
International Journal of Computer Applications (0975 – 8887)

Volume 69– No.1, May 2013

1

Software Quality Analysis by Object Oriented

Approach and Comparative Analysis with

MEMOOD TOOL using UML

Anand Handa
M.Tech Scholar

Computer Science &
Engineering

RKDFIST Bhopal

Jasvinder Pal Singh
Assistant Professor

Computer Science &
Engineering

RKDFIST Bhopal

Gaurav Srivastava
Assistant Professor

Computer Science &
Engineering

RKDFIST Bhopal

ABSTRACT

Software Quality is the degree to which a finished product

conforms to its specifications. The earlier a fault is detected

and is removed the easier it is to fix. Object oriented metrics

focus on the combination of functions and data as an

integrated object. Object oriented paradigm substantially

improves productivity due to the effect of reuse. Requirement

specifications, designs and test plans are all artifacts that

could potentially be fully or partially be reused in different

projects.

General Terms

Software Quality, UML Class Diagrams, Software

Maintainability, Understandability, Modifiability.

Keywords

Solution domain, metrics, tools. Object Oriented Design,

Metrics and tools.

1. INTRODUCTION

Quality is defined as the level to which a product conforms to

its requirements. This implies that the requirements must be

clearly and unambiguously stated in such a way that they

cannot be misunderstood. Thus insuring the delivery of high-

quality software is becoming an increasingly important goal

in the life-cycle of software developed by serious

companies.

The ever-changing world makes maintainability a strong

quality requirement for the majority of software systems. The

maintainability measurement during the development phases

of object-oriented system estimates the maintenance effort,

and also evaluates the likelihood that the software product

will be easy to maintain. The class diagrams plays an

important role in the design phase of object oriented software

therefore an early estimation of their maintainability may help

developers and designers to incorporate required

enhancements and corrections in order to improve their

maintainability and consequently the maintainability of the

final software to be delivered. Hence there is a need of

developing a maintainability estimation model, which

quantifies the maintainability of object oriented software at

design stage. This paper does an extensive review on

maintainability of object oriented software and puts forth

some relevant information about class diagram

maintainability. Two quality attributes of class diagram,

understandability and modifiability are focused to estimate

their maintainability. The model developed in this paper

estimates the maintainability of class diagram in terms of their

understandability and modifiability. While understandability

and modifiability of class diagrams are quantified in terms of

object oriented design metrics calculated from respective class

diagram.

2. SOFTWARE QUALITY METRICS

The first step to making use of metrics should involve

assessing a number of available metrics and choosing a

package for use according to a company’s quality objectives

[1].

There are essentially three measurable entities: products,

processes, and people [2]. At the end of the day, if used

properly, metrics allow us to quantitatively define success and

failure, and/or the degree of success or failure for a product,

process or person. It allows us to identify and quantify

improvement, lack of improvement or degradation in the

performance of a product, process or person. It helps us to

make meaningful and useful managerial and technical

decisions. It provides user in making quantified and

meaningful estimates. It helps in making meaningful

comparisons can only be made if both the similarities and

dissimilarities of the products, processes or people being

compared are taken into account.

3. METRICS AND OBJECT ORIENTED

PARADIGM

While metrics for the traditional functional decomposition and

data analysis design approach measure the design structure

and/or data structure independently, object-oriented metrics

must be able to focus on the combination of function and data

as an integrated object. The quality of the software is

dependent on its design [3]. A various number of Object

Oriented design quality metrics are defined of which CK

metrics (Chidamber and Kemerer) [4] are the popular one.

The Metrics are used to calculate the efficiency parameter and

various tools are used for that which are discussed in this

paper and are as follows:

3.1 Weighted Methods per Class (WMC)

Consider a class C1, with methods m1, … mn. Let c1, … cn

be the static complexity of the methods. The mathematical

formula is as follows:

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.1, May 2013

2

 …… (1)

WMC analyzes the class structure and the result has a bearing

on the understandability, maintainability, and reusability of

the system as a whole. The number of methods and the

complexity involved is a predictor of how much time and

effort is required to develop and maintain the class. The

WMC can be calculated by using Equation (1) for any number

of methods. Chidamber and Kemerer clarified the definition

of method count as “the methods that require additional

design effort and are defined in the class should be counted,

and those that do not, should not”.

3.2 Depth of Inheritance Tree (DIT)

The depth of inheritance of a class is its depth in the

inheritance tree. If multiple inheritances is involved, then the

depth of the class is the length of the maximum path from the

node representing the class to the root of the tree [5]. The root

class has a DIT of 0.DIT is essentially a measure of how

many ancestor classes can possibly affect this class. It is

worth noting that deeper trees constitute greater design

complexity, since more methods and classes are involved.

However, deeper trees also signify a greater level of internal

reuse in the system so a balance between reuse and reduced

complexity needs to be struck. This metric primarily evaluates

efficiency and reuse but also relates to understandability and

testability.

3.3 Number of Children (NOC)

NOC simply counts the number of immediate sub-classes

subordinate to a particular class in the class hierarchy. This

gives an indication of the potential influence a class can have

on the design and on the system. The greater the number of

children, the greater the likelihood of improper parent

abstraction, and it may be an indication of sub-classing

misuse. Again, there has to be a compromise because a greater

number of children indicate a larger degree of internal reuse

of the particular class

3.4 Coupling between Object Classes

(CBO)

CBO for a class is a count of the number of non-inheritance

related couples with other classes. Excessive coupling

between objects outside of the inheritance hierarchy is

detrimental to modular design and prevents reuse since the

more independent an object is, the easier it is to reuse in a

different application. It provides a scale to measure the

interdependency between the classes [6]. The foremost

objective is to reduce the cross coupling in order to increase

the quality of the final solution.

3.5 Response for a Class (RFC)

The RFC is the "Number of Distinct Methods and

Constructors invoked by a Class." The response set of a class

is the set of all methods and constructors that can be invoked

as a result of a message sent to an object of the class. This set

includes the methods in the class, inheritance hierarchy, and

methods that can be invoked on other objects. The net amount

of effort in testing and maintenance depends on the response

count.

|RS|= {M} U all i {Ri}

Where {Ri} = set of methods called by method i and {M}

=set of all methods in the class [7].

4. EXTRACTING STRUCTURAL

METRIC INFORMATION FROM

UML DIAGRAMS

It has been established that all the information required can be

obtained from a combination of class diagrams, activity

diagrams, collaboration diagrams and sequence diagrams. The

calculative analysis of the various approaches can be now

done with the help of the UML approaches. Calculating WMC

will require the information from two types UML diagrams

and various methods that have been used earlier in which

object oriented approach was not used. The following

methodologies help in identifying the enhancement of the OO

feature.

4.1 Class Diagram

The class diagram will be used for obtaining a list of methods

for each class. By default, the Cyclomatic Complexity of each

method will be one. However, if there are methods for which

there exists an Activity Diagram describing changes in activity

within the methods, the Cyclomatic Complexity for those

methods should be calculated from their Activity Diagrams.

The inherited methods are not counted unless they are re-

defined in the current class.

4.2 Activity Diagram

Activity diagrams can be used to show the changes in activity

within the methods. They are very similar to flowcharts. If a

method has an activity diagram associated with it, its

cyclomatic complexity is calculated as follows:

Cyclomatic Complexity = no. of edges – no. of nodes + 2

If a method does not have an activity diagram associated with

it, then its cyclomatic complexity is taken to be 1. This

follows from the notion that in theory, object-oriented

methods are so small and specific that their complexity can be

taken to be 1.

4.3 Depth of Inheritance Tree (DIT)

The depth of inheritance of a class is its depth in the

inheritance tree. If multiple inheritance is involved, then the

depth of the class is the length of the maximum path from the

node representing the class to the root of the tree. The root

class has a DIT of 0.

As shown in the example below, the DIT metric is easily

measured by looking at a particular class in a class diagram.

The class Animal is the root class of the hierarchy shown in

the example and therefore has a DIT of 0. The classes below it

(Domestic Animal, Farm Animal, Wild Animal) have a DIT

of 1 and their children in turn have a DIT of 2.

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.1, May 2013

3

(DIT = 0)

 Animal

 Domestic Farm Wild

 Animal Animal Animal

(DIT =1)

 Cat Dog Cow Pig Lion Pig

(DIT = 2)

Fig 1: Illustrating how DIT readings can be made from

UML Class Diagrams

4.4 Number of Children (NOC)

NOC simply counts the number of immediate sub-classes

subordinate to a particular class in the class hierarchy. This

information is easily obtainable from a class diagram as

follows.

 Domestic Animal

 (NOC =2)

 Cat Dog

(NOC = 0) (NOC =0)

Fig.2: Illustrating how NOC values can be obtained from

UML Class Diagrams

4.5 Coupling between Objects (CBO)

CBO for a class is a count of the number of non-inheritance

related couples with other classes. UML class diagrams will

be needed to obtain information for calculating CBO. Class

diagrams can show the different couplings between objects.

4.6 Lack of Cohesion in Methods

(LCOM)

Cohesion refers the degree of interconnectivity between

attributes of a class. A class is cohesive if it cannot be further

divided in to subclasses. It measures the method behavior and

its relevance where it is defined. Pair of methods using data

object proves the cohesiveness where as the methods not

participating in data access makes it less cohesive. Consider C

is a class and M1, M2...,Mn are its methods using set of class

instances[9].

I1={a,b,c,d}, I2={a,b,c} and I3={x,y,z} are set of instances

used by the methods M1,M2 and M3 respectively. If

intersection of object set is non-empty then the method using

them is cohesive and their relevance in the class is proved. i.e.

I1 ∩ I2 = {a, b, c} means M1 and M2 are cohesive. But

intersection of I1, I3 and I2, I3 is empty set. High count in

LCOM shows less cohesiveness and class need to be divided

to subclasses. Apart from CK and MOOD, other metrics [8]

based on Object Oriented principles are also assess the design

quality.

5. COMPARATIVE STUDY

It is known from the study that very few commercial and open

source tools are available for quality evaluation of object

oriented software design [10]. Each tool is performing well

with defined metrics individually but failed to cover all

proposed in the literature. Output format of the report

generated by few tools are not having friendly features which

will have an impact on assessing the result. The proposed

methodology shows the gradual increase in the efficiency

when design phase has been effectively measured and

implemented. The use of UML increases the efficiency of the

object oriented model [11] to a greater extent.

Quantification of class diagram’s understandability and

modifiability is prerequisite for the maintainability estimation

model. Therefore before developing MEMOOD, two models

for understandability and modifiability have been developed

[12].

Fig3: Maintainability Estimation Model (MEMOOD)

The above figure, describes the quantification process of the

maintainability model (MEMOOD). Understandability and

modifiability of class diagram are being quantified in terms of

NC

MaxD

IT

NAgg

H

NGen

H

NGen

Maintainability

Modifiability

Understability

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.1, May 2013

4

two (‘NC’, ‘NGenH’) and five (‘NC’, ‘NGen’, ‘NGenH’,

‘NAggH’, ‘MaxDIT’) class diagram metrics respectively. The

maintainability is estimated in terms of understandability and

modifiability.

5.1 Modifiability Model

In order to establish a multivariate model for modifiability of

class diagram, metrics listed in Table 1, will play the role of

independent variables while modifiability will be taken as

dependent variable. To identify metrics those are effectively

contributing in the prediction of modifiability, the technique

of backward stepwise multiple regression has been used. This

procedure starts with a model, which initially includes all the

independent variables and gradually eliminates those, one

after another, that does not explain much of the variation in

the dependent variable, until it ends with an optimal set of

independent variables. Now applying backward stepwise

regression, on the available data has resulted into the

following modifiability model.

Modifiability = 0.629 0.471*NC–0.173*NGen–

0.616*NAggH–0.696*NGenH 0.396*MaxDIT

 … (2)

Where, NC is the ‘Number of Classes’, NGen is ‘Number of

Generalizations’, NAggH is ‘Number of Aggregation

Hierarchies’, NGenH is ‘Number of Generalization

Hierarchies’ and MaxDIT is Maximum DIT. From the model

it can be interpreted that modifiability of class diagram is

directly proportional to ‘Number of Classes’ and ‘Maximum

DIT’, while ‘NGen’ and ‘Number of Generalization and

Aggregation Hierarchies’ are inversely proportional to

modifiability of class diagram.

5.2 Understandability Model

After establishing a model for modifiability the next task is to

build a similar model for understandability also. Applying the

same technique of stepwise backward multiple regressions on

the available data resulted into the following understandability

model ([12]).

 Understandability = 1.166 + 0.256*NC– 0.394*NGenH

 …. (3)

 Where, NC is the ‘Number of Classes’ and NGenH is

‘Number of Generalization Hierarchies’. From (3) it could be

interpreted that understandability of class diagram is directly

proportional to ‘NC’, while ‘NGenH’ is inversely proportional

to the understandability of class diagram.

5.3 Maintainability Model (MEMOOD)

Before establishing the model for maintainability, it is

important to ensure the proper correlation among

maintainability, understandability and modifiability of class

diagrams. The correlation between understandability and

modifiability is not so strong. This supports their candidature

to be act as independent variables in the maintainability

model. Now the next job is to quantify the influence of

understandability and modifiability on maintainability. For

this, the technique of multiple regressions has been applied

taking maintainability as dependent, while understandability

and modifiability as independent variables ([13]).

Maintainability = -0.126 + 0.645*Understandability +

0.502*Modifiability (4)

From the model (4) it could be interpreted that maintainability

of the class diagram is directly proportional to the

corresponding understandability and modifiability.

5.4 Proposed Model
The data and parameters so collected from various xml files

and UML diagrams have been used to design a new model

that produces better results as compared to the existing model

results. The modifiability so calculated by the given

parameters has been changed as the MaxDIT depends on the

number of methods and the total number of the inheritances.

Modifiability = 0.629 0.471*NC–0.173*No. of relations–

0.616*NAggH – 0.696*NGenH + .396*No. of total methods.

 … (5)

Understandability = 1.166 +0.256*No. of total Methods–

0.394*NGenH
 …. (6)

Maintainability = -0.126 + 0.645*Understandability +

0.502*Modifiability (7)

6. CORRELATION OF THE

UNDERSTANDABILITY RESULTS

The data being collected is analyzed and then is being

statistically analyzed to find the correlation coefficient. The

values obtained from the MEMOOD Tool and from the

proposed method are being compared and the correlation

coefficient is being calculated that comes out to be 1 that

shows that the significance factor is optimally the best one in

its class.

Table 1: Comparative Analysis for modifiability model

FILE
MEMOOD

TOOL

Proposed

TOOL

Vehicle.xml
3.48 3.084

Abstractclasses.xml
3.307 2.911

Sa.xml
2.242 1.846

Inheritance.xml
2.786 2.39

a.xml
2.242 1.846

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.1, May 2013

5

Fig. 4 Comparisions of Modiafibility Factor of MEMOOD

TOOL and Proposed Model.

The table 1 and graphical analysis shows that the data being

gathered from varoius files produces better results for the

modifiablity factor that was existing earlier. Every time the

data that was being generated from the files is being executed

through the existing channels and through the proposed

model, we received better results that were shown graphically.

Table 2: Comparative Analysis for understandability

model

FILE
MEMOOD

TOOL

Proposed

TOOL

Vehicle.xml
2.446 1.678

Abstractclasses.xml
2.446 1.678

Sa.xml
1.934 1.934

Inheritance.xml
2.19 1.422

a.xml
1.93 1.93

Fig. 5 Comparisions of Understandabilty Factor of

MEMOOD TOOL and Proposed Model.

The table 2 and graphical analysis shows that the data being

gathered from varoius files produces better results for the

understandability that was existing earlier. Every time the data

that was being generated from the files is being executed

through the existing channels and through the proposed

model, we received better results that were shown graphically.

The results shows a better degree of understanability of the

achieved results and scaleness.

Table 3: Comparative Analysis for maintainability model

FILE

MEMOOD

TOOL

Proposed

TOOL

Vehicle.xml
3.19863 2.504478

Abstractclasses.xml
3.111784 2.417632

Sa.xml
2.246914 2.048122

Inheritance.xml
2.685122 1.99097

a.xml
3.1117 3.1117

Fig. 6 Comparisions of Maintainability Factor of

MEMOOD TOOL and Proposed Model.

The table 3 and graphical analysis shows that the data being

gathered from varoius files produces better results for the

maintainabilty that was existing earlier. Every time the data

that was being generated from the files is being executed

through the existing channels and through the proposed

model, we received better results that were shown graphically.

The results shows a better degree of understanability of the

0

1

2

3

4

1 2 3 4 5 6 7

MEMOOD
Tool

Proposed

0

1

2

3

4

1 2 3 4 5 6 7 8

MEMOOD Tool

Proposed

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6

MEMOOD
Tool

Proposed

International Journal of Computer Applications (0975 – 8887)

Volume 69– No.1, May 2013

6

achieved results and scaleness. The results so obtained from

the MEMOOD Tool are being compared with the proposed

methodology to show optimum and better results for the class.

Table 4: Comparative Analysis

MEMOO

TOOL

PROPOSED

TOOL

CORRELATION

Coefficient

3.48 3.084

1.00
3.307 2.911

2.242 1.846

2.786 2.390

2.242 1.846

The data being collected is analyzed and then is being

statistically analyzed to find the correlation coefficient. The

values obtained from the MEMOOD Tool and from the

proposed method are being compared and the correlation

coefficient is being calculated that comes out to be 1 that

shows that the significance factor is optimally the best one in

its class. The table 4 shows that the correlation coefficient

between them is 1.00. The values are considered to be

optimum if the Pearson’s coefficient for the data lies between

0.9 to 1.00 which means that the efficiency must be 99% or

the results are accurate.

7. CONCLUSION AND FUTURE

ENHANCEMENT

In this paper major efforts are done to find out the

relationships between the various fields of object oriented

metrics for various models. The object oriented metrics which

are applied at the design phase helps in improving the quality

of the software as we can analysis various parameters during

the development phase only. The factors such as

understandability, modifiablity and maintainablity have been

used in order to compare the results of various tested models.

The data analysis shows that the results collected from the

proposed model may helps in improving the quality of the

software at the design phase only as they are known to the

user prior to the end of the project. In this study, efforts are

done to collect data from various other models and then

relationships were found on the basis of the fields and

parameters decided. The proposed methodology helps in

providing better results as compared to the earlier metrics

which were used to collect data from the XML files. The

proposed models can be used to develop more enhanced and

predictive models that may produce more quality

enhancements and efficient results for the software models to

be developed in future. The objective of this paper is to design

a common platform for all the quality metrics which are used

for software analysis such as maintainability,

understandability and maintainability.

8. ACKNOWLEDGMENTS
I would like to thank Mr. Jasvinder Singh Pal for his

assistance and guidance on software quality analysis and

metric calculations and Mr. Gaurav Srivastava for the

selection of fields for comparisons being done.

9. REFERENCES
[1] Sandeep Purao and Vijay Vaishnavi “Software Metrics

for Object-Oriented systems”, ACM Computing

Surveys,Vol 35, No2, JUNE 2003, pp 191-221.

[2] Seyyed Mohsen Jamali, ”Object Oriented Metrics –A

Survey Approach”, January 2006.

[3] Dr. Rakesh Kumar and Gurvinder Kaur,

“ComparingComplexity in Accordance with Object

Oriented Metrics”,International Journal of Computer

Applications(0975 – 8887) Volume 15– No.8, February

2011.

[4] Shyam R. Chidamber and Chris F. Kemerer “A Metrics

Suite for Object Oriented Design”, IEEE

TRANSACTION ON SOFTWARE ENGINEERING,

VOL 20,No 6, JUNE 1994.

[5] Robert Martin, “OO Design Quality metrics”, October

28, 1994.

[6] Rüdiger Lincke, Jonas Lundberg and Welf Löwe,

“Comparing Software Metric Tools”, 2008 ACM 978-1-

59593-904-3/08/07.

[7] P. Edith Linda, V. Manju Bashini, S. Gomathi, “Metrics

for Component Based Measurement Tools”, International

Journal of Scientific & Engineering Research Volume 2,

Issue 5, May-2011.

[8] Stojanovic M and El Eman K, “ES2: A Tool for

Collecting Object-Oriented Design Metrics from C++

and Java Source code”, National Research Council of

Canada, June 2001.

[9] Dr. M.P Thapaliyal and Garima Verma, “Software

Defects and Object Oriented Metrics–An Empirical

Analysis” International Journal of Computer

Applications (0975 – 8887) Volume 9– No.5, November

2010.

[10] Linda Westfall, The Westfall Team, “12 Steps to Useful

Software Metrics”, The Westfall Team, 2005

[11] Dr. Linda H. Rosenberg, “Applying and Interpreting

Object Oriented Metrics”, Track 7 - Measures/Metrics.

[12] S.W.A. Rizvi and R.A. Khan,” Maintainability

Estimation Model for Object Oriented Software in design

Phase (MEMOOD)” Journal of Computing, Volume 2,

Issue 4, 2010, ISSN 2151-9617

[13] Alisara Hincheeranan and Wanchai RIvepiboon, “A

Maintainability Esimation Model and Tool” International

Journal of Computer and Communication Engineering,

Vol. 1, No.2, 2012

