
International Journal of Computer Applications (0975 – 8887)

Volume 69– No.10, May 2013

23

FPGA based High Performance CAVLC Implementation
for H.264 Video Coding

Arun Kumar Pradhan

Trident Academy of
Technology

Bhubaneswar,India

Lalit Kumar Kanoje
Trident Academy of

Technology
Bhubaneswar,India

Biswa Ranjan Swain
Trident Academy of

Technology
Bhubaneswar,India

ABSTRACT

Context-based adaptive variable-length coding (CAVLC) is an

important feature of the latest video coding standard

H.264/AVC. The coding technique using conventional CAVLC

based on area efficient design, the second is on low power

design architecture will lead to low throughput. In this paper, an

efficient CAVLC design is proposed. The main concept is the

FPGA based pipelining scheme for parallel processing of two

4x4 blocks. When one block is processed by the scanning engine

to collect the required symbols, its previous block is handled by

the coding engine to translate symbols into bit stream. Our block

based pipelined architecture doubles the throughput of CAVLC

at high bit rates. The proposed architecture can make a real time

processing of 1920X1080 @ 30fps. With the synthesis constraint

of a 200MHz clock using altera cyclone-II FPGA.

Keywords—Context-based adaptive variable-length coding

(CAVLC), H.264/AVC, Zig-Zag Scanning, block pipeline.

1. INTRODUCTION

In order to achieve the higher compression ratio, Context-Based

Adaptive Variable Length Coding (CAVLC) is adopted as one of

entropy encoder in MPEG-4 AVC/H.264 [1], [2]. Compared with

the traditional entropy encoder, CAVLC can achieve better

coding efficiency, but the algorithm complexity is higher. On the

other hand, because of the data dependency in CAVLC, it results

a complex CAVLC encoding in hardware implementation. At the

same time, throughput is the other concern in CAVLC, especially

for higher resolution video such as HDTV. The encoder overall

diagram is shown in figure 1.

While dealing with higher resolution of video information,

encoding (or decoding) with an efficient CAVLC encoder is

important. In this paper, an efficient and low power CAVLC

encoder is proposed for video coding applications of MPEG-4

AVC/H.264. Two main concepts are proposed to increase the

throughput. One is the combination of scan phase and coding

phase; the other is the block-based pipelining by the associated

input buffer.

As shown in figure 1 the encoder contains different blocks

starting from video input to bit stream generation. In H.264

video encoder the output block is entropy coding, entropy

coding is widely used in lossless compression. H.264/AVC

adopted two approaches for entropy coding employed

One is CAVLC and CABAC. CAVLC is supported in all H.264

profiles, unlike CABAC which is not supported in Baseline and

extended profiles. There are various profiles present like base

line, main, extended base line supports intra and inter coding

using I-Slices and P-Slices and entropy coding with CAVLC.

The CAVLC designs can be classified into four types first is

emphasizing on area efficient design, high performance, low

power design, FPGA based design.

2. H.264 CAVLC ALGORITHM

OVERVIEW

Figure 2 shows the coding order of a macro block including

Luma and chroma.CAVLC algorithm is used to encode

transformed and quantized residual luminance and chrominance

blocks in a macroblock in the order shown in Figure 2. Block -1

is formed by the DC coefficients of 4x4 luminance blocks only

for the macroblocks that are coded in 16x16 Intra Mode. Blocks

16 and 17 are formed by the DC coefficients of 4x4

chrominance blocks for all the macro blocks. All the

transformed and quantized 4x4 and 2x2 blocks for a macro block

are given as inputs to CAVLC algorithm in the order shown in

Figure 2. CAVLC algorithm processes each 4x4 block in zig-zag

scan order and each 2x2 block in raster scan order. It encodes

each block in the following five steps [2, 3, 4].

 Luma Chroma Cb Cr

Figure 2 Coding Order of Blocks in a Macro block

Figure 1 H.264 Encoder Diagram

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.10, May 2013

24

A. Step 1: Coeff_Token-:

 It generates coeff_token, the variable

length code that encodes both the number of non-zero

coefficients (TotalCoeff) and the number of trailing ±1 values

(TrailingOnes) in a block. Since the highest non-zero

coefficients after the zig-zag scan are often sequences of ±1,

CAVLC algorithm encodes the number of high-frequency ±1

coefficients (TrailingOnes) in coeff_token. Since the number of

non-zero coefficients in neighbouring blocks is correlated,

CAVLC algorithm generates coeff_token for a block context

adaptively. It uses one of the four different VLC tables for

generating the coeff_token for a block based on the number of

nonzero coefficients in the neighboring blocks as follows. Figure

3 shows the calculation of nC parameter based on the number of

non-zero coefficients in the left-hand and upper previously

coded blocks, nA and nB respectively.

nC = round ((nA + nB) /2).If both block is available.

nC = nB; If upper block is available.

nC = nA; if left block is available.

nC = 0 if neither is available.

As a special case, for 2x2 dc chroma blocks, nC is always set to

-1. It, then, selects the VLC table that will be used for generating

the coeff_token based on the value of nC as shown in Table I.

Figure 3 The relationship between block A, block B and

block C

 TABLE I VLC TABLE SELECTION

nC VLC Table for coeff_token

0,1 Table 1

2,3 Table 2

4,5,6,7 Table 3

8 or above Table 4

B. Step 2:TrailingOne Sign:-

 It encodes the sign of each

TrailingOne with a single bit in reverse order starting with the

highest-frequency TrailingOne.

C. Step 3:Level :-

It encodes the level (sign and magnitude) of each remaining non-

zero coefficient in the block in reverse order starting with the

highest frequency coefficient and working back towards the DC

coefficient. The code word for a level consists of a prefix and a

suffix. Since the magnitude of non-zero coefficients tends to be

larger near the DC coefficient and smaller towards the higher

frequencies, CAVLC algorithm adapts the suffix length for the

level parameter depending on recently-coded level magnitudes.

It sets the suffix length for the first level, except in some special

cases, to 0. It then increments the current suffix length, if the

magnitude of the current level is larger than a predefined

threshold for this suffix length. CAVLC algorithm generates the

code length and the codeword for the current level based on its

suffix length. When the suffix length for a level is 0, its

codeword does not include a suffix. Otherwise, the codeword for

the level includes a suffix. The codeword for a level always

includes a prefix, but the prefix for a level is generated using

different equations in the two cases; when the suffix length for

the level is 0 versus when the suffix length for the level is

greater than 0 [4].

Figure 4 CAVLC Encoding Flow

D. Step 4: Total Zeros :-

 It encodes the total number of zeros before the last non-

zero coefficient (Total_Zeros) using a VLC table.Figure 4 shows

the encoding flow of a CAVLC algorithm.

E. Step 5:Run Before :-

 It encodes the number of zeros

preceding each non-zero coefficient (Run_Before) in reverse

order starting with the highest frequency coefficient. Since after

transformation and quantization, blocks typically contain mostly

zeros, CAVLC algorithm uses run level coding to represent

strings of zeros compactly.

During encoding the residual data of a block, forward zigzag

scan order is first processed; and then it is coded in the direction

of backward scan order (from the highest ac value to dc value of

current 4X 4 blocks). An example of CAVLC encoding is

provided. In Fig. 5, the quantized transform coefficients of a 4 X

4 block are shown.

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.10, May 2013

25

Figure 5 CAVLC Example

The reordered data of the block are in the form of (0,3,0,1,-1, -

1,0,1, 0, 0, 0, 0, 0, 0, 0, 0). The encoding procedure of the

example is also shown in Table II.

Table II CAVLC Encoding example

Parameter Example (value) Example

(code)

coeff_token TotalCoeff = 5

TrailingOnes=3

0000000110

Trailing_Ones

sign flag

+, - ,- 0,1,1

level Level(1) = +1

Level(0) = +3

1

0010

total_zero 3 111

run_before

Zerosleft= 3,

Runb=1

Zerosleft= 2,

Runb=0

Zerosleft= 2,

Runb=0

Zerosleft= 2,

Runb=1

Zerosleft= 1,

Runb=1

10

1

1

01

No code

The five main parameters are encoded in sequence; and

finally, the transmitted bit stream for this block is

000010001110010111101101

3. PROPOSED HARDWARE ARCHITECTURE

The proposed CAVLC architecture includes the following main

blocks. They are the input Register file, Reverse Zigzag Address

Generation logic, nC generator, Trailing One Counter, Non-Zero

Coefficient Counter, Total Zero Counter, Level counter, Run

Before Regfile, Trailing One counter, Coeff_Token Table

Selection Unit. The proposed over all architecture is shown in

figure 7.

Figure 6 Scanning and Coding Pipe line phase

The CAVLC is one of the entropy coding methods which is used

in the latest H.264 video standard, encodes the transformed

quantized residual data. In a real time video encoder the residual

data after quantization stored in a buffer. During the encoding of

residual data, forward zigzag scan order from the dc value to the

highest ac value of current 4 X 4 blocks is performed. So we

proposed the dual-buffer with block pipelining architecture in

which when one block of data is zigzag scanned at the same time

other block data is coded to generate bit stream. Figure 6 shows

the block pipe line stage of four blocks. At first block B1 is

zigzag scaned then while coding of B1 the block B2 is scanned.

So as shown in the figure 6 while buffer A used for coding

buffer B is used for scanning of the new 4 x 4 block.

Figure 7 Overall proposed Architecture

F. VLC Counters and Reverse Zig-zag Ordering

CAVLC hardware contains a number of counters and register

files to store the information for a block that will be encoded by

variable length codes. Non-Zero Coefficients counter is used to

store the number of non-zero coefficients (TotalCoeff).

TrailingOnes counter is used to store the number of trailing ±1

values (TrailingOnes). TotalZeros counter is used to store the

total number of zeros before the last non-zero coefficient

(Total_Zeros). Level counter is used to store the number of non-

zero coefficients other than the TrailingOnes. TrailingOnes

register file is used to store the sign of each TrailingOne. Level

register file is used to store the level (sign and magnitude) of

each non-zero coefficient other than the TrailingOnes.

RunBefores register file is used to store the number of zeros

preceding each non-zero coefficient. [4, 5]

0 3 -1 0

0 -1 1 0

1 0 0 0

0 0 0 0

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.10, May 2013

26

CAVLC hardware begins the encoding for a 4x4 block by

reading the coefficients from the input buffer in reverse zig-zag

order. In each cycle, it reads one coefficient from the input

buffer analyzes the coefficient and updates the information

stored in the related counter and register file. At the end of this

process, the counters and register files mentioned above contain

all the information for the current block that will be encoded

with variable length codes. Figure 8 shows Reverse zig-zag

scanning enables us to determine the necessary information for

encoding a 4x4 block by reading and analyzing each coefficient

only once. This reduces the power consumption by reducing the

switching activity on the input buffer address and data signals.

[3, 5]

Figure 8 Zig-Zag Scan Process

It takes 16 cycles to read the coefficients and store the

corresponding information in the counters and register files for

each 4x4 luminance block in the macro blocks that are not coded

in 16x16 Intra Mode. Figure 10 shows the block diagram of

H.264/AVC baseline profile entropy coding engine. The same

process takes 16 cycles for block -1 and 15 cycles for the other

4x4 luminance blocks in the macro blocks that are coded in

16x16 Intra Mode. Because DC coefficients in 4x4 luminance

blocks in these macro blocks are coded in block -1. The same

process takes 4 cycles for 2x2 chrominance blocks 16 and 17,

and 15 cycles for the 4x4 chrominance blocks in all the macro

blocks due to the same reason. [6, 7]

G. Zero Skipping by CBP Look-Ahead :

The symbol count of residues decreases with the increasing of

quantization parameter. In this situation, the throughput of the

dual-buffer architecture will be confined by the scanning Phase.

To further improve our design, a zero-skipping technique is

applied. When the residues within an 8 x 8 block are all zero, it

is not necessary for the 4x4 blocks inside to be coded in this

situation. We can save time and power by skipping the

redundant scanning process. In this method, the CBP in the MB

header is used for the skipping decision.

H. Real Time Requirement

In order to achieve the real time processing for H.264 video

coding on HD1080 video coding the CAVLC encoder should run

over 94 MHz when one transform quantized residual data is

encoded per cycle. That is the average number of processing

cycle per MB must be less than 384 cycle for meeting the real

time processing requirement.

4. SIMULATION AND IMPLEMENTATION

 The Basic dual-buffer architecture with block

pipelining and zero skipping technique is used. Four sequences

in the QCIF 30-fps format with different characteristics are used.

Foreman is a general sequence with medium motion. Mobile

calendar is highly textured and has complex motion. Weather

has a static background and a sudden fast-moving person. Stefan

has large global motions caused by the camera. Compared with

the basic architecture, the dual-buffer architecture with the

block-pipelining figure 11 scheme can process the scanning

Phase and the coding phase of two neighboring 4 x 4 blocks in

parallel and thus enhances the hardware utilization. It can almost

half the processing cycles of CAVLC when the quantized

residue energy is still large in high-bit-rate situations. However,

when prediction is fine or in low-bit-rate situations, most

residues are zero and the scanning phase dominates the

processing cycles. The zero-skipping technique according to

CBP can further improve the design by saving the redundant

scanning.

Figure 9 Simulation Waveform (Exgolomb Code)

Figure 10 Time Analyzer Summary (Exgolomb Code)

Figure 11 Simulation Waveform Zig Zag Scan

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.10, May 2013

27

Figure 12 Time Analyzer Summary (Zig Zag Scan)

Figure 13 Simulation Waveform (Combine Block)

Figure 14 Time Analyzer Summary (Combine Block)

I. Implementation Results

The proposed entropy coding engine with dual-block pipelined

architecture, zigzag address scan generator, the designed

architecture is synthesized and simulated in 0.35 μm process

technology using Synopsys tools. Table III shows the gate count

profile. To achieve full hardware utilization by the dual-buffer

architecture, two block statistic buffers are required. Two types

of memories are required. The coefficient memory and bit

stream memory are used as input and output buffers for system

consideration. The upper 4 x 4 block total coefficient memory is

used to store. The 2nd memory is used to process the next 4 x 4

block. Table 1 listed the throughput of proposed architecture.

TABLE II Throughput of Proposed Design with Others

Sl
No

Frequency

MHz

Frame
format

Size Proposed

MB/s

1 200 QCIF 176x144 4856

2 200 CIF 352x288 1214

3 200 SDTV 1280x720 133

4 200 HDTV 1920x1080 59

Figure 15 Compilation report of overall block

Figure 16 Result of proposed Architecture

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.10, May 2013

28

5. CONCLUSIONS

This paper has focused on the high throughput of the CAVLC

encoder with zigzag scanning. The proposed architecture has a

better performance than known alternatives. It also achieves a

high throughput, with a low-cost memory requirement and

hardware complexity.

In this paper, we presented a high performance and throughput

hardware architecture for real-time implementation of H.264

CAVLC encoder. The proposed architecture is implemented in

VHDL using Altera Cyclone-II FPGA. The VHDL RTL code is

verified to work at 200 MHz.

6. REFERENCES

[1] WIEGAND T., SULLIVAN G.J., BJONTEGARARD G.,

LUTHRA A.: ‘Overview of the H.264/AVC video coding

standard’, IEEE Trans. Circuits Syst. Video Technol., 2003,

13, (7),pp. 506–576

[2] ITU-T Rec.H.264/ISO/IEC 14496-10: ‘Advanced video

coding’, March 2005

[3] CHEN T.-C., HUANG Y.-W., TSAI C.-Y., HSIEH B.-Y.,

CHEN L.-G.: ‘Architecture design of context-based

adaptive variable length coding for H.264/AVC’. Proc.

TCSII’06, September 2006, vol. 53, pp. 832–836

[4] CHIEN C.-D., LU K.-P., SHIH Y.-H., GUO J.-I.: ‘A high

performance CAVLC encoder design for MPEG-4

AVC/H.264 video coding applications’. Proc. ISCAS’06,

May 2006, p. 4

[5] TSAI M.-C., CHANG T.-S.: ‘High performance context

adaptive variable length coding encoder for MPEG-4

AVC/H.264 video coding’. Proc. APCCAS’06, December

2006, pp. 586–589

[6] KIM D., JUNG E., PARK H., SHIN H., HAR D.:

‘Implementation of high performance CAVLC for

H.264/AVC video codec’. Proc. 6th Int. Workshop on

System-on-Chip for Real-Time Applications, December

2006, pp. 20–23

[7] TSAI C.-Y., CHEN T.-C., CHEN L.-G.: ‘Low power

entropy coding hardware design for H.264/AVC baseline

profile encoder’. Proc. ICME’06, July 2006, pp. 1941–1944

[8] Y.S. Yi and B.C. Song, “High Speed CAVLC Encoder for

1080p 60Hz H.264 CODEC,” Proc. ISCAS 2008.

[9] C. D. Chien, K. P. Lu, Y. H. Shin, and J. I. Guo, “A High

performance CAVLC Encoder Design for MPEG-4

AVC/H.264 Video Coding Applications,” Proc. ISCAS

2006.

[10] T. C. Chen, Y. W. Huang, C. Y. Tsai, B. Y. Hsieh, and L.

G. Chen, “Dual-block-pipelined VLSI Architecture of

Entropy Coding for H.264/AVC Baseline Profile,” Proc.

International Symposium on VLSI Design, Automation and

Test (VLSI-DAT), pp.271-274, 2005.

[11] Chang Su Han and Jae Hun Lee, “Area Efficient And High

Throughput CAVLC Encoder For 1920x1080@30p

H.264/Avc”, SAMSUNG ELECTRONICS CO., LTD.,

South Korea;ICCE.org,p-1-7,2009.

[12] WeiJun Lu, Ying Li, DunShan Yu, Xing Zhang; ’Vlsi

Implementation of an Entropy Encoder for H.264/AVC

Baseline’, Industrial Electronics and Applications, 2008.

ICIEA 2008. 3rd IEEE Conference on Digital Object

Identifier: 10.1109/ICIEA.2008.4582753 Publication Year:

2008, Page(s): 1422 - 1425

