
International Journal of Computer Applications (0975 – 8887)

Volume 68– No.4, April 2013

30

Software Maintainability and Usability in Agile
Environment

Monika Agarwal

M.TECH, CSE

 Amity University, Noida

Rana Majumdar

Assistant professor
Amity University, Noida

ABSTRACT

This research is based on software maintainability and

usability in the agile environment. Maintainability of the

system is the ability to undergo changes relatively

easily. These changes can affect components, services,

interfaces and functionality when adding or changing

functions, errors, and respond to business needs. Usability is

defined as the application that meets the requirements of users

and consumers by providing an intuitive, easy to locate and

globalize and provides good access for disabled users and

leads to a good overall user experience. In the conventional

method of the software development, there are many metrics

to calculate the maintenance and use of software. This

research is to determine whether the same measures apply to

Agile, or there is a need to change some metrics used for the

agile environment.

The goal of software engineering is to develop good quality

maintainable software in schedule and budget. Inflated

software costing, delayed time frame, or not meeting quality

standards express a failure. A survey suggests about 45% of

software fails due to the lack of quality. It is therefore one of

the most important aspects for the success of software. .

General Terms

Agile, software Maintenance and usability

Keywords

Software Maintainability, software usability, agile

environment, software metrics.

1 INTRODUCTION
Agile development is a software method, which is based on

iterative and incremental methods for software development.

The individual modules are built by small teams. As they are

developed, it will be sent to the client for review. This model

is robust and flexible, which includes changes based on

customer needs, with an emphasis on teamwork and freedom

of the developer. Based on the principles and practices,

different agile development methodologies are used for

software development.

Maintainability is concerned with the duration of maintenance

outages or how long it takes to reach (quick and easy)

maintenance compared to a datum. The benchmark includes

maintenance which will be carried out by persons with

specified level of knowledge, with prescribed procedures and

resources required at each level of maintenance.

Maintainability characteristics are generally identified by the

design of equipment maintenance procedures which define

and determine repair time. There are 4 types of maintenance:

1.1 Corrective Maintenance
This started when defect is found in the software.

1.2 Adaptive Maintenance
It includes the modification of software in response to

changes in the environment, sustainable development.

1.3 Perfective Maintenance
It means improving processing efficiency or performance, or

restructuring the software to improve changeability. This may

include enhancement of existing system functionality,

improvement in computational efficiency etc.

1.4 Preventive maintenance
These are long-term effects of the correction, adaptive and

improved changes. This leads to an increasing complexity of

software that reflects the deteriorating structure. The work

needs to be done to maintain or to reduce it if possible. This

work may be designated as preventive maintenance.

Fig 1: Software maintenance image representation

Application interfaces with the user in mind and the consumer

must be designed so that they are intuitive, can be localized

and globalized, access for disabled users and provide a good

user experience overall. Key issues for the user experience

and usability are:

 Too much Interaction (too many clicks) for a task

requires. Make sure that the screen design and inflows

and modes of interaction with the user in order to

maximize ease of use.

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.4, April 2013

31

 Recognize the wrong steps in the multi-level interfaces.

Verify that appropriate workflows to optimize operations

in several stages.

 Data and controls are grouped incorrectly. Select the

appropriate control type (such as sets of options and

check boxes) and place controls and content using

models accepted user interface design.

 User comments are bad, especially for errors and

exceptions, and the application is not responding.

Consider enabling the implementation of technologies

and techniques, the maximum interactivity, such as

Asynchronous JavaScript and XML (AJAX) in web

pages and client-side input validation.

Fig 2: Software Usability image representation

2 RELATED WORK
This research focuses on the modelling of software

maintainability and usability in an agile environment, how to

measure the indicators for maintenance and ease of use in the

traditional working environment presented in an agile

environment. This work deals with the modelling approaches

and how best to implement such measures, and simplified

approaches should be used as a model and as a model for

other benefits on agile projects.

The investigation has been identified in a literature review,

analysis and aggregation of identified ideas. It was found that

no such previous research exists. Additional literature was

either general, as the basis of the use of software metrics in

agile methods or more concentrated aware specific measures

or aspects of agile software development. Estimate; quantify

the effectiveness of available resources, productivity

measurement and modelling for maintenance is the focus of

research. Our proposed work is taken into account domain

specific knowledge regarding the individual in the absence of

full suite of tests and other aspects such as code analysis and

analysis of historical data, counting, task decomposition,

measurement complexity.

Antonellis et al. [1] proposed a method for mapping of

object-oriented source code metrics maintainability
features according ISO 9126. The parameters are selected

from the series of Chidamber and Kemerer [2].

Agile deployment model works by the organizational

framework and objectives:

1. Assessing the potential of Agile practices, methodologies

and tools

2. Some Deployment Planning for agile practices and pilot

project to select

3. The first pilot deployment project prepared

4. Post-iteration iterative feedback

5. Continuous improvement of the organizational practices

Once it reaches the first deployment phase, it begins pilot

project maintainability.

Broy et al. [3] have independently developed a model of

maintainability in which maintenance activities are strictly

separated from facts about the system being maintained. Both

activities and facts are organized into hierarchical trees whose

leaves are related through a (weighted) matrix that indicates

which atomic facts influence each atomic activity.

Oman et al. [4] suggested a hierarchical structure of

measurable properties of maintainability, based on an

analysis of 35 publications. You create software metrics

specific to the leaves of the tree and propose a formula for

combining them into a single index.

Jane Huffman Hayes, Naresh Mohamed, Tina Hong Gao [17]

presented a technique Observe-mine-adopt (OMA): an agile

way to enhance software maintainability in which they

introduce two maintainability measures, maintainability

product and perceived maintainability. Mining activities lead

to validated discoveries of processes, techniques or practices

that improve the software product; they are formalized and

adopted by the team. OMA has been studied experimentally

using two project studies and a Web-based health care system

which is maintained by a large industrial software

organization.

Wiebe Hordijk, Roel Wieringa [18] Faculty of Electrical

Engineering Mathematics and Computer Science University

of Twente in his Research Design Surveying the Factors

that Influence Maintainability establish a solid theory of

maintainability; the factors that influence maintainability

.They investigate which design decisions influence

maintenance effort for software systems. They conclude that

higher the quality of the documentation, more maintainable

the system will probably be and measured documentation

effort as part of change effort.

Software metrics provide to recognize a simple and cost-

effective manner and to correct possible causes of the low

quality of the products to the maintenance factor based

perceived by programmers. Implementation of measurement

programs and metric standard will help to prevent errors

before servicing and reduces the effort required at this stage.

Internal parameters are strongly correlated with the opinion of

the programmers. However, dissatisfaction with internal

quality standards are not lead to necessarily low maintenance,

but it is generally expected and, more importantly, how the

effectiveness of available resources can be quantify.

2.1 Metrics for the maintainability and

usability
Certain measures and their impact on the maintainability of

the software are described below:

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.4, April 2013

32

TABLE I. Metrics to Measure software Maintainability

It is a proven fact that agile development in order to reduce

the complexity and the number of defects, which has a

positive influence on the maintainability seems.

Now some measures and their impact on software usability

are discussed below:

TABLE III. Metrics to Measure software Usability

Metric Name Importance and their effect on the Usability

Task

Completion

Degree

It is used to determine the degree of fulfilment

of the tasks these metrics measure can be

measured. It is usually stored as a binary metric

(1 = success working and 0 = task failure).

UI issues

Firstly describe the problem, and note how

often encountered and by which users.

Knowing the likelihood that a user experiences

a problem at any stage of development can be

an important indicator to measure the impact of

usability and ROI. To know what you

experienced, users can rate the discovery of

problems and what problems are found

The entire

working

process time

It can be used to measure the efficiency and

productivity. Record the time to carry out for a

user to perform a task in a few seconds or

minutes. Departure times of tasks when users

read work scenarios and ends at the time when

the users have completed all actions (including

the review period).

Job satisfaction

level

When users attempt a task and asked about the

difficulty of the task, he answered rarely few

questions about the difficulty of the task were.

Task satisfactions level immediately report

about the difficult task, especially when

compared to other tasks.

Test

Confidence

After the usability test, ask the participants to

answer a few questions about their impression

on the overall usability scenario.

Inaccuracies Record unintentional actions, slip, errors or

omissions that a user performs during a task.

Write down every instance of an error with a

description. For example, "user bore the name

in the first name." You can then categorize the

severity of error or. Errors provide excellent

diagnostic information and, if possible, should

be associated with user interface issues.

Anticipation Users have expectations about how difficult a

task should be based on subtle cues in the task

scenario. Users are now asking about the

difficulties they face during task performance

and compare it with actual estimates from the

system user (same or different) may be useful

in diagnosing problems.

Page visions /

clicks

Hits were a strong correlation with the time on

the task, which showed a good degree of

efficiency. The very enlightening click to

investigate a task success depends on the

success or failure of the first click.

General metric

(GM)

Sometimes it is easier to describe the usability

of a system or task through a combination of

measures into a single score. GM is mainly

composed of three or more metrics.

Now, the focus is to figure out how to measure these

properties for enhancing the quality in an agile environment.

2.2 Limitations of the research
The underlying idea is that it is not possible to find

relationship of cause and effect which can be detected with

traditional statistical approaches to software metrics. In this

research, the aim is to explore how this approach is related to

traditional statistical approaches and if these notation schemes

could be taken up with them. This research needs to be

followed, and hope to incorporate the new standard into

proposed maintainability and usability model.

• Especially literature on software maintenance is from the

1980s or early 1990s. The field of software engineering

has changed since that time, and the factors that may

affect the maintenance process to be updated.

Metric Name

Importance and their effect on the

maintainability

Maintainability

Index

Maintainability is used to calculate the state of

maintenance. It calculates an index value

between 0 and 100, which represents the

relative ease of holding the codes. A high value

indicates a better maintainability. Evaluations

colour code can be used to quickly identify

trouble spots in your code. A green note is

between 20 and 100 indicates that the code has

good maintainability. A yellow note is 10 to 19

indicate that the code is moderately

maintainable. A red mark is a value between 0

and 9 and indicates low maintainability. For

thresholds, the decision is to break into the 20-

80 range from 0-100, so noise levels became

low, and only code reported that there were

really suspicious held.

Complexity

Cyclomatic complexity measures the

complexity of the code structure. It is created

by calculating the number of different code

paths in the program flow. A program that has

complex flow control is required more tests, in

order to ensure a good coverage and less

maintainable code.

Code

Hierarchy

It shows the number of class definitions that

extend to the root of the class hierarchy. The

deeper the hierarchy, the more it can be

difficult to understand where methods and

fields are defined and / or redefined.

Inter-module

relations

It measures the connectivity between unique

classes through parameters, local variables,

return types, method calls, generic or model

instances, base classes interface

implementations, defined types of external

decoration attribute. Software design requires

that the types and methods should have high

cohesion and low coupling. High coupling is a

design that is difficult to maintain and to reuse

because of its many dependencies on other

types.

Size There are the approximate numbers of rows in

the code. The count depends on the IL code and

is therefore not the exact number of lines in the

source file. A high number may indicate a type

or method tries to do too much work and

should be shared. It may also mean that the

type or method might be difficult to maintain.

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.4, April 2013

33

• In practice, the focus is on extreme programming and

only in close combat very high standard with all other

existing agile development methods.

• Relationships are identified through empirical research

does not support strongly, but are based on the properties

and the philosophy of agile development methods. The

drawback with this approach is that the philosophies and

characteristics presented by the authors of the Agile

Manifesto, and cannot completely impartial.

• How the number of hours required for a program

developed using agile methods in relation to a program

with a plan to the traditional approach for a long time

developed based hold can be measured.

• In addition, other methods for predicting how

algorithmic techniques and no other algorithms and their

applicability to predict maintenance are examined.

• What are the factors and parameters as predictors of the

maintainability of software applications have been

studied? Which of these predictors are to be successful?

• The model can estimate the software development of

practical software maintenance be extended and iterative

and agile methods of software development.

• How to stay involved throughout the development

process, to ensure that correct usability problems when

agile environment is used in the next sprint addressed?

• How agile solves the usability problem may prevent

communication that the teams have on complete

solutions in a distributed environment.

3 RESEARCH QUESTION
The team will use the best practices in as many programs as

could find in community that are using or have used Agile for

software development. For this report, the concern is to deal

with software only or software intensive systems. This

research was focused to answer the below two questions:

• Is the use of Agile has advantage in the case of

maintainability and usability of the software?

• Will it produce a better end product developed with

maintainability and usability within cost and schedule

parameters?

This Research will use the best approaches to answer the two

questions at the same time because believe is that regardless

of one of the benefits of Agile environment (and it is quickly

apparent that there were many), it would only remain

academic interest if there will not be any solid experience in

the use of effective Agile environment.

4 CURRENT RESEARCH
The software quality is affected by various factors that can be

measured directly as well as indirectly. The indirectly factors

includes usability (related to product operation) and

maintainability (related to product revision).

4.1 Characteristics affecting software

Maintainability and Usability
The characteristics that impacted the software maintainability

are described below:

TABLE IIIII. Characteristics that good maintainable

software should possesses

Characteristic

Name

Characteristic Meaning

Accuracy The precision of computations and control

Completeness The degree to which full implementation of

required function has been achieved

Conciseness The compactness of the program in terms of

lines of code

Consistency The use of uniform design and documentation

techniques throughout the software

development project

Data

commonality

The use of standard data structures and types

throughout the program

Error tolerance The damage that occurs when the program

encounters an error

Expandability The degree to which architectural, data, or

procedural design can be extended

Modularity The functional independence of program

components

Traceability The ability to trace a design representation or

actual program component back to

requirements

The below characteristics have great impacts on software

usability:

TABLE IVV. Characteristics that usable software should

possesses

Characteristic

Name

Characteristic Meaning

Communication

commonality

The degree to which standard interfaces,

protocols, and bandwidth are used

Execution

efficiency

The run-time performance of a program

Hardware

independence

The degree to which the software is decoupled

from the hardware on which it operates

Operability The ease of operation of a program

Security The availability of mechanisms that control or

protect programs and data

Self-

documentation

The degree to which the source code provides

meaningful documentation

Simplicity The degree to which a program can be

understood without difficulty

Software system

independence

The degree to which the program is

independent of non-standard programming

language features, operating system

characteristics, and other environmental

constraints

Training The degree to which the software assists in

enabling new users to apply the system

4.2 DESIGN ISSUES FOR PROPOSING

A MODEL
The conventional approach to develop any software can be

described as a layered approach in which the completed

software to fulfil customer requirement is delivered in last so

if it needs an further changes, It is hard to maintain within

prescribed budget and schedule but agile uses the functional

approach to develop a software that allows the customer to

adjust budget and schedule at each repetition according to

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.4, April 2013

34

stand-alone deliverables. The following issues are faced

during proposing a model in agile environment.

1. Problem Recognition Time

2. Administrative Delay Time

3. Tool Time Collection

4. Find problem solving

5. Hypothesis Correction time

6. Proposed model

The proposed model of software Maintainability and Usability

should be able to get the old practices of software

maintainability and usability and address to improve the late

changing requirements of software development. Agile

processes harness change for the customer's competitive

advantage. It is better to provide working software frequently

from a few weeks to a few months, with the shortest possible

timescale. The major success measure for increasing

confidence is the working software. Agility is promoted by

unceasing care to nominal quality and good scheme.

Periodically usability will be able to identify problems better

tunes and adjusts them. The focus is that the proposed model

should be good in the agile environment through the

implementation of the concept of maintaining serviceability.

Fig 3: Proposed Model

5 RESULT
This research is under affect the properties of the agile

development methods, maintainability and use:

5.1 Test-Driven Development (TDD)
In agile software development process, Test Driven

Development (TDD) depends on the recurrence of a precise

little progress phase: the developer writes a case firstly,

automated tests that defined an improvement desired or new

function, then the least possible code is written to pass this

test, and finally the new code refactors to acceptable

standards.

The time for the test programming concepts first extreme

programming is created, started in 1999, but also, more

recently, programmers will use it to refine the service of the

unwanted code developed by the conventional methods.

5.2 Continuous Refactoring
Refactoring is the process of clarifying and simplifying the

design of existing code without changing its behavior. Agile

teams are maintaining and expanding their code much from

iteration to iteration and without continuous refactoring,

which is hard to do. This is because undisturbed code tends to

rot. Red takes several forms: unhealthy dependencies between

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.4, April 2013

35

classes or packages, bad allocation of responsibilities class,

too much responsibility for a class or method, duplicate code,

and many other sorts of confusion and disorder.

Every time the code is changed without refactoring, code it is

getting worse and spreading. Code red frustrates us, costing us

time and reduces your life of useful systems. In an Agile

context, it can mean the difference between meeting and not

meeting deadline iteration.

Refactoring means that the code is easy to maintain and

extend. This extensibility is to check on the design and

measurement of success. But it should be noted that only

"safe" refactor the code now far if the choice is to have large

suites of unit tests when the working style is test-first.

Without the ability to run these tests after each small step in a

refactoring, there is a risk of introducing bugs. If you do so

you have no choice regular refactoring, because that is how

you change the theme real test driven development (TDD), in

which the design is constantly changing.

5.3 Collective code ownership
Collective code ownership means that everyone is responsible

for all of the code, which means that everyone is entitled to

change anything. Pair programming contributes to this

practice: working in different pairs, all programmers have the

opportunity to see all the parts of the code. A big advantage

for collective ownership claimed that it speeds up the

development process, because when an error occurs in the

code any programmer can fix it.

By all programmers the right to change the code, there is the

risk of errors by programmers, they know what they are

doing, thinking introduced, but no specific dependencies. Unit

tests sufficiently well defined in order to solve this problem: If

the dependencies to create unexpected errors when the unit

tests are running, they show losses.

Nonconformities to the collective code ownership, two

measures should be taken to recognize:

• Syntactic membership activities defined by switching

pair

• Semantic factor assessment project truck.

5.3.1 Switching pair
Agile teams, in frequent, regular, high-quality production, are

striving to find ways to enhance productivity, maintain the

short and long term, the highest possible. Proponents of pair

programming ("pair") argue that this increases the long-term

productivity by significantly improving the quality of the

code. But it is fair to say that for a number of reasons, voting

is the most controversial and less widely believed agile

practices for programmers.

5.3.2 Truck Factor
The truck number (or truck-factor) is the number of people

with knowledge; you cannot change if the number of persons

went under a truck at the same time you would not be able to

continue to develop.

An informal action (if you can call it that) is the "Truck

Factor" team. Truck-factor measures the amount of spread of

knowledge within the team.

Formally, the truck is the number of people that need to be

run over by a truck before. The project in serious trouble of

course do not really need to be run over by a truck, it could

leave the company ill or on holiday.

• A higher number is better truck

• A low truck number is worse

5.4 Continues analysis
In agile processes, the continuous analysis is important.

Both staff and participants should keep a watchful eye on the

progress of the project, especially when it comes to

application functionality and performance. To them the

perspective they need should be permanent both performance

analysis and comprehensive. The current analysis is used to

identify problem areas in the application. The analysis is done

during the day and mixed IT infrastructure and performance

Tester as participants and actors in the application.

The employees are involved are active members of the team

sprint and have everyone look at the current state of

development effort. If all team members on the performance

of each sprint are concerned, they are in a better position to

maintain the quality of the application. More problems are

found, the sooner they can be solved.

5.5 Trends
In an agile environment, it is important for the application

owner to see continuous improvement in demand during

successive sprints. You want a positive trend; the iteration of

the application is seen well than the last time. It is therefore

even more important to monitor trends in the application

performance in relation to the needs. Trends reports you can

stakeholders. Regular performance snapshots that should

ideally point that performance are getting better or at least not

worsen.

5.6 The difference Expertise
As in many other professions in the field of IT projects, there

are a number of different silos expertise, the development

team for example, a typical software development team of

programmers, administrators, database, network

administrators, security experts, testers, UI designers, and

others. While the diversity of expertise of a team in software

development joins the team as a whole, this diversity is often

the cause of a cultural impact quality.

6 CONCLUSION AND FUTURE

WORK
In particular, the metrics listed by the accompanying technical

reports can at best establish the degree of maintainability and

usability of a system after the fact. The vast literature on

software metrics, on the other hand, proposes numerous ways

of measuring software without providing a traceable and

actionable translation to the multi-faceted notion of quality.

In particular, the Maintainability and Usability Index suffers

from severe limitations regarding root-cause analysis, ease of

computation, language independence, understand ability,

explain ability, and control.

A well-chosen selection of measures and guidelines for

aggregating and rating them can, in fact, provide a useful

bridge between source code metrics and the quality

characteristics.

The maintainability of agile approach is constrained by

several factors such as project size and type, experience of

project personnel, and the availability of knowledgeable and

committed customers.

Agile is beneficial in case of software Maintainability and

usability as it is possible to deliver the Working software

International Journal of Computer Applications (0975 – 8887)

Volume 68– No.4, April 2013

36

within the shortest possible time by using the agile. As well as

it increases the customer satisfaction and confidence in the

respective company.

This research uses literature to reason about the relationship

between agile development methods and maintainability or

usability. Future work can be done in order to validate the

findings presented in this research, by setting up an

experiment to specifically test the impact of development

methods on maintainability or usability. Prior empirical

research has not dealt explicitly with this relationship. Instead,

most empirical research has focused on other specific aspects

such as programmer productivity and error count, measured

mainly for the short term. It would be interesting to measure

the amount of hours required for maintaining a program

developed using agile methods when compared to a program

developed using a traditional plan-driven approach over a

long time.

In agile, there exists continuously contact with customer, so

according to the need of customer, the new features can be

introduced to satisfy customer requirement and which will

make us to come on the track to reduce the cost and time if

there is any kind of lacking from the planned cost and

schedule.

7 ACKNOWLEDGMENTS
I would like to thank Professor Rana Majumdar for all the

help he offered in the course of my studies. His

encouragement and guidance have been of great value to me

Personally, I would also like to thank my parents and my

partner for their support in my studies.

8 REFERENCES
[1] P. Antonellis, D. Antoniou, Y. Kanellopoulos, C. Makris,

E. Theodoridis, C. Tjortjis, and N.Tsirakis, “A data

mining methodology for evaluating maintainability

according to ISO/IEC-9126 software engineering –

product quality standard,” in Special Session on System

Quality and Maintainability - SQM2007, 2007.

[2] S. R. Chidamber and C. F. Kemerer, “A metrics suite for

object oriented design.” IEEE Trans. Software Eng., vol.

20, no. 6, pp. 476–493, 1994.

[3] M. Broy, F. Deissenboeck, and M. Pizka, “Demystifying

Maintainability,” in Fourth International Workshop on

Software Quality Assurance (SOQUA 2007). ACM,

2007.

[4] P. Oman and J. Hagemeister, “Metrics for assessing a

software system’s maintainability,” in Proceedings of

Conference on Software Maintenance, 1992., Nov. 1992,

pp. 337–344.

[5] www.elsevier.com/locate/infsof Empirical studies of

agile software development: A systematic review Tore

Dyba, Torgeir Dingsøyr SINTEF ICT, S.P. Andersensv.

15B, NO-7465 Trondheim, Norway

[6] e-Informatica Software Engineering Journal, Volume 1,

Issue 1, 2007.

[7] Agile Methods and CMMI: Compatibility or Conflict?

Martin Fritsch_, Patrick Keil_ _Technische Universit¨at

M¨unchen.

[8] The Agile Business AnalystBy: Mike Cottmeyer, V. Lee

Henson.

[9] How software process improvement standards and agile

methods co-exist in software organizations? Ngoc Tuan

Nguyen, University of Twente. n.t.nguyen-

1@student.utwente.nl Enschede, August 2010.

[10] Process Improvement, the Agile Way! Ben Linders,

Senior Consultant, www.benlinders.com

[11] The Journal of American Science, 4(1), 2008, ISSN

1545-1003, americansciencej@gmail.com A

Framework for Agile Methodologies for Development of

Bioinformatics SYED Ahsan, Abad SHAH R & D

Center of Computer Science University of Engineering

and Technology , Lahore, Pakistan ,Corresponding

author: Syed Ahsan

[12] Capturing the Requirements,Shari L. Pfleeger,Joanne M.

Atlee .

[13] C. G. O'Regan, A Practical Approach to Software

Quality, Springer, New York, NY, USA,

[14] Agile assessment Framework © Copyright Agile VTT

Minna Pikkarainen Version_1.0

[15] Agile Software Development of Embedded Systems

Version : 1. 0 Date : 2005.04.04 Pages 44 Authors

Minna Pikkarainen Tua Huomo

[16] The Challenges to the Safety Process When Using Agile

Development Models, Master Thesis Hanne-Gro

Jamissen June 29, 2012 Halden, Norway.

[17] Observe-mine-adopt (OMA): an agile way to enhance

software maintainability Jane Huffman Hayes , Naresh

Mohamed and Tina Hong Gao . Journal of Software

Aintenance and Evolution: Research and Practice

[18] Surveying the Factors that Influence Maintainability

Research Design Wiebe Hordijk Roel Wieringa Faculty

of Electrical Engineering Mathematics and Computer

Science University of Twente www.cs.utwente.nl/roelw

roelw@cs.utwente.nl

