
International Journal of Computer Applications (0975 – 8887)

Volume 69– No.1, May 2013

7

Speeding up Searching in B-cloud System

Shawgi Mahmoud

Huazhong University of
Science and Technology

Wuhan National Laboratory for
Optoelectronics

Wuhan, China

Hua Wang
Huazhong University of

Science and Technology

Wuhan National Laboratory for
Optoelectronics

Wuhan, China

Ke Zhou
Huazhong University of

Science and Technology
Wuhan National Laboratory for

Optoelectronics

Wuhan, China

ABSTRACT

With the enormous growth in data amount day by day storage

demands have been imposed crucial requirements for data

center, where data access plays essential role in estimation of

data storage systems effectiveness. For that, there were a lot

of efforts have been done to speed up searching in huge

storage systems. Deduplication, one of the latest technologies

in storage systems world, is founded on the principle of

eliminating duplicates among data. Although this technology

led to reduce vast amount of redundant data, still the matter of

accessing speed of this huge amount of data is a critical

problem. In this research a simple method was proposed to

speed up searching in B-Cloud system by adopting Least

Recently Used dual cache LRU which is able to save vast

amount of time and speed up accessing time clearly. The

Least Recently Used dual cache is based on the principle that

elements that have been frequently demanded in the last few

queries will probably be frequently demanded again in the

next few times. The experiments results have shown that

back up/recovery time decreased with the size of data and

there is clear enhancement in both recovery and back up time

(where back up time decreased 15.67% with 16KB dual cache

size and 34.14% with 8MB dual cache size and recovery time

decreased 15.69% with 16KB dual cache size and 32.3% with

8MB dual cache size), which led to enhance enormously the

overall system performance.

General Terms

Storage system

Keywords

Cloud Backup system, Data Deduplication, Data Index , Least

Recently Dual Cache

1. INTRODUCTION
In such an age of high information technology, the survival

and development of enterprises depends on data more and

more. People realized the great potential value of data and

enterprises are increasingly focusing on data protection. The

backup application was put on the business development

agenda. Many companies have no hesitate to spend a large

amount of money to buy data backup system [1, 2]. However,

with the amount of backup data increasing year by year, it is

more and more demanding for the stability of the system and

the usability of the data, also the network backup system, such

as the real-time backup, remote data access, Where the time

play crucial role in effective management of data backup . A

lot of techniques to speed up data access have been adopted

specially in the hardware field such as large size bandwidth

cables (DOCSIS)[3, 4],Flash Memory[5, 6] and etc. While at the

same time, although with the explosive growth of data, studies

have proved that a large number of duplicate data exists in all

aspects of the information processing and storage, such as file

systems, file synchronization, e-mail attachments, HTML

documents, as well as the operating system and application

software. Studies show that 22% of the HTML documents are

the same, while the contents of 48% of the HTML documents

are similar [7]. The traditional data protection techniques such

as periodic backups will have a lot of duplicate data, resulting

shortage in the resources of the network bandwidth and

storage space also data management costs rising rapidly. To

avoid excessive data growth, improve utilization of the

resources and reduce costs, duplication in recent years slowly

becomes more valuable research focus. In such a world the

need for high-speed data access software based on data

Deduplication [8-10], has become inevitable to backup software

development. A high speed Data access information systems

can provide an effective and practical tool to the backup

software and equipment, provide better performance for the

data and to help to make the operation of the data processing

more effective, greatly reducing the time of accessing data

and the cost of human efforts.

This paper proves with evidences how is the LRU dual cache

speeds up searching in B-Cloud system (an online target de-

duplication storage system which consist of backup client

,backup server and storage server). Simple but effective

techniques had been adopted, which take advantage of already

existed modules and the gain obtained from Deduplication

technology. Experimental results conclude the whole

performance under various conditions. The paper is organized

as follows:

The first section is about overview of Different caches designs

.The second section describes the design of LRU dual Cache

which improves system backup performance and access time

speed; LRU algorithm, reducing a huge amount of data

accessing time ,improving the total performance of the system

look up. Then describes the core design and implementation

of LRU cache in storage server with the description details of

the query mechanism during backup and recovery processes.

The third section is the performance test of on-line backup

service system without LRU dual Cache and compares it with

the new version of system when LRU dual Cache is included

in the backup system. The forth section concludes the paper

and about the future work.

2. OVERVIEW OF DIFFERENT

CACHES DESIGNS
Caches[11] in general are a simple method to enhance the

performance of an application that reads data from a "slow"

source such as files on disk or rows of data from a database

list, but may need to re-read the same data several times. The

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.1, May 2013

8

idea is plain: rather than disposal the data after using it, save it

inside memory so that it will not be necessary to be re-read

later. For instance, a straightforward method to arrange this

for files might be to create a Hash Map that maps the file

names to objects containing the file data. When the

application needs a specific file it first checks the map to see

if it already has the data; if it doesn't, it reads the file and

inserts it in the map in order to make it available for the next

time. The only obstacle of this simple method is that the

application could use a large quantum of memory. The

moment that read in, a file is in the cache for the life of the

application whether it used or not later. For an application

such as a server that is dedicated to stay up and running for

weeks or months at a time, this is sure undesirable. So there is

vital necessity for suitable replacement algorithm.

Cache replacement indicates to the procedure that occurs

when the cache gets full and obsolete elements must be

removed to make space for novel ones.

There are four classes of replacement strategies [11]:

1. Recency-based strategies.

2. Frequency-based strategies.

3. Recency/frequency-based strategies.

4. Function-based strategies.

Only the first three strategies will be discussed briefly in this

introduction.

2.1 Recency-Based Strategies
These strategies were built on recency as a backbone. Most of

them are expansions of the famous LRU strategy. LRU has

been adopted successfully in various fields. LRU is built on

reference locality observed in query flows. Reference locality

characterizes the capability to expect future queries to

elements from past accesses. There are two major kinds of

locality: temporal and spatial. Temporal locality indicates to

frequent accesses to the same element within squat time

terms. It implies that recently referenced objects are likely to

be referenced again in the future. Spatial locality indicates to

access patterns where accesses to some objects imply accesses

to particular other objects. It implies that references to some

elements can be a predictor of future references to other

elements. Recency-based strategies utilize the temporal

locality observed in request flows.

There are a lot of cache replacement algorithms under this

class such as:

2.1.1 Least Recently Used Algorithm (LRU)

 It discards automatically objects that haven't been referenced

for some time so as to bind the amount of space being used.

Such as cache is called an LRU Cache. LRU stands for "Least

Recently Used", which indicates to the policy of evicting the

most obsolete or least-recently used objects to make space for

novel ones.

LRU caches have limited number of elements that they will

catch and these elements are usually organized in a table.

When an element is added to the cache, and every time it is

referenced after that, it is automatically moved to the head of

the table. If the cache is full and a slot is required for a novel

element, the cache creates room by discarding the element at

the tale of the list - the least-recently used one. It is widely

used in variant fields (e.g., database buffer management,

paging, disk buffers).

2.1.2 LRU-Min
[11]

This is a diverse of LRU that attempts to reduce the number of

replaced documents. Suppose Lo and T stands for,

respectively, a list and a threshold.

(1)Set T to S, where S is the requested document size.

(2)Set L0 to all documents whose size is equal to or larger

than T.(Lo can be empty.)Apply LRU to L0 until the list is

blank or the free cache volume is at least T. If the free cache

volume is not at least S, set T to T2 and go to step (2).

2.1.3 The advantages of recency-based

strategies

1-They assume temporal locality, as a vital factor. As request

flow usually exhibits some sort of temporal locality, this is a

useful process. In addition, these strategies are so flexible to

workload changes (e.g., new very popular objects).

2-They are plain to applied and rapid. Most of these strategies

adopt an LRU table. Novel requested objects are inserted at

the head of the table. On a hit the object is removed from its

current position and inserted at the head. Replacement occurs

at the end of the table. So insertion and discarding add low

complexity. As well as, searching can be supported by

hashing techniques.

2.1.4 The disadvantages of recency-based

strategies

1-Plain LRU diverse do not integrate recency and size in a

advantageous, stable method. In different size objects

environment size should be considered at every replacement.

The size strategy does this; however, it is too aggressive as it

places too much emphasis on the size of objects. LRU-Min is

also concentrates more on size. The PSS strategy is a

commendable exclusion, as it is plain to apply rapid, and

integrates size and recency in a more stable method.

Additionally, a properly parameterized partitioned LRU

caching strategy can be very simple and fast.

2-They do not consider frequency information. This could be

an important indicator in more static environments.

2.2 Frequency-Based Strategies
These strategies use frequency as a main factor. Frequency-

based strategies are expansions of the common LFU strategy.

They are built on the fact that different Web objects have

different popularity values and that this popularity values

result in different frequency values. Frequency-built strategies

track these values and exploit them for future judgments.

There are various algorithms built on this strategy such as:

2.2.1 LFU [11]

It removes the least frequently requested object.

2.2.2 LFU-Aging [11]

With LFU, objects that were very popular during one time

period can remain in the cache even when they are not

requested for a long time period. This is because of their high

frequency count. To obviate this cache pollution, an aging

effect can be provided. That is why LFU-Aging uses, a sill. If

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.1, May 2013

9

all frequency counters average value exceeds this sill, all

frequency counters are divided by 2. As well as, this strategy

exploit a maximal value for the frequency counters.

2.2.3 The advantage of the frequency-based

strategies

They regard the frequency of access. This is useful in static

environments where the popularity of objects does not vary

too much over a particular time interval (day, week).

2.2.4 The disadvantages of the frequency-

based strategies

1. Complication, LFU-based strategies need a more

complicated cache management. LFU can be adopted, for

instance with a priority queue.

2. Cache pollution, Frequency counts are too static for

dynamic variations in the workload. That is why, aging was

provided. But aging is only a recency-based technique. It is

doubtful if complicated aging techniques are better than plain

recency-based techniques in dynamically various

environments. As well as, they add complication to the

replacement process.

3. Similar values, Many objects can have the same frequency

count. In this case, a tie breaker factor is needed.

2.3 Recency/Frequency-Based Strategies

These strategies exploit recency and frequency and maybe

additional factors to get an object for replacement.

There are a lot of algorithms based on this strategy such as:

2.3.1 SLRU (Segmented LRU) [11]

The SLRU strategy divides the cache into two partitions: an

unprotected partition and a protected partition (dedicated for

popular objects). On the first demand for an element, this

element is inserted into the unprotected partition

On a cache hit, the element is moved to the protected

partition. Both partitions are managed with the LRU strategy,

but only elements from the unprotected partition are

discarded. Elements from the protected partition are moved

back in the unprotected partition as the most recently used

element. This strategy needs a parameter which decides what

percentage of the cache volume is allocated to the protected

partition.

2.3.2 LRU*[11]

All requested elements are stored in one LRU cache. Each

element has a request counter. When a cached element is hit,

it is moved to the head of the table and its hit count is

incremented by one. At each replacement process, the hit

counter of the least recently used element is checked. If it is

zero, the element is discarded. Otherwise the hit counter is

decreased by one, and the element is moved to the head of the

cache.

2.3.3 The advantage of Recency/Frequency-

Based Strategies:

They integrate recency and frequency. If they designed

perfectly, such strategies can overcome the troubles of

recency- and frequency-based strategies described above.

2.3.4 The disadvantage of

Recency/Frequency-Based Strategies:

Due to special procedures, most of these strategies introduce

additional complexity. Only LRU* attempts to integrate the

simple implementation of LRU with frequency counters.

However, they do not regard size.

In addition of its previous advantages which is mentioned

above and due to its practical, simplicity and because of its

suitability for B-Cloud system (the practical implementation

of LBDC [12] system) environment where is the size of objects

are equal and its dynamic which lead to overcome all its

disadvantages (LRU) strategy was selected to be implemented

in dual cache design where are two integrated caches were

adopted in B-Cloud storage system to speed up searching and

accessing data.

3. DESIGN AND IMPLEMENTATION

OF LRU DUAL CACHE
This section will explain in details design and the key

technology of LRU dual cache in B-cloud system.

3.1 The main key technologies

As it was mentioned in the second section that LRU strategy

was chosen to be adopted in B-cloud system due its suitability

,simplicity and flexibility .but which algorithm from this

strategy we are going to select?!

3.1.1 LRU (Least Recent Used Algorithm)

 It is extension of traditional LRU[12](Least Recent Used

Algorithm) but the only difference here is the most recently

used object is located in the tail of the cache and the least

recent ones will be located in the head of it. Which is opposite

of the famous LRU algorithm so the removing of the least

recent elements will be faster instead of iterating along all

objects in the cache first and then discard the last one in the

tail of the cache .Two equal size caches were adopted in order

to increase the hit rate[13] of cache.

 3.1.2 The Mechanism of LRU Algorithm

As in figure 3.1 LRU dual cache mechanism can be described

as follow:

1-Once the query for specific object in the dual cache starts

searching along all elements in the first cache will begin

looking up for that particular item.

2-Whenever that object get referenced (hit accrued) it is

deleted from its position in the cache and it is re-added again

in the cache tail in order to insert it in the most recent section

in the cache pushing up the previous one step forward.

3-If that queried element doesn’t exist in the first cache (miss

accrued) searching will start in the second one.

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.1, May 2013

10

4-Once that missed element is gotten in the second cache it

will be added to the tail of the first cache in order to be

available for future demand.

5-If that queried element doesn’t exist in the second cache

(miss accrued) searching will start in the main data index

table.

6-If that queried element is gotten in the main data index table

it will be added to the tail of the first cache otherwise false

will be returned.

 When the first cache gets full the item in its head will be

discarded but it will be re-added to the tail of the second one.

With that mechanism dual cache keep the most used object in

the tail of the first cache while the most least used items in the

head of the second one ready to be discarded when that cache

get full.

3.1.3 The Components of LRU Cache

In storage server which is the B-cloud system part where all

hashes is stored CDataSpace” and “CIndexSpace deal with

reading and writing storage space data and maintains metadata

of main records so we built a dual cache between

(CStorageSpace) and (CDataSpace&CIndexSpace) classes as

it is shown in fig 2 which is represented with a(CCache) class

in order to act as dual cache so CStorageSpace class will

search in it for the DataIndexID first before looking up for it

in the CIndexSpace class.

The dual cache is two double linked list [14] each time new

object is added the previous one will be moved to the head of

the cache so we will end with the least recent used object in

the head of the both two caches ready to be discarded when

the dual cache get full which will lead to increase system

performance.

4. SYSTEM PERFORMANCE

EXPERIMENTS AND ANALYSIS

This section will analyze and explain how the LRU dual cache

technology adopted by the B-Cloud system impacts on system

performance. The backup-recovery speed is tested in different

situations of various sets of backup data; compare it with the

speed of these two operations without using dual cache in

order to estimate the enhancement of system performance. We

also studied the effect of LRU dual cache on the system speed

all that with Variety of dual cache size. We used four groups

of different size of data sets to do the experiments.

4.1 Experiments Environment

One server and one PC，backup server and storage server are

installed on the server; client end is installed on PC, which is

connected by D-Link DES-1024 D 100 M switches, the

specific configuration:

Storage server：windows server 2003，Intel(R) Xeon(R)

CPU X3220 2.4GHz，memory 4GB，disk 14TB.

Backup client：Windows XP，Intel(R) Pentium(R) Dual

CPU E2180 2.00GHz，memory 0.99GB，disk 160GB.

4.2 Backup/Recovery Performance

Experiments without LRU dual cache

Table 1 shows backup and recovery results with different size

of data sets to the system without LRU dual cache ,The unit of

backup time is second, denoted hour: minute: second. The

total time they all used is recorded and the transmission speed

is weighted mean value.

It is noticeable from the previous table above that file size

plays the main rule in determining the backing up /recovery

speed which is in turn impact in the required time to complete

the operation. So it is clear that the fastest backed up file is the

smallest one in size as it is shown in table 4.1.

4.3 Backup/Recovery Performance

Experiments with 16 KB LRU dual cache

The effect of 16 KB LRU dual cache shown in table 2. Here it

is so obvious evident if we calculate the average value of all

back up time in table 2 that the LRU dual cache decreased

greatly both backup and recovery time with 15.67% &

15.69% respectively speeding dramatically up the overall

system speed which lead to improve the system performance

clearly.

4.4 Backup/Recovery Performance

Experiments with 8MB LRU dual cache

It is time to determine the effect of caches sizes in the system

performance as it is shown in table 3. In table 3 the impact of

8MB LRU dual cache will be checked on the different size of

data sets in the system performance. If table 3 was compared

with tables (1 & 2),it would shown that there is also obvious

improvement when the dual caches sizes go larger which in

turn will lead to great enhancement in system performance

where it can be seen clearly in the backing up time decreasing

with 34.14% from the case without using any LRU and with

21.9% from the case where the LRU dual cache sizes were 16

KB because of the huge size of dual cache which will lead to

increase in look up speed and this will be clear when the size

of file get large at that moment the improvement in backing

up time will be so obvious the same thing it can be said about

recovery time where it is decreased with 32.3% from the case

where is there is no LRU dual cache at all and with 19.69%

when the size of LRU dual cache was 16 KB. From all of

above it can be concluded that there is great enhancement in

both backup and recovery time when LRU dual cache is used

whether the size of dual cache were 16 KB or 8 MB but the

improvement will be greater when dual cache sizes get larger.

Fig 3 illustrates the impact of different sizes of dual cache in

backup time. As it is can be easily noticed in that fig that there

is obvious decrement in backup time when LRU dual cache

are used and this decrement will increase when the sizes of

dual cache get larger because most of hashes will be available

inside dual cache which will lead to speed up look up

dramatically and end up with great enhancement in back up

time.

 Fig 4 shows the great gain in recovery time when dual cache

are used and the impact of the size variety in the system

performance. There is obvious improvement in recovery time

because most of blocks will be available in dual cache which

are smaller than main hash table so the look up speed will be

so fast as it is shown in that fig where is this enhancement

grow more with expansion of dual cache sizes because of

great increment in hit rate at that case which will lead to

enormous improvement in recovery time.

So from the previous two figs (3&4) and tables (2 & 3) it can

be concluded that there is wide improvement in both backup

and recovery time and the existence of objects inside dual

cache (old data) in both backup and recovery operations

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.1, May 2013

11

specially when the size of that object is small and the sizes of

dual cache are big play the crucial rule in system speed where

it can be guaranteed fast and perfect system performance.

5. CONCLUSION
In today's Information Age, people are increasingly dependent

on data, data loss; damage often could be fatal to

organizations. In some conditions, the impact of data loss or

other problems is immeasurable. Thus, data protection is

particularly important. Network data backup as a key

technology to protect data has become one of the core IT

infrastructure. This paper describes the impact of LRU

technology to improve the look up speed in an on-line data

backup service system which can implement block-level data

de-duplication, the performance of the system was tested. Test

results proved that the LRU technology storage server used

improves the performance of both backing up and recovery

speed; achieve the purpose of experimental study. This major

work done can be summarized as followings:

(1) First, a preview of different caches design with their

advantages and disadvantages was introduced.

 (2)After that in details the key technologies to implement and

design the LRU dual cache including the algorithm, the main

components and its mechanism were explained.

(3) Finally, the impact of the LRU dual cache in the backup

and recovery speed of the storage server system was tested

and analyzed, and based on these tests the appropriate

conclusions were drawn.

Except the technology and implementation, other aspects of

the online data backup service system are required to be

improved as well. For instance backup time always more than

recovery time(because of hash values checking process)

although LRU dual cache decrease it a lot and this decreasing

will increase dramatically with the growth of dual cache size

but more efforts are still need to be done in order to decrease

the difference between them as much as possible by suitable

techniques.

Query for specific

hash value

Looking up for hash value inside

the first cache

The hash

value is exist

Search for hash value inside

the second cache

The hash

value is exist

Search for hash value

inside the main data

index table

The hash

value is exist

Return false

Delete the hash value from

the first cache

Re-add the hash value in

the tail of the first cache

Return true

No

Yes

Yes

No

No Yes

Fig.1 The flow chart of LRU mechanism

CJobManager

CJobSpace

CStorageManager

CStorageSpace

CCache

CDataSpace & CIndexSpace

Fig.2 Modified hierarchal relationships among classes in storage server

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.1, May 2013

12

Table 1. the results of system performance with different

size of data sets without LRU dual cache

Size

of

data

sets

MB

Job type Job time

(hour:minute:second)

Job

speed

MB/S

585 Back up 00:01:11 8.24

585 Recovery 00:00:35 16.73

1024 Back up 00:02:14 8.41

1024 Recovery 00:01:12 15.65

2048 Back up 00:04:13 16.02

2048 Recovery 00:02:17 18.21

5120 Back up 00:06:05 14.09

5120 Recovery 00:05:04 17.02

Table 2. the results of system performance with different

size of data sets and 16 KB LRU dual cache

Size

of

data

sets

MB

Job type Job time

(hour:minute:second)

Job

speed

MB/S

585 Back up 00:00:54 10.84

585 Recovery 00:00:33 17.74

1024 Back up 00:01:27 9.66

1024 Recovery 00:00:58 18.47

2048 Back up 00:03:38 17.40

2048 Recovery 00:01:41 19.20

5120 Back up 00:05:35 15.88

5120 Recovery 00:04:30 18.67

Table 3. the results of system performance with different

size of data sets and 8 MB LRU dual cache

Size of
data
sets
MB

Job type Job time
(hour:minute:second)

Job
speed
MB/S

585 Back
up

00:00:40 13.
15

585 Recov
ery

00:00:30 18.
96

1024 Back
up

00:01:05 9.8
0

1024 Recov
ery

00:00:43 19.
75

2048 Back
up

00:02:28 18.
38

2048 Recov
ery

00:01:19 20.
33

5120 Back
up

00:04:49 18.
35

5120 Recov
ery

00:03:39 19.
38

Fig.3 backup time performance for various data sets sizes

without cache and with different dual cache sizes

(16KB&8MB).

0

50

100

150

200

250

300

350

400

585 1024 2048 5120

B
ac

ku
p

 t
im

e
 (

Se
c)

Data size (MB)

Without Dual

cache

With 16 KB

dual cache

With 8 MB

Dual cache

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.1, May 2013

13

Fig.4 recovery time performance for various data sets

sizes without dual cache and with different dual cache

sizes (16KB&8MB)

6. ACKNOWLEDGMENTS
I dedicate this paper to my father, mother, family, university,

supervisor, colleagues and everyone who helped me in hoping

that the completion permeated by interest.

7. REFERENCES
[1] G. Peng, et al., "Backup data storage system technology

research and analysis," in Computer security, 2003, pp.

71-72

[2] X. He, et al., "NDMP-based block-level backup/recovery

method and its implementation," in Jisuanji Gongcheng/

Computer Engineering, 2007, pp. 82-84

[3] R. F. I. Specification, "Data-Over-Cable Service

Interface Specifications," in SP—RFIv2. 0 一, ed, 1999,

pp. 1-58

[4] W. K. Kuo, et al., "Improved priority access, bandwidth

allocation and traffic scheduling for DOCSIS cable

networks," in Broadcasting, IEEE Transactions on,

2003, pp. 371-382

[5] B. Debnath, et al., "ChunkStash: speeding up inline

storage deduplication using flash memory," 2010, pp. 16-

16

[6] R. Bez, et al., "Introduction to flash memory," in

Proceedings of the IEEE, 2003, pp. 489-502

[7] N. Shivakumar and H. Garcia-Molina, "Finding near-

replicas of documents on the web," in The World Wide

Web and Databases, 1999, pp. 204-212

[8] C. Policroniades and I. Pratt, "Alternatives for detecting

redundancy in storage systems data," 2004, pp. 6-6

[9] M. W. Storer, et al., "Secure data deduplication," 2008,

pp. 1-10

[10] G. H. Forman, et al., "Data de-duplication," 2007, pp. 1-

3

[11] S. Podlipnig and L. Böszörmenyi, "A survey of web

cache replacement strategies," in ACM Computing

Surveys (CSUR), 2003, pp. 374-398

[12] J.Czebotar.(2011, Jan 14). LRU Cache in C with uthash.

Available:http://jehiah.cz/a/uthash

[13] Grund D and Reineke J, “Estimating the performance of

cache replacement policies”, in MEMOCODE, IEEE

Computer Society,2008, pp. 101–112

[14] Kendell A. Chilton,” Methods and apparatus for

accessing a doubly linked list in a data storage “,Patent

No US 6,941,308 BI,6 sep ,2005 ,pp,1-19

0

50

100

150

200

250

300

350

585 1024 2048 5120

R
e

co
ve

ry
 t

im
e

 (
Se

c)

Data size (MB)

Without Dual

cache

With 16 KB

dual cache

With 8 MB

Dual cache

