Prime Graph of Cartesian Product of Rings

Sanjoy Kalita
Gauhati University
Department of Mathematics
Guwahati-781014, Assam, India

Kuntala Patra
Gauhati University
Department of Mathematics
Guwahati-781014, Assam, India

Abstract

Let \boldsymbol{R} be a commutative ring. The prime graph of the ring \boldsymbol{R} is defined as a graph whose vertex set consists of all elements of \boldsymbol{R} and any two distinct vertices x and y are adjacent if and only if $x R y=0$ or $y R x=0$. This graph is denoted by $P G(R)$. In this paper we investigate some relations between the chromatic number of prime graph of finite product of commutative rings and the chromatic number of prime graph of these rings. We also obtain some results on the chromatic number of prime graph of the ring $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$.

Keywords

Prime Graph, Chromatic Numbers, Rings, Product of rings.

1. INTRODUCTION

Beck [2] introduced a new graph concept called zero-divisor graph. This graph concept is associated to a commutative ring with unity and the work was mostly concerned with colouring of rings. Anderson and Livingston [1] modified the concept of zero-divisor graph and defined the Zero-divisor graph as a simple graph $\Gamma(R)$ associated to a commutative ring R with unity whose vertices are $Z(R)^{*}=Z(R)-\{0\}$, the set of nonzero zero-divisors of R, and for distinct $x, y \in Z(R)^{*}$, the vertices x and y are adjacent if and only if $x y=0$. The paper concentrated on the interplay between the ring-theoretic properties of R and the graph-theoretic properties of $\Gamma(R)$.

Another graph structure associated to a ring called prime graph was introduced by Bhavanari et al [3] which can be considered as an extension of Beck's work, where all elements of the ring are considered as the vertices of the graph and any two distinct vertices $x, y \in R$ are adjacent if and only if $x R y=0$ or $y R x=0$. The work was related to the study of the basic properties of prime graph of a ring.

In our present paper we investigate some relations between the chromatic number of prime graph of finite product of rings and the chromatic numbers of prime graph of these rings.

Definition 1.1[3]: Let R be a ring. A graph $G=(V, E)$ is said to be a prime graph of the ring R if $V=R$ and $E=\{\{x, y\}$: $x R y=0$ or $y R x=0, x \neq y\}$. This graph is denoted by $P G(R)$.

Example 1.1: Let $R=\mathbb{Z}_{14}$. Then $P G(R)$ is shown in Fig 1

Fig 1: Prime Graph of $\mathbb{Z}_{\mathbf{1 4}}$

2. THE RING $R=R_{1} \times R_{2} \times \ldots \times R_{n}$

Let us consider the ring \boldsymbol{R}, where $\boldsymbol{R}=\boldsymbol{R}_{\mathbf{1}} \times \boldsymbol{R}_{2} \times \ldots \times \boldsymbol{R}_{\boldsymbol{n}}$.
Let $\boldsymbol{a}=\left(\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{n}\right)$ and $\boldsymbol{b}=\left(\boldsymbol{b}_{1}, \boldsymbol{b}_{2}, \ldots, \boldsymbol{b}_{\boldsymbol{n}}\right) \in \boldsymbol{R}$. Then a and b are adjacent in $\boldsymbol{P G}(\boldsymbol{R})$ if and only if

$$
\left(a_{1}, a_{2}, \ldots, a_{n}\right) R\left(b_{1}, b_{2}, \ldots, b_{n}\right)=(0,0, \ldots, 0)
$$

i.e. $\quad\left(a_{1} R_{1} b_{1}, a_{2} R_{2} b_{2}, \ldots, a_{n} R_{n} b_{n}\right)=(0,0, \ldots, 0)$
i.e. $\quad \boldsymbol{a}_{i} \boldsymbol{R}_{i} \boldsymbol{b}_{i}=\mathbf{0}$ for all $\mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{n}$.

Here we tried to find a relation between the $\boldsymbol{\chi} \boldsymbol{P G}\left(\boldsymbol{R}_{\boldsymbol{i}}\right)$ and $\chi P G(R)$.

Example 2.1: Let $\boldsymbol{R}=\mathbb{Z}_{\mathbf{4}} \times \mathbb{Z}_{6}$. Then $P G(R)$ is shown in

Fig2.

Fig 2: Prime Graph of $\mathbb{Z}_{4} \times \mathbb{Z}_{6}$

Theorem 2.2: Let $\boldsymbol{R}=\boldsymbol{R}_{\mathbf{1}} \times \boldsymbol{R}_{\mathbf{2}} \times \ldots \times \boldsymbol{R}_{\boldsymbol{n}}$ be a commutative ring, where every $\boldsymbol{R}_{\boldsymbol{i}}$ is a prime ring. Then $\boldsymbol{P} \boldsymbol{G}(\boldsymbol{R})$ consists of a complete n-partite subgraph whose vertex set is a subset of non-zero elements of R. Also $\chi \boldsymbol{P G}(\boldsymbol{R})=\boldsymbol{n}+1$.
Proof: $R=R_{1} \times R_{2} \times \ldots \times R_{n}$ be a ring where every R_{i} is a commutative prime ring. Therefore for any two elements $a, b \in R_{i}$ for each i, if $a R_{i} b=0$ then $a=0$ or $b=0$.

Let
$V_{i}=\left\{r_{i} \in R: r_{i}=(0,0, \ldots, a, \ldots, 0), a \in R_{i}, a \neq 0\right\}$.
Since each R_{i} is prime ring, any two elements $r_{i}, r_{i}^{\prime} \in V_{i}$ are not adjacent to each other.

But any element of V_{i} is adjacent to all elements of V_{j} for all $i \neq j$. Therefore the elements of $\bigcup_{i=1}^{n} V_{i}$ induce a complete n partite subgraph of $P G(R)$. This subgraph is n-colourable.

Let $r=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in R$ such that at least two entries are non-zero, let these be a_{i} and a_{j}. Then r is adjacent to the elements of all $V_{k}, k \neq i, j$. So no other point of R is adjacent to elements of all V_{i} in $P G(R)$. Since $0 \in R$ is adjacent to all these elements, so $\chi P G(R)=n+1$.
Theorem 2.3: Let $R^{\prime}=R \times R \times \ldots \times R(n$ copies of $R)$ be a ring where R is any commutative ring. Then $\chi P G\left(R^{\prime}\right)=$ $n(\chi P G(R)-1)+1$ if there is no element $a \in R$ such that $a R a=0$.
Proof: Let $\chi P G(R)=k+1$. Let $a_{1}, a_{2}, \ldots, a_{k} \in R$ such that $a_{i} \neq 0$ and $a_{i} R a_{j}=0, i \neq j, 1 \leq i, j \leq k$.

Let for $1 \leq i \leq n$,

$$
\begin{aligned}
& V_{i}=\{r_{i}^{j} \in R^{\prime}: r_{i}^{j}=(0,0, \ldots, \underbrace{a_{j}}_{i^{t h}}, \ldots, 0), a_{j} \in R \\
&\left.a_{j} \neq 0,1 \leq j \leq k\right\}
\end{aligned}
$$

Let $r_{i}^{j}, r_{i}^{j \prime} \in V_{i}$ then

$$
\begin{aligned}
r_{i}^{j} R^{\prime r_{i}^{j^{\prime}}}= & (0,0, \ldots, \underbrace{a_{j}}_{i^{t h}}, \ldots, 0) R^{\prime}(0,0, \ldots, \underbrace{a_{j}}_{i^{t h}}, \ldots, 0) \\
& =(0,0, \ldots, \underbrace{a_{j} R^{\prime} a_{j}}_{i^{t h}}, \ldots, 0) \\
& =0, \text { for all } j \neq j^{\prime}, 1 \leq j, j^{\prime} \leq k
\end{aligned}
$$

Therefore elements of V_{i} for each i, are adjacent to each other. Also the elements of each V_{i} are adjacent to all elements of $V_{i}, i \neq j$.
\therefore all elements of $\bigcup_{i=1}^{n} V_{i}$ induce a complete subgraph of $P G\left(R^{\prime}\right)$ whose vertices are non-Zero elements of R^{\prime}. Therefore the elements of $\bigcup_{i=1}^{n} V_{i}$ along with $0 \in R^{\prime}$ induce the maximal clique in (R^{\prime}).

$$
\begin{aligned}
\therefore \chi P G\left(R^{\prime}\right) & =\left|\bigcup_{i=1}^{n} V_{i}\right|+1=n k+1 \\
& =n(\chi P G(R)-1)+1
\end{aligned}
$$

Theorem 2.4: Let $R^{\prime}=R \times R \times \ldots \times R$ (n copies of R) be a ring. Let $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\} \subseteq R \quad$ such that $a_{i} R a_{j}=0$, for all $i \neq j$ and $\left\{a_{1}^{\prime}, a^{\prime}, \ldots, a_{k^{\prime}}\right\} \subseteq\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ such that $a_{i}^{\prime} R a_{i}^{\prime}=0$, for all $i \neq j$, where $k^{\prime} \leq k$, then

$$
\chi P G\left(R^{\prime}\right)=n\left(k-k^{\prime}\right)+\left(k^{\prime}+1\right)^{n}
$$

Proof:- Since $\operatorname{Let}\left\{a_{1}, a_{2}, \ldots, a_{k}\right\} \subseteq R \quad$ such that $a_{i} R a_{j}=0$, for all $i \neq j, \chi P G(R)=k+1$.

Let for $1 \leq i \leq n$,

$$
\begin{gathered}
V_{i}=\{r_{i}^{j} \in R^{\prime}: r_{i}^{j}=(0,0, \ldots, \underbrace{a_{j}}_{i^{\text {th }}}, \ldots, 0), a_{j} \in R, a_{j} \neq 0 \\
1 \leq j \leq k\}
\end{gathered}
$$

The elements of V_{i} for each i, are adjacent to each other and elements of each V_{i} are adjacent to all elements of V_{j} for all $i \neq j$. So $\bigcup_{i=1}^{n} V_{i}$ induces a complete graph of order $n k$.
Now any element $r \in R^{\prime}$, whose all non-zero entries are $a^{\prime}{ }_{i}$, $1 \leq i \leq k^{\prime}$ is adjacent to all elements of $\bigcup_{i=1}^{n} V_{i}$. Also all those elements whose non-zero entries are $a_{i}^{\prime}, 1 \leq i \leq k^{\prime}$ are adjacent to each other, so $P G\left(R^{\prime}\right)$ consists of an induced subgraph of order $\geq n k$. Total number of such elements with at least two non-zero entries whose entries are elements of the set $\left\{a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{k^{\prime}}\right\}$ is $\sum_{i=2}^{n}\binom{n}{i}\left(k^{\prime}\right)^{i}$.
$\therefore P G\left(R^{\prime}\right)$ contains a maximal clique of order

$$
\begin{aligned}
& 1+n k+\sum_{i=2}^{n}\binom{n}{i}\left(k^{\prime}\right)^{i}=n\left(k-k^{\prime}\right)+\sum_{i=0}^{n}\binom{n}{i}\left(k^{\prime}\right)^{i} \\
& =n\left(k-k^{\prime}\right)+\left(k^{\prime}+1\right)^{n}
\end{aligned}
$$

Therefore $\chi P G\left(R^{\prime}\right)=n\left(k-k^{\prime}\right)+\left(k^{\prime}+1\right)^{n}$.
Theorem 2.5: Let $R=R_{1} \times R_{2} \times \ldots \times R_{n}$ be a ring where every R_{i} is a commutative ring. Let for $1 \leq i \leq m$, each R_{i} is a prime ring. For $m+1 \leq i \leq n$, let $a_{i, 1}, a_{i, 2}, \ldots, a_{i, k_{i}} \in R_{i}$ such that $\quad a_{i, l} R_{i} a_{i, l^{\prime}}=0,1 \leq l, l^{\prime} \leq k_{i}$. Also let $\left\{a_{i, 1}^{\prime}, a_{i, 2}^{\prime}, \ldots, a_{i, k_{i}}^{\prime}\right\}$ is subset of $\left\{a_{i, 1}, a_{i, 2}, \ldots, a_{i, k_{i}}\right\}$ such that $k_{i}^{\prime} \leq k_{i} \quad$ and $\quad a_{i, l}^{\prime} R_{i} a_{i, l}^{\prime}=0,1 \leq l \leq k_{i}^{\prime}$. Then $\chi P G(R)=m+\sum_{i=m+1}^{n}\left(k_{i}-k_{i}^{\prime}\right)+\prod_{i=m+1}^{n}\left(k_{i}^{\prime}+1\right)$
Proof: For $m+1 \leq i \leq n$,

$$
\begin{gathered}
V_{i}=\left\{r_{i} \in R: r_{i}=\left(0,0, \ldots, a_{i, l}, \ldots, 0\right), a_{i, l} \in R_{i}, a_{i, l} \neq 0\right. \\
\left.1 \leq l \leq k_{i}\right\}
\end{gathered}
$$

Then all the elements of $\bigcup_{i=m+1}^{n} V_{i}$ induce a complete graph of order $\left|\bigcup_{i=m+1}^{n} V_{i}\right|=\sum_{i=m+1}^{n}\left|V_{i}\right|=\sum_{i=m+1}^{n} k_{i}\left(V_{i} \cap V_{j}=\right.$ $\phi)$. For $1 \leq i, j \leq m$, the elements $r_{i}=(0,0, \ldots, a, \ldots, 0)$, $a \in R_{i}$ and $r_{j}=(0,0, \ldots, b, \ldots, 0), b \in R_{j}$ are adjacent to each other and these elements are also adjacent to all the elements of set $\bigcup_{i=m+1}^{n} V_{i}$. So we have a complete subgraph of order $m+\sum_{i=m+1}^{n} k_{i}$.
Now let $\left\{a_{i, 1}^{\prime}, a_{i, 2}^{\prime}, \ldots, a_{i, k_{i}}^{\prime}\right\} \subseteq\left\{a_{i, 1}, a_{i, 2}, \ldots, a_{i, k_{i}}\right\}$ is such that $a_{i, l}^{\prime} R_{i} a_{i, l}^{\prime}=0,1 \leq l \leq k_{i}^{\prime}$. Let us consider the non-zero elements whose first m entries are 0 and rest of the ($n-m$) entries are either 0 or $a_{i, l}^{\prime} \in R_{i}, 1 \leq l \leq k_{i}^{\prime}$. Then these elements are adjacent to each other and also adjacent to all elements of the set $\bigcup_{i=m+1}^{n} V_{i}$. Number of such elements is $\prod_{i=m+1}^{n}\left(k_{i}^{\prime}+1\right)$. But out of these elements we have already considered $\sum_{i=m+1}^{n} k_{i}^{\prime}$ elements in the set $\bigcup_{i=m+1}^{n} V_{i}$. Therefore the number of elements that induce the complete subgraph is $m+\sum_{i=m+1}^{n} k_{i}+\prod_{i=m+1}^{n}\left(k_{i}^{\prime}+1\right)-\sum_{i=m+1}^{n} k_{i}^{\prime}$ $=m+\sum_{i=m+1}^{n}\left(k_{i}-k_{i}^{\prime}\right)+\prod_{i=m+1}^{n}\left(k_{i}^{\prime}+1\right)$.
No other elements can be adjacent to all of these elements, so this is the complete subgraph with maximum order.
Therefore

$$
\chi P G(R)=m+\sum_{i=m+1}^{n}\left(k_{i}-k_{i}^{\prime}\right)+\prod_{i=m+1}^{n}\left(k_{i}^{\prime}+1\right)
$$

Corollary 2.6: Let $R^{\prime}=R \times R \times \ldots \times R(n$ copies of $R)$ be a ring such that for all $a_{i}, 1 \leq i \leq k, a_{i} R a_{i}=0$, then $\chi P G\left(R^{\prime}\right)=(\chi P G(R))^{n}$.

Proof: Putting $k=k^{\prime}$ in Theorem 2.5 we get $\chi P G\left(R^{\prime}\right)=$ $(k+1)^{n}=(\chi P G(R))^{n}$.
Example 2.7: Let $R=\mathbb{Z}_{6} \times \mathbb{Z}_{6}$, then $\chi P G(R)=5$.
Proof: We have $\chi P G\left(\mathbb{Z}_{6}\right)=3$. Now 2 and 3 of \mathbb{Z}_{6} are such that $2 \mathbb{Z}_{6} 3=0$. So $k=2$ and $k^{\prime}=0$. Since \mathbb{Z}_{6} is not prime ring so $m=0$. Therefore $\chi P G(R)=0+(2+2)+1 \times 1=5$.
Example 2.8: Let $R=\mathbb{Z}_{6} \times \mathbb{Z}_{8}$, then $\chi P G(R)=5$.
Proof: We have $\chi P G\left(\mathbb{Z}_{6}\right)=3$ and $\chi P G\left(\mathbb{Z}_{8}\right)=3$. Now 2 and 3 of \mathbb{Z}_{6} are such that $2 \mathbb{Z}_{6} 3=0$ and 2 and 4 of \mathbb{Z}_{8} are such that $2 \mathbb{Z}_{8} 4=0$. So $k_{1}=2, k_{1}^{\prime}=0$ and $k_{2}=2, k_{2}^{\prime}=1\left(4 \mathbb{Z}_{8} 4=\right.$ 0). Since \mathbb{Z}_{6} and \mathbb{Z}_{8} are not prime rings so $m=0$. Therefore $\chi P G(R)=\{(2-0)+(2-1)\}+(0+1) \times(1+1)=5$.
Example 2.9: Let $R=\mathbb{Z}_{3} \times \mathbb{Z}_{6} \times \mathbb{Z}_{8}$ then $\chi P G(R)=6$.
Proof: We have $\chi P G\left(\mathbb{Z}_{3}\right)=2, \chi P G\left(\mathbb{Z}_{6}\right)=3$ and $\chi P G\left(\mathbb{Z}_{8}\right)=$ 3. Since \mathbb{Z}_{3} is a prime ring we have $m=1$, so $k_{2}=2, k_{2}^{\prime}=$ 0 and $k_{3}=2, k_{3}^{\prime}=1\left(4 \mathbb{Z}_{8} 4=0\right)$. Therefore $\chi P G(R)=$ $1+\{(2-0)+(2-1)\}+(0+1) \times(1+1)=6$.

3. THE RING $\boldsymbol{R}=\mathbb{Z}_{\boldsymbol{m}} \times \mathbb{Z}_{\boldsymbol{n}}$

In this section we study the chromatic number of the $P G(R)$, where $R=\mathbb{Z}_{m} \times \mathbb{Z}_{n}$.
Theorem 3.1: Let $R=\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ then
(i) $\chi P G(R)=\chi P G\left(\mathbb{Z}_{m}\right)+\chi P G\left(\mathbb{Z}_{n}\right)-1$ if there is no $a \in \mathbb{Z}_{m}$ such that $a \mathbb{Z}_{m} a=0$ or $b \in \mathbb{Z}_{n}$ such that $b \mathbb{Z}_{n} b=0$.
(ii) $\chi P G\left(\mathbb{Z}_{m}\right)+\chi P G\left(\mathbb{Z}_{n}\right)-1 \leq \chi P G(R) \leq \chi P G\left(\mathbb{Z}_{m}\right) \chi P G\left(\mathbb{Z}_{n}\right)$ if there is elements $a \in \mathbb{Z}_{m}$ and $b \in \mathbb{Z}_{n}$ such that $a \mathbb{Z}_{m} a=0$ and $b \mathbb{Z}_{n} b=0$.

Proof:
(i) Let $R=\mathbb{Z}_{m} \times \mathbb{Z}_{n}(m \neq n)$. Let $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right) \in R$. Then $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)$ are adjacent in $P G(R)$ if $a_{1} \mathbb{Z}_{m} a_{2}=0$ and $b_{1} \mathbb{Z}_{n} b_{2}=0, a_{1}, a_{2} \in \mathbb{Z}_{m}, b_{1}, b_{2} \in \mathbb{Z}_{n}$.
Case I: Let m and n are primes. Then \mathbb{Z}_{m} and \mathbb{Z}_{n} both are prime rings. So $\chi P G\left(\mathbb{Z}_{m}\right)=2$ and $\chi P G\left(\mathbb{Z}_{n}\right)=2$. Also for a_{1} and a_{2} of \mathbb{Z}_{m} if $a_{1} \mathbb{Z}_{m} a_{2}=0$ then $a_{1}=0$ or $a_{2}=0$ and for b_{1} and b_{2} of \mathbb{Z}_{n} if $b_{1} \mathbb{Z}_{n} b_{2}=0$ then $b_{1}=0$ or $b_{2}=0$.
Therefore the elements adjacent in $P G(R)$ are of the forms $(a, 0)$ and $(0, b)$ and no other elements are adjacent in $P G(R)$. So $(0,0)(a, 0)$ and $(0, b)$ form a triangle and $\chi P G(R)=3$.
Therefore $\chi P G(R)=\chi P G\left(\mathbb{Z}_{m}\right)+\chi P G\left(\mathbb{Z}_{n}\right)-1$
Case II: Let \mathbb{Z}_{m} or \mathbb{Z}_{n} is not prime ring. Let \mathbb{Z}_{n} is not a prime ring.

Let $\chi P G\left(\mathbb{Z}_{n}\right)=k+1$ and $b_{1}, b_{2}, \ldots, b_{k} \in \mathbb{Z}_{n}\left(b_{i} \neq 0\right)$ such that $b_{i} \mathbb{Z}_{n} b_{j}=0$ for all $i \neq j$.

Then all the elements of the form $\left(0, b_{i}\right)$ are adjacent to each other in $P G(R)$. Also all of them are adjacent to each of elements $(0,0)$ and $(a, 0)$. So $\chi P G(R)=k+2$.
Again if $b_{j} \mathbb{Z}_{n} b_{j}=0$ for $b_{j} \in \mathbb{Z}_{n}$ then each of $\left(a, b_{j}\right)$ is adjacent to $\left(0, b_{j}\right)$ and $\left(0, b_{i}\right)$ for $i \neq j$ but not adjacent to $(a, 0)$. So we can colour (a, b_{j}) for all j and $(a, 0)$ with the same colour. Therefore the chromatic number remains unaltered that is $k+2$.

Now $\chi P G\left(\mathbb{Z}_{m}\right)+\chi P G\left(\mathbb{Z}_{n}\right)=2+(k+1)=k+3$.
Therefore $\chi P G(R)=\chi P G\left(\mathbb{Z}_{m}\right)+\chi P G\left(\mathbb{Z}_{n}\right)-1$.
Case III: Let \mathbb{Z}_{m} and \mathbb{Z}_{n} both are not prime rings i.e. m, n are not prime and let $\chi P G\left(\mathbb{Z}_{m}\right)=s+1$ and $\chi P G\left(\mathbb{Z}_{n}\right)=r+1$. Let $a_{1}, a_{2}, \ldots, a_{s} \in \mathbb{Z}_{m}\left(a_{i} \neq 0\right)$ so that $a_{i} \mathbb{Z}_{m} a_{j}=0$ for all $i \neq j$ and $b_{1}, b_{2}, \ldots, b_{r} \in \mathbb{Z}_{n}\left(b_{k} \neq 0\right)$ so that $b_{k} \mathbb{Z}_{n} b_{l}=0$ for all $k \neq l$. Therefore every element of type $\left(a_{i}, 0\right)$ for all i, are adjacent to each other and every pair of type $\left(0, b_{k}\right)$ for all k are adjacent to each other.
Also every element $\left(a_{i}, 0\right)$ is adjacent to each of the elements $\left(0, b_{k}\right)$. So all these elements of type $\left(a_{i}, 0\right)$ and $\left(0, b_{k}\right)$ induce a complete sub graph K_{s+r}. If for all $a \in \mathbb{Z}_{m}, a \mathbb{Z}_{m} a \neq$ 0 and for all $b \in \mathbb{Z}_{n}, b \mathbb{Z}_{n} b \neq 0$ then (a_{i}, b_{k}) is adjacent to each of $\left(a_{j}, b_{l}\right)$ where $i \neq j, k \neq l$.
Let

$$
\begin{aligned}
S_{i}= & \left\{\left(a_{i}, b_{k}\right): a_{i} \in \mathbb{Z}_{m}, b_{k} \in \mathbb{Z}_{n}, k=1,2, \ldots, r\right\} \\
& \text { for } i=1,2, \ldots, s \\
S_{k}^{\prime}= & \left\{\left(a_{i}, b_{k}\right): a_{i} \in \mathbb{Z}_{m}, b_{k} \in \mathbb{Z}_{n}, i=1,2, \ldots, s\right\} \\
& \text { for } k=1,2, \ldots, r
\end{aligned}
$$

Now for each i, the elements of S_{i} are not adjacent to each other but they are adjacent to the element of the sets S_{j} for $i \neq j$. So they induce an s-partite graph and therefore we can assign minimum s colours to elements of these s sets.

Similarly for each k, the elements of $S^{\prime}{ }_{k}$ are not adjacent to each other but they are adjacent to the element of the sets $S^{\prime}{ }_{l}$ for $k \neq l$. So they induce a r-partite graph and therefore we can assign minimum r colours to elements of these r sets.
Since the sets S_{i} for all i and the sets S_{k}^{\prime} for all k represents the same set of elements so both the colorings are colouring of same set. Thus possible minimum number of colours assigned to these vertices is $\min (s, r)$. But we already had shown that we need $s+r$ colours to colour the vertices of type $\left(a_{i}, 0\right)$ and $\left(0, b_{k}\right)$ which is greater than both s and r.

Thus $\chi P G(R)=s+r+1=\chi P G\left(\mathbb{Z}_{m}\right)+\chi P G\left(\mathbb{Z}_{n}\right)-1$.
(ii) Let \mathbb{Z}_{m} and \mathbb{Z}_{n} be not prime rings i.e. m, n are not prime and let $\chi P G\left(\mathbb{Z}_{m}\right)=s+1$ and $\chi P G\left(\mathbb{Z}_{n}\right)=r+1$.. Let $a_{1}, a_{2}, \ldots, a_{s} \in \mathbb{Z}_{m}\left(a_{i} \neq 0\right)$ so that $a_{i} \mathbb{Z}_{m} a_{j}=0$ for all $i, j \in\{1,2, \ldots, s\}$ and $b_{1}, b_{2}, \ldots, b_{r} \in \mathbb{Z}_{n}\left(b_{k} \neq 0\right)$ so that $b_{k} \mathbb{Z}_{n} b_{l}=0$ for all $k, l \in\{1,2, \ldots, r\}$. Thus as in case III of (i) all the elements of type ($a_{i}, 0$) and ($0, b_{k}$) induce a complete sub graph K_{s+r}. Let $(a, b) \in R$ such that $a \mathbb{Z}_{m} a=0$ and $b \mathbb{Z}_{n} b=0$. If a and b are distinct from all $a_{i} \in \mathbb{Z}_{m}$ and $b_{k} \in \mathbb{Z}_{n}$ then (a, b) is not adjacent to any of the vertices $\left(a_{i}, 0\right)$ and $\left(0, b_{k}\right)$.
Therefore $\chi P G(R)=\chi P G\left(\mathbb{Z}_{m}\right)+\chi P G\left(\mathbb{Z}_{n}\right)-1$
If $a=a_{i}$, for some $i, 1 \leq i \leq s$ and $b=b_{k}$, for some $k, 1 \leq$ $k \leq r$ then (a, b) is adjacent to all elements of type $\left(a_{i}, 0\right)$ and $\left(0, b_{k}\right)$. So we obtain a complete subgraph K_{s+r+1}.

Thus $\chi P G(R)=s+r+2$ that is

$$
\begin{equation*}
\chi P G(R)=\chi P G\left(\mathbb{Z}_{m}\right)+\chi P G\left(\mathbb{Z}_{n}\right) \tag{2}
\end{equation*}
$$

Now let $a_{1}, a_{2}, \ldots, a_{s^{\prime}} \in \mathbb{Z}_{m}\left(a_{j} \neq 0, s^{\prime} \leq s\right), a_{j} \mathbb{Z}_{m} a_{j}=0$ and $b_{1}, b_{2}, \ldots, b_{r}, \mathbb{Z}_{n}\left(b_{l} \neq 0, r^{\prime} \leq r\right)$ so that $b_{l} \mathbb{Z}_{n} b_{l}=0$, then each vertex $\left(a_{j}, b_{l}\right)$ is adjacent to all the vertices $\left(a_{i}, 0\right)$ and $\left(0, b_{k}\right)$. Also all the elements $\left(a_{j}, b_{l}\right)$ are adjacent to each other. Thus we obtain a complete subgraph $K_{s+r+s / r}$.
Therefore $\chi P G(R)=s+r+s^{\prime} r^{\prime}+1$

$$
\begin{equation*}
=\left(s-s^{\prime}\right)+\left(r-r^{\prime}\right)+\left(s^{\prime}+1\right)\left(r^{\prime}+1\right) \tag{3}
\end{equation*}
$$

If $s=s^{\prime}$ and $r=r^{\prime}$, we have from (3),
$\chi P G(R)=(s+1)(r+1)=\left(\chi P G\left(\mathbb{Z}_{m}\right)\right)\left(\chi P G\left(\mathbb{Z}_{n}\right)\right)$
Since $s \leq s^{\prime}$ and $r \leq r^{\prime}$, we have from (1), (2), (3) and (4), $\chi P G\left(\mathbb{Z}_{m}\right)+\chi P G\left(\mathbb{Z}_{n}\right)-1 \leq \chi P G(R) \leq \chi P G\left(\mathbb{Z}_{m}\right) \chi P G\left(\mathbb{Z}_{n}\right)$. -

Corollary 3.2: Let $R=\mathbb{Z}_{n} \times \mathbb{Z}_{n}$. Let $\chi P G\left(\mathbb{Z}_{n}\right)=r+1$ and $a_{1}, a_{2}, \ldots, a_{r} \in \mathbb{Z}_{n}\left(a_{i} \neq 0\right)$ such that $a_{i} \mathbb{Z}_{n} a_{j}=0$ for all $i \neq j$. Then
(i) $\quad \chi P G(R)=2 \chi P G\left(\mathbb{Z}_{n}\right)-1$ if for no $a \in \mathbb{Z}_{n}$, $a \mathbb{Z}_{n} a=0$.
(ii) $\quad \chi P G(R)=3$ if n is prime.
(iii) $\chi P G(R)=2 \chi P G\left(\mathbb{Z}_{n}\right)$ if there is only one $a_{i} \in \mathbb{Z}_{n}$ such that $a_{i} \mathbb{Z}_{n} a_{i}=0,1 \leq i \leq r$.
(iv) $\quad \chi P G(R)=\left(\chi P G\left(\mathbb{Z}_{n}\right)\right)^{2}$, if $\quad a_{i} \mathbb{Z}_{n} a_{j}=0 \quad$ and $a_{i} \mathbb{Z}_{n} a_{i}=0 \forall i, j$.
Proof: Let $\quad R=\mathbb{Z}_{n} \times \mathbb{Z}_{n}, \quad \chi P G\left(\mathbb{Z}_{n}\right)=r+1 \quad$ and $a_{1}, a_{2}, \ldots, a_{r} \in \mathbb{Z}_{n}\left(a_{i} \neq 0\right)$ such that $a_{i} \mathbb{Z}_{n} a_{j}=0$ for all $i \neq j$.
(i) Taking $m=n$ in Theorem 2.1 (i) we get

$$
\chi P G(R)=\chi P G\left(\mathbb{Z}_{n}\right)+\chi P G\left(\mathbb{Z}_{n}\right)-1=2 \chi P G\left(\mathbb{Z}_{n}\right)-1
$$

(ii) Let $n=p$ (a prime), then $\chi P G\left(\mathbb{Z}_{n}\right)=2$. So from (i) $\chi P G(R)=2 \chi P G\left(\mathbb{Z}_{n}\right)-1=3$.
(iii) Since $a_{i} \in \mathbb{Z}_{n}$ is only element such that $a_{i} \mathbb{Z}_{n} a_{i}=0$, taking $s=r, s^{\prime}=r^{\prime}=1$ in (3) of Theorem 2.1 (ii) we get $\chi P G(R)=(r-1)+(r-1)+(1+1)(1+1)=$ $2(r+1)=2 \chi P G\left(\mathbb{Z}_{n}\right)$.
(iv) Taking $m=n$ in (4) of Theorem 2.1 (ii) we get $\chi P G(R)=\left(\chi P G\left(\mathbb{Z}_{n}\right)\right)^{2}$.

4. CONCLUSION

From the above discussion we observed that for the ring $R=\prod_{i=1}^{n} R_{i}$, the chromatic number of $P G(R)$ lies between $(\mathrm{n}+1)$ and $\prod_{i=1}^{n} \chi P G\left(R_{i}\right)$ i.e.

$$
n+1 \leq \chi P G(R) \leq \prod_{i=1}^{n} \chi P G\left(R_{i}\right)
$$

The lower bound is obtained when each R_{i} is a prime ring. The upper bound is obtained if for every $R_{i}, 1 \leq i \leq n$, $a_{i} R_{i} a_{i}=0$ and $a_{i} R_{i} b_{i}=0$ for all $a_{i}, b_{i} \in R_{i}$.

5. REFERENCES

[1] D. F. Anderson and P. S. Livingston, The Zero-divisor graph of a commutative ring, J. Algebra 217 (1999), no. 2, 434-447.
[2] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), no. 1, 208-226.
[3] S. Bhavanari , S. P. Kuncham and N. Dasaari, Prime Graph of a Ring, J. of Combinatorics, Information and System Sources, vol 35 (2010) No 1-2, 27-42.
[4] F. Harary, Graph Theory, Eddison Wesley Publishing Company inc. 1969.
[5] J. Lambek, Lectures on Rings and Modules, Blaisdel Publ. Co. 1966.

