding each non-zero coefficient (Run_Before) in reverse 

order starting with the highest frequency coefficient. Since after 

transformation and quantization, blocks typically contain mostly 

zeros, CAVLC algorithm uses run level coding to represent 

strings of zeros compactly. 

 

During encoding the residual data of a block, forward zigzag 

scan order is first processed; and then it is coded in the direction 

of backward scan order (from the highest ac value to dc value of 

current 4X 4 blocks). An example of CAVLC encoding is 

provided. In Fig. 5, the quantized transform coefficients of a 4 X 

4 block are shown. 
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Figure 5 CAVLC Example 

 

The reordered data of the block are in the form of (0,3,0,1,-1,  -

1,0,1, 0, 0, 0, 0, 0, 0, 0, 0). The encoding procedure of the 

example is also shown in Table II. 

 

Table II   CAVLC Encoding example 

 

Parameter Example (value) Example 

(code) 

coeff_token TotalCoeff = 5 

TrailingOnes=3 

0000000110 

Trailing_Ones 

sign flag 

+, - ,- 0,1,1 

level Level(1) = +1 

Level(0) = +3 

1 

0010 

total_zero 3 111 

 

run_before 

Zerosleft= 3, 

Runb=1 

Zerosleft= 2, 

Runb=0 

Zerosleft= 2, 

Runb=0 

Zerosleft= 2, 

Runb=1 

Zerosleft= 1, 

Runb=1 

10 

1 

1 

01 

No code 

 

The five main parameters are encoded in sequence; and 

finally, the transmitted bit stream for this block is 

000010001110010111101101 

3. PROPOSED HARDWARE ARCHITECTURE 

The proposed CAVLC architecture includes the following main 

blocks. They are the input Register file, Reverse Zigzag Address 

Generation logic, nC generator, Trailing One Counter, Non-Zero 

Coefficient Counter, Total Zero Counter, Level counter, Run 

Before Regfile, Trailing One counter, Coeff_Token Table 

Selection Unit. The proposed over all architecture is shown in 

figure 7. 

 

 

Figure 6 Scanning and Coding Pipe line phase 

 

The CAVLC is one of the entropy coding methods which is used 

in the latest H.264 video standard, encodes the transformed 

quantized residual data. In a real time video encoder the residual 

data after quantization stored in a buffer. During the encoding of 

residual data, forward zigzag scan order from the dc value to the 

highest ac value of current 4 X 4 blocks is performed. So we 

proposed the dual-buffer with block pipelining architecture in 

which when one block of data is zigzag scanned at the same time 

other block data is coded to generate bit stream. Figure 6 shows 

the block pipe line stage of four blocks. At first block B1 is 

zigzag scaned then while coding of B1 the block B2 is scanned. 

So as shown in the figure 6 while buffer A used for coding 

buffer B is used for scanning of the new 4 x 4 block.    

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7  Overall proposed Architecture 

 

F. VLC Counters and Reverse Zig-zag Ordering 

CAVLC hardware contains a number of counters and register 

files to store the information for a block that will be encoded by 

variable length codes. Non-Zero Coefficients counter is used to 

store the number of non-zero coefficients (TotalCoeff). 

TrailingOnes counter is used to store the number of trailing ±1 

values (TrailingOnes). TotalZeros counter is used to store the 

total number of zeros before the last non-zero coefficient 

(Total_Zeros). Level counter is used to store the number of non-

zero coefficients other than the TrailingOnes. TrailingOnes 

register file is used to store the sign of each TrailingOne. Level 

register file is used to store the level (sign and magnitude) of 

each non-zero coefficient other than the TrailingOnes. 

RunBefores register file is used to store the number of zeros 

preceding each non-zero coefficient. [4, 5] 

 

0 3 -1 0 

0 -1 1 0 

1 0 0 0 

0 0 0 0 
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CAVLC hardware begins the encoding for a 4x4 block by 

reading the coefficients from the input buffer in reverse zig-zag 

order. In each cycle, it reads one coefficient from the input 

buffer analyzes the coefficient and updates the information 

stored in the related counter and register file. At the end of this 

process, the counters and register files mentioned above contain 

all the information for the current block that will be encoded 

with variable length codes. Figure 8 shows Reverse zig-zag 

scanning enables us to determine the necessary information for 

encoding a 4x4 block by reading and analyzing each coefficient 

only once. This reduces the power consumption by reducing the 

switching activity on the input buffer address and data signals. 

[3, 5] 

 

 

 

Figure 8 Zig-Zag Scan Process 

 

It takes 16 cycles to read the coefficients and store the 

corresponding information in the counters and register files for 

each 4x4 luminance block in the macro blocks that are not coded 

in 16x16 Intra Mode. Figure 10 shows the block diagram of 

H.264/AVC baseline profile entropy coding engine.  The same 

process takes 16 cycles for block -1 and 15 cycles for the other 

4x4 luminance blocks in the macro blocks that are coded in 

16x16 Intra Mode. Because DC coefficients in 4x4 luminance 

blocks in these macro blocks are coded in block -1. The same 

process takes 4 cycles for 2x2 chrominance blocks 16 and 17, 

and 15 cycles for the 4x4 chrominance blocks in all the macro 

blocks due to the same reason. [6, 7] 

G. Zero Skipping by CBP Look-Ahead :  

The symbol count of residues decreases with the increasing of 

quantization parameter. In this situation, the throughput of the 

dual-buffer architecture will be confined by the scanning Phase. 

To further improve our design, a zero-skipping technique is 

applied. When the residues within an 8 x 8 block are all zero, it 

is not necessary for the 4x4 blocks inside to be coded in this 

situation. We can save time and power by skipping the 

redundant scanning process. In this method, the CBP in the MB 

header is used for the skipping decision. 

H. Real Time Requirement 

In order to achieve the real time processing for H.264 video 

coding on HD1080 video coding the CAVLC encoder should run 

over 94 MHz when one transform quantized residual data is 

encoded per cycle. That is the average number of processing 

cycle per MB must be less than 384 cycle for meeting the real 

time processing requirement.  

4. SIMULATION AND IMPLEMENTATION 

                      The Basic dual-buffer architecture with block 

pipelining and zero skipping technique is used. Four sequences 

in the QCIF 30-fps format with different characteristics are used. 

Foreman is a general sequence with medium motion. Mobile 

calendar is highly textured and has complex motion. Weather 

has a static background and a sudden fast-moving person. Stefan 

has large global motions caused by the camera. Compared with 

the basic architecture, the dual-buffer architecture with the 

block-pipelining figure 11 scheme can process the scanning 

Phase and the coding phase of two neighboring 4 x 4 blocks in 

parallel and thus enhances the hardware utilization. It can almost 

half the processing cycles of CAVLC when the quantized 

residue energy is still large in high-bit-rate situations. However, 

when prediction is fine or in low-bit-rate situations, most 

residues are zero and the scanning phase dominates the 

processing cycles. The zero-skipping technique according to 

CBP can further improve the design by saving the redundant 

scanning. 

 

 

 

Figure 9 Simulation Waveform (Exgolomb Code) 

 

 

 

Figure 10 Time Analyzer Summary (Exgolomb Code) 

 

 

 

Figure 11 Simulation Waveform Zig Zag Scan 
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Figure 12 Time Analyzer Summary (Zig Zag Scan) 

 

 

 

Figure 13 Simulation Waveform (Combine Block) 

 

 

 

Figure 14 Time Analyzer Summary (Combine Block) 

 

I.   Implementation Results 

The proposed entropy coding engine with dual-block pipelined 

architecture, zigzag address scan generator, the designed 

architecture is synthesized and simulated in 0.35 μm process 

technology using Synopsys tools. Table III shows the gate count 

profile. To achieve full hardware utilization by the dual-buffer 

architecture, two block statistic buffers are required. Two types 

of memories are required. The coefficient memory and bit 

stream memory are used as input and output buffers for system 

consideration. The upper 4 x 4 block total coefficient memory is 

used to store. The 2nd memory is used to process the next 4 x 4 

block. Table 1 listed the throughput of proposed architecture.  

 

 

 

TABLE II Throughput of Proposed Design with Others 

Sl 
No 

Frequency 

MHz 

Frame 
format 

Size Proposed 

MB/s 

1 200 QCIF 176x144 4856 

 

2 200 CIF 352x288 1214 

 

3 200 SDTV 1280x720 133 

 

4 200 HDTV 1920x1080 59 

 

 

 

 

Figure 15 Compilation report of overall block 

 

 

 

Figure 16 Result of proposed Architecture 
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5. CONCLUSIONS 

This paper has focused on the high throughput of the CAVLC 

encoder with zigzag scanning. The proposed architecture has a 

better performance than known alternatives. It also achieves a 

high throughput, with a low-cost memory requirement and 

hardware complexity. 

In this paper, we presented a high performance and throughput 

hardware architecture for real-time implementation of H.264 

CAVLC encoder. The proposed architecture is implemented in 

VHDL using Altera Cyclone-II FPGA. The VHDL RTL code is 

verified to work at 200 MHz.   
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